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A machine learning study of the two states model for lipid bilayer
phase transitions†

Vivien Walter,∗a Céline Ruscher,b Olivier Benzerara,c Carlos M. Marques,c and Fabrice
Thalmann∗∗c

We have adapted a set of classification algorithms, also known as Machine Learning, to the identifica-
tion of fluid and gel domains close to the main transition of dipalmitoyl-phosphatidylcholine (DPPC)
bilayers. Using atomistic molecular dynamics conformations in the low and high temperature phases
as learning sets, the algorithm was trained to categorise individual lipid configurations as fluid or
gel, in relation with the usual two-states phenomenological description of the lipid melting transi-
tion. We demonstrate that our machine can learn and sort lipids according to their most likely state
without prior assumption regarding the nature of the order parameter of the transition. Results from
our machine learning approach provides strong support in favour of a two-states model approach of
membrane fluidity.

1 Introduction
Phospholipid molecules play a major structural role in biological
membranes1,2 where a deep understanding of the physical prop-
erties can only be acquired from a detailed knowledge of the lipid
assemblies. Thanks to their amphiphilic nature and geometrical
characteristics, most phospholipid molecules spontaneously self-
assemble in water as bilayers. Supported or free-standing lipid
bilayers and vesicles can easily be made, controlled and studied,
and have now become standard tools in membrane biophysics
studies, referred as model lipid bilayer systems3. Early studies on
pure phospholipid bilayers indicated that lipids were subject to
thermodynamic transitions2,4–6, with in particular a sharp tran-
sition associated to a significant change in enthalpy called main,
or melting transition. This transition separates a low temperature
well-packed assembly from a high temperature expanded, disor-
dered lipid tail organisation. This transition is considered to be
weakly first order, with significant pretransitional effects and an
almost continuous variation of many of the membrane structural,
thermodynamic and kinetic properties7. The low temperature

a Department of Chemistry, King’s College London, Britannia House, 7 Trinity Street,
SE1 1DB, London, United Kingdom
∗ E-mail: vivien.walter@kcl.ac.uk
b Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver
BC V6T 1Z1, Canada
c Institut Charles Sadron, CNRS and University of Strasbourg, 23 rue du Loess, F-67034
Strasbourg, France
∗∗ E-mail: fabrice.thalmann@ics-cnrs.unistra.fr
† Electronic Supplementary Information (ESI) available: one pdf file, see DOI:
10.1039/cXCP00000x/. Sample MD trajectory files are available from the Zenodo
repository, see DOI:10.5281/zenodo.3950029. Machine Learning analysis scripts
can be obtained from the Git server github.com/vivien-walter/mllpa.

region is commonly referred as the gel phase, while the high tem-
perature region is the fluid phase. Lipid mixtures also display
melting transitions spreading along a finite temperature range,
usually accompanied by gel-fluid domain coexistence. It is usu-
ally assumed that most biological lipid membranes are found in
a fluid phase, and many scenarii aiming at explaining the lateral
lipid and protein segregation observed in biological membranes
involve ordering of the lipid tails.

The consensual description of the single component lipid melt-
ing transition assumes that dominant molecular conformations
evolve from all-trans extended, well oriented hydrocarbon chain
conformations in the low temperature phase, to disordered chains
melted by rotation isomerism, as proposed in the earliest theoret-
ical proposals8–11. Lipids in the fluid phase have more configura-
tion entropy and more enthalpy than those in the gel phase, due
to lower density and cohesive energy, and higher chain torsion
energy. Balance between entropy and enthalpy holds at the melt-
ing temperature Tm. Despite some asymmetry between the two
phases, a large number of experimental facts related to melting
transition of pure and mixed lipid compositions have been suc-
cessfully interpreted by means of a phenomenological two-states
model, originally proposed by Doniach5,12–19. This model can be
expressed as an Ising model, each lipid taking binary discrete val-
ues (say s = 0 for gel and s = 1 for fluid) with neighbouring lipids
being coupled5. In the framework of the two-states model, the
Ising variables stand for a coarse-grained description of the lipid
tail conformations, assuming that lipids can be classified into two
classes, according to their molecular conformations. Within this
description, an effective temperature dependent "magnetic field"
h(T ) biases the odds in favour of one or the other state, while
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cooperativity results from nearest neighbour state coupling.
Usually, the determination of the lipid bilayer phase relies on

a structural scalar order parameter, such as the membrane thick-
ness, given for instance by the head to tail lipid extension or the
tail molecular order parameter. We show in the present approach
that Machine Learning approaches can also elegantly distinguish
the gel and fluid lipid bilayer structures. Machine Learning has
already been applied successfully to a number of situations in
statistical thermodynamics and phase transitions. For instance,
Cubuk et al. used support vector machines to localise plastic flow
regions in amorphous structures20, Carrasquilla and Melko re-
vealed the strong aptitude of neural networks models to recognise
various spin ordering regimes in condensed matter systems21, Le
and Tran succeeded in predicting the polymorphism of complex
lipid mixtures given a set of structural, chemical and composition
parameters, by means of an artificial neural network approach22.
Very recently, Iyer et al. adapted support vector machines (SVM)
to the determination of lipid domains in raft forming mixtures23.
We address in this work the validity of the two-states descrip-
tion for the transition of pure DPPC (1,2-dipalmitoyl-sn-glycero-3-
phosphatidylcholine) bilayers, using atomistic molecular dynam-
ics (MD) simulations and supervised Machine Learning (ML) clas-
sification algorithms. Assessing the two states model requires
ones to analyse single lipids and sort them into their respective
states. Our ML classification works without reference to an exist-
ing or newly defined scalar order parameter. It only relies on a
procedure for lifting the orientation degeneracy of each lipid con-
figuration. In addition, the ML approach may serve as testing the
relevance of a given scalar order parameter a posteriori.

358K

288K

S     mol

0.17 0.40 0.87 0.95

0.17 0.22 0.48 0.61

Fig. 1 Snapshots of a DPPC bilayer simulated at (top-left) 288 K and
at (bottom-left) 358 K, respectively below and above the experimental
Tm of the lipid. Lipid molecules are shown in gray, with their phosphorus
atom displayed as a plain big sphere to distinguish the lipid orientation in
the bilayer. Blue lines delimit the simulation box beyond which periodic
boundary conditions are applied to the system. Right: lipids extracted
from the bilayers displaying an important diversity in their conforma-
tions, with their associated molecular order parameter Smol. Top-right:
conformations at 288K, bottom right: conformations at 358K.

2 Simulated systems and Machine Learning analysis

DPPC molecules are among the best known phospholipids6. They
display experimentally a melting transition at 314 K, which is well

reproduced by the CHARMM-36/TIP3P force-field for atomistic
simulations of lipid bilayers in aqueous solutions24,25. In our sim-
ulations, the bilayer was found in a Lα fluid phase above the main
transition, and in a disordered or "ripple" gel phase (Figure 1),
i.e a spatially modulated gel phase with peristaltic variations in
the bilayer thickness and normal direction26,27 at lower temper-
atures.

It is known experimentally that pure DPPC bilayers undergo a
premelting transition at temperature Tp = 307 K. The pretransi-
tion calorimetric signature is an order of magnitude smaller than
the one associated to the main transition. In the temperature in-
terval between the pre- and the main transitions, the stable ther-
modynamic phase is expected to be a spatially modulated Pβ ′ rip-
ple phase2,6,26,28,29. Below premelting, the thermodynamically
stable phase is a tilted lamellar Lβ ′ gel phase. Such low temper-
ature states are difficult to investigate using molecular dynamics,
as they behave in practice as solid phases and equilibrate very
slowly. Using the Charmm36 lipid-SPC water force field, Khakbaz
et Klauda simulated small systems (64 lipids) and found a low
temperature structure consistent with a Lβ ′ organisation27. Our
simulations of larger systems (212 lipids) did not show evidence
of such Lβ ′ state but display instead a noticeable corrugation of
the membrane better consistent with a Pβ ′ lipid arrangement. In
agreement with27, a Lβ ′ -like structure was indeed obtained for
smaller systems (64 lipids, ESI†). The amplitude and period of
the corrugation turns out to strongly depend on the simulation
box size, and all the more visible than the simulated system be-
comes large. A precise study of the structure of membranes at
low temperature is out of the scope of the current study and is
devoted to an upcoming paper30.

As the ML analysis shows below, our numerical low tempera-
ture gel structure display some amount of chain disorder, consis-
tent with recent experimental findings on related phosphocholine
bilayer systems31. We therefore assume that our structure is
closer to the ripple than to the tilted gel phase, and the former
appears to be numerically favoured in all the MD simulations per-
formed in the present work. In what follows, we refer to this low
temperature organisation as a disordered gel state, or simply gel
state†.

The principle of the analysis is as follows. A 212 lipid molecules
system was thermalised at low (288 K) and high temperature
(358 K) and pressurised with a semi-isotropic barostat. At such
temperatures, we assume that lipid conformations are predomi-
nantly gel and fluid respectively. Our training set was therefore
composed of an equal number of conformations coming from the
288 K MD trajectory (all labelled as gel) and the 358 K trajectory
(labelled as fluid). Details regarding MD simulations are given as
ESI†.

Raw molecular conformations (spatial coordinates) were pro-
cessed to remove all translation and rotation degeneracy, and the
dimension of the initial conformation space was slightly reduced,
resulting respectively in a 100-dimensional reduced coordinate
space X , and a 61-dimensional mutual distances space D (Fig-
ure 2 and Appendix). The coordinate space X and the distance
space D provide a very detailed description of individual lipid
conformations, and constitute the starting point of the ML ap-
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proach. They are referred as "feature spaces" in the context of
automated classification. The processed conformations were then
fed to the ML algorithms.

Fig. 2 DPPC molecular structure after removal of the hydrogen atoms.
It contains 50 centers of forces associated to the "heavy" atom species
C,O,N,P. Enumerating all atom pairs separated by 6 bonds along the
molecular structure graph gives 61 different pairs. The number of pairs
to which an atom belongs ranges between 1 and 6 (color code).

Three different algorithms were selected for the purpose of
classifying the molecular conformations: Naive Bayes (NB), K-
Nearest neighbours (KNN) and Support Vector Machines (SVM).
They were all used as implemented in the Python/Scikit-learn
package32. The different ML algorithms were tested and found
to perform moderately well when used separately, some methods
performing better for gel lipids, other methods for fluid lipids.
The resulting scores shown in Figure 3 shows that the NB pre-
dictive capacity is independent from the phase of the lipid con-
sidered. KNN performs better for fluids than for gels. At the
opposite, ”coordinates” X -SVM and ”distances” D-SVM seems to
perform better in the gel phase.

We therefore decided to combine the predictions of the above
models, retaining those who perform best in each phase. The fol-
lowing decision chain was implemented:

(1) if the 4 models agree on the same prediction for the state,
this prediction is retained;

(2) if the D-SVM algorithm predicts a gel state, the lipid con-
figuration is assumed to be gel;

(3) if the X -SVM algorithm predicts a fluid state, the lipid con-
figuration is assumed to be fluid;

(4) if the NB algorithm predicts a gel state, the lipid configura-
tion is assumed to be gel;

(5) if none of the above conditions have been met, the KNN
algorithm makes the final decision on the configuration classifica-
tion.

Combining the approaches together, we managed to get a suc-
cess rate of 88% upon validation, i.e. using 80% of the training
set configurations for learning, our best ML algorithm was able to
assign 86% of the low temperature configurations to a gel state,
and 91% of the high temperature configurations to a fluid state.
After training, the ML model was used to analyse simulations at
arbitrary temperatures. MD trajectories and ML scripts used in
this work are respectively available in the Zenodo and GitHub
repositories33.

3 Results and discussion
One important prediction of the two states model is the pres-
ence of minor components within the majority state, under the
form of "thermal excitations". A finite fractions of molecules tend
to adopt a conformation different from their immediate environ-
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Fig. 3 Prediction scores of the Machine Learning classification methods
for lipids in the gel phase (Left) and in the fluid phase (Right). Besides
the Naive Bayes method (NB), all methods have an important asymmetry
in their accuracy between each phase.

ment, in spite of the presence of a "local field" biasing the statistics
in favour of the dominant state. In that respect, the training set
cannot be considered as containing only pure gel and fluid con-
formations. The presence of minor components is inherent to the
presence of thermal excitations, and it does not seem possible
to curate the training set without introducing further unwanted
biases into the analysis. Our results show, however, that the train-
ing algorithm is not sensitive to the presence of a small fraction of
non representative lipid conformations. In other words, the learn-
ing procedure was found to be robust so long as the training sets
temperatures were chosen far apart from the melting transition.

Let us first analyze how ML predictions differ from those
based on standard scalar structural order parameters. Figure 4
shows the distribution of the molecular segmental order param-
eter Smol, below and above the transition. This scalar observable
was defined, for a given lipid and an instantaneous configura-
tion (coming from a MD trajectory frame), by averaging over
all the CC bonds in the two aliphatic tails a nematic parameter
(3cos(θ)2−1)/2, θ being the bond orientation with respect to the
bilayer normal direction z. Both histograms overlap significantly.
Using for instance a threshold value Sth = 0.508, it was found that
altogether 13% of lipids (1 in 8) were assigned to the opposite
state, either gel at 358 K, or fluid at 288 K. The gel Smol distribu-
tion appears to be strongly skewed, as 23% (1 in 4) of the lipid
molecules ended up in the fluid state at 288 K. The relatively
large fraction of lipids with Smol ≤ 0.508 found at 288 K is in part
due to the ripple structure of the bilayer. This clearly show that
using Smol for categorising individual lipid conformations gives
noticeably different results. Figure 6 compares the ML and Smol

classifiers as a function of temperature. It was found that Smol as-
signs 77% of the 288 K lipid configurations to the gel state (86%
for ML) and 87% of 358 K lipid configurations to the fluid state
(91% for ML). Based on a criterion consisting in minimizing the
fraction of minor component in each state, ML outperforms Smol

by a small margin. Though their predictions differ at the level
of single molecules, both methods seem consistent in terms of
molecular averages.

A similar analysis was conducted for two other scalar determi-
nants: the lipid head-to-tail extension L, and the area per lipid Al

computed from a Voronoi tessellation of the 2d xy projection of
lipid center of mass positions (assigning to each lipid a polygonal
cell of given area). In both cases, the low and high temperature
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distributions were found to overlap significantly (ESI†).
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Fig. 4 Distribution of the molecular order parameters Smol obtained from
MD trajectories at 288 K (blue open circles) and 358 K (red open squares)
respectively (using 106 lipid conformations). Distribution of molecular
order parameters Smol for lipids which have been classified as gel (blue
full circles) and as fluid (red full squares) irrespective of the simulation
temperature. The dashed black line shows the threshold value that best
determine the internal lipid state based on Smol values (according to
maximum likelihood without a priori bias). The fraction of the population
which would be incorrectly classified by using this scalar order parameter
as compared with our Machine Learning approach is represented by the
shaded area in gray.

To provide further evidence in favour of our approach, we com-
pared the ML predictions to the membrane structure as a function
of temperature. Figure 5 shows on the same graph the average
area per lipid Al , the average volume per lipid Vl , the molecular
order parameter Smol and the ML prediction for the fraction of
lipid assigned to the fluid state. The area per lipid is defined as
the projected membrane area divided by the number of lipids per
leaflet, neglecting out-of-plane membrane undulations. The vol-
ume per lipid results from a Voronoi analysis of the lipid centre
of masses. The structural values evolve monotonically and re-
versibly with temperature, from 288 to 358 K. The three curves
superimposes very well, which shows that structural data sup-
ports the finding of our classification tool. Two snapshots of the
membrane upper leaflet are also provided, at low and intermedi-
ate temperature. More snapshots are provided in Figure 7. The
low temperature membrane shows a small number of isolated
small clusters of fluid lipids. A one to one fluid/gel ratio is ob-
served at 318 K (51 ± 3% of lipids in the fluid state), a temper-
ature close to the experimental melting temperature (314 K). At
high temperature (358 K) a few small dispersed clusters of lipid
in gel state remain visible.

Snapshots of the upper leaflet at 318 K show two large distinct
domains, separated by a smooth boundary. The fluid state ratio
evolves smoothly and reversibly from an estimated value of 14 ±
2% at 288 K to 95 ± 1% at 358 K. The strong correlation between
fluid ratio x f and average area per lipid Al can be naturally in-
terpreted in the framework of the two-states model by assigning

constant values A f and Ag to the fluid and gel states, resulting
in Al = x f A f +(1− x f )Ag. A similar conclusion could be reached
when considering the average volume per lipid Vl and the average
molecular order parameter Smol.
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Fig. 5 Ratio of lipids in fluid state (black circles curve, vertical axis on
the left), average area per lipid (blue squares curve, vertical axis on the
right), average volume per lipid (red triangles up curve, vertical axis on
the right) and average molecular order parameter (green triangles down
curve, inverted vertical axis on the left) as functions of temperature. Two
snapshots of the upper membrane leaflet, respectively taken at 288 and
318 K, are shown in the inset. The dark spots correspond to the 2d
projection of the lipid center of masses. Boundaries between lipids result
from the associated 2d Voronoi tessellation. Each cell colour corresponds
to the assignment of the ML, blue for the gel state and red for the fluid
state.

The ML predictions agree well with the global structural prop-
erties of the membrane and we now consider the local correlation
properties. The two-states model combines the internal sponta-
neous dynamics of each lipid with local interactions promoting
cooperativity between neighbours. The interactions, known as
J coupling in the Ising model context, are responsible for the
sharp structural and thermodynamic changes with temperature,
the emergence of local correlations, clustering and domain for-
mation, such as seen in Figures 5 and 7. Such couplings create
a local field whose effect is to bias the lipid state in favour of
the dominant local state, according to the majority rule. Inter-
nal reversible gel ↔ fluid state transitions occur spontaneously,
according to a non conserved parameter, or Glauber dynamics34.
In order to get insight into the local correlations and flip rates,
we performed a systematic statistical neighbour analysis, and es-
timated the conditional conversion states.

Voronoi tessellations provide an operational method for decid-
ing unambiguously which lipid pairs are nearest neighbours. Fol-
lowing a protocol described in the ESI†, we consider two consecu-
tive MD frames and divide the lipid population into four subsets:
(a) lipids categorised as fluid, which stay in the fluid state, (b)
lipids categorised as fluid, switching to the gel state, (c) lipids
in the gel state, remaining in the gel state and (d) lipids in the
gel state switching to a fluid state. At T = 318 K the fluid and
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Fig. 6 Fluid ratio predictions (%) vs temperature for ML and Smol based
binary classifiers. The ML classifier discriminates better than Smol both
at high and low temperatures.

gel states compete evenly and the fluid and gel populations are
roughly equal. We count for each molecule, the number ng of gel
neighbours and n f of fluid neighbours. We find in these condi-
tions that the most typical environment of a lipid in fluid state (a
and b) is ng = 2±1 and n f = 7±1, while for a lipid in gel state (c
and d) ng = 7±1 and n f = 1±1. However, the internal lipid state
fluctuate spontaneously, and clearly the dynamics is strongly in-
fluenced by the local environment, as demonstrated in Figure 8.
Indeed, for gel to fluid (case d) and fluid to gel (case b) transi-
tions, we notice that all lipids that are just about to switch are
more likely to have an equal number of gel and fluid neighbours
(typically ng = 3±1 and n f = 5±1). We conclude that lipids sub-
ject to internal state transitions are mostly located at the border
between domains. The results of our neighbour analysis clearly
support the idea that internal state dynamics is under the control
of some local field.

4 Conclusion
As a summary, we trained a Machine Learning algorithm to clas-
sify phospholipid molecular conformations obtained by atomistic
molecular dynamics simulations. Lipids were sorted into two
classes, gel and fluid, according to their similarity with a refer-
ence (training) set of conformations originating from low and
high temperature trajectories respectively. The efficiency of the
ML approach is superior to simple schemes based on scalar order
parameters as far as minimizing the fraction of minor component
in each phase is concerned, and deals successfully with the ripple
structure at low temperature. The measured fraction of fluid/gel
conformations correlates very well with the observed structural
changes as temperature evolves. A finite fraction of the minor
phase is always present which can be associated to thermal excita-
tions in the framework of a two-states Ising model interpretation.
Lipids with similar state tend to cluster into large domains, while
spontaneous internal state conversions are more likely to occur at
the boundary between domains. The local distribution of neigh-
bours supports the concept of local field and nearest neighbour
coupling. We overall conclude that our ML approach provides

Fig. 7 Snapshots of the top and bottom bilayer leaflets for increasing
288, 298, 308, 318, 328, 338, 348 and 358 K temperatures. Each frame
represents the 2d Voronoi cells of lipids in gel state (dark blue) and fluid
state (light red) such as predicted by the ML approach.
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Fig. 8 Color coded histograms of the (nl ,ng) distribution for the 4 subsets
described in the text, at T = 318 K. Probability at T = 318K for a lipid
to have its local environment composed of ng neighbours in gel state
and n f neighbours in fluid state. Left column informs about the local
environment probability of lipids in the fluid state (Top) and gel state
(Bottom) when no change in the state is observed. Right column shows
the probability of the local environment just before lipids experience a
transition to the other state.

convincing evidence in favour of the two-states phenomenologi-
cal model.

We foresee numerous applications of the present approach.
A first straightforward extension concerns lipid binary mix-
tures35 and liquid ordered phases caused by the presence of
cholesterol36–39, as well as membranes of more complex com-
position40,41. We also anticipate that our ML approach will
be useful to study the influence of membrane solutes that
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are known to influence the thermodynamics of melting in
model membranes. This includes hydrophobic pollutants, e.g.
pyrene42, carbohydrates19,43, anaesthetic molecules5,44 and syn-
thetic oligomers45,46. A ML approach could then quantify the
lipid state alteration induced by these compounds. Importantly,
this analysis is also well-suited to study the local lipid environ-
ment of membrane proteins, for which the existence of lipid medi-
ated interactions and minor phase nucleation is speculated47–49.
For all these cases, significant improvements over approaches re-
lying on scalar order parameters can be anticipated.
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Appendix: Machine Learning assignment of lipid
states and training

Lipid classification procedure

The lipid classification process involves three steps:
1. the molecular conformation of a lipid is recorded as a list of

atom positions. Lipids are then shifted and rotated in order to
remove all rotation and translation degeneracy.

2. the lipid molecular conformations are further simplified, re-
ducing each single lipid conformation to a set of 100 (r,z) coordi-
nates (configuration space X ), or 61 mutual distances (configu-
ration space D).

3. 424 conformations were selected with the purpose of train-
ing the algorithms. A number of Machine Learning procedures
were tested and compared. A combination of 4 algorithms was
found to maximize the training success rate. We therefore com-
bine the 4 algorithms in our final classification procedure.

Definition of the configuration spaces

Machine Learning algorithms share the ability to discriminate
well multidimensional data. Our purpose is to feed the algo-
rithms with single lipid conformations and have them sorted into
two classes. We observe that the raw chemical formula of DPPC
(CAS 2644-64-6) is PNO8C40H80. Disregarding hydrogens, each
lipid molecule comprises 50 "heavy atoms", and therefore the as-
sociated single lipid configurations belong to a 150 dimensions
vector space. As some configurations can be mapped onto each
other by means of a spatial displacement (translation and/or rota-
tion), the set of configurations has only 144 independent degrees
of freedom.

For simplicity, we decided to work with slightly smaller configu-
ration spaces, by projecting further the 144 dimensional molecu-
lar conformations onto two configuration spaces, X and D , that
we now define. Within the first approach, one determines the
proper inertial frame of each lipid configuration, locating the cen-
ter of mass, fitting the position of all atoms with a 3D line to find

the longest axis. Lipid configurations can be recast into the in-
ertial frame, using the center of mass as origin, and the longest
axis (smaller moment of inertia) as vertical axis. This almost al-
ways results in having the lipid directed along the bilayer nor-
mal, with two possible orientations. When necessary, the lipid is
flipped in order to place by convention the phosphocholine group
into the positive z upper half space. This combination of reori-
entations lifts entirely the translation and orientation degener-
acy of the original coordinate space. New cylindrical coordinates
{ri,θi,zi}, i = 1 . . .50 can be associated to the resulting lipid con-
formation. We decided then to disregard entirely the angles θi,
keeping only the coordinate subset {Xi = ri,zi}, i = 1 . . .50. This
defines a NX = 100 dimensional space X that will subsequently
be referred as "Coordinate space".

For the second approach, starting from the original 150 lipid
coordinates, we calculate a set of mutual euclidean distances be-
tween pairs of atoms. Two atoms participate in a pair when they
are separated by 6 positions along the chemical graph defining
the molecule (see Figure 2). Enumerating the possibilities of the
tree-like graph, one finds 61 non equivalent pairs of atoms, as-
sociated to 61 distances {D j}, j = 1 . . .61. This defines a ND = 61
dimensional "Distance space" D , deprived of translation and rota-
tion degeneracy.

In both cases, the original dimension of the problem is reduced
(from 144 to 100 and 61 respectively) but yet the configuration
spaces X and D are large and preserve to a large extent the
complexity of the original conformations. As our comparisons
show, the classification of lipid states is efficient, whether one
starts from X or D .

Three different algorithms commonly used for Machine Learn-
ing classifications were used in this Letter. A short description of
these algorithms is given below.

Naive Bayes

Given a configuration space D = {D j}, j = 1 . . .ND , and two
classes s = {gel,fluid}, the Bayesian approach assumes that it ex-
ists a joint probability distribution P(s,{D j}), that weighs the
respective likelihood of each state s once a configuration {D j}
is provided. The Bayesian model makes a decision regarding
the state s by comparing the conditional probability densities
P(gel|{D j}) and P(fluid|{D j}). To be precise, the Bayesian ap-
proach attributes a fluid label to a configuration if the sign of

ln
(

P(fluid|{D j})
P(gel|{D j})

)
(1)

is positive, and a gel label otherwise.
Each Bayesian approach provides a mathematical model

P({D j}|s) describing the expected configuration distribution for
a given class s: fluid and gel. There is in principle entire freedom
in choosing the model, but the efficiency and the optimization
requirements limit such choices in practice. Training a Bayesian
model therefore amounts to finding the most realistic function
P({D j}|s) as far as classifying a given training set of data is con-
cerned.

The Bayes theorem provides the connection between the con-
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ditional probabilities entering in the choice function (1) and the
model:

P(s|{D j}) =
P({D j}|s)P(s)

P({D j})
, (2)

where P(s) represents the prior distribution of s, i.e. the statis-
tical distribution of s in the absence of any configuration related
information, and P({D j})=P(gel,{D j})+P(fluid,{D j}) a normal-
ization factor which cancels out in eq (1). The Naive Bayes (NB)
gaussian model assumes that P({D j}|s) factorizes as a product of
independent gaussian distributions of D j.

P({D j}|s)
ND

∏
j=1

dD j =
ND

∏
j=1

dD j√
2πσs, j

exp

(
−
(D j−Ds, j)

2

2σ2
s, j

)
(3)

Training the algorithm means finding the best mean value Ds, j

and standard deviation σs, j for every parameter D j in the dis-
tance space D and each class s. The number of parameters to
compute turns out to be equal to twice the dimension of D . In
our case, the training set contains an equal number of gel and
fluid conformations, and there is no a priori bias between classes,
meaning that P(gel) = P(fluid) = 1/2. Therefore, the number of
parameters to determine during training is 2×61 = 122.

To sum up, the Naive Bayes approach classifies a lipid confor-
mation by computing a quadratic score function in the conforma-
tion space,

ND

∑
j=1

(D j−Dfluid, j)
2

2σ2
fluid, j

−
ND

∑
j=1

(D j−Dgel, j)

2σ2
gel, j

+Const (4)

and deciding whether a {D j} lies closer to {Dfluid, j} or to {Dgel, j}
according to this generalized distance.

K-Nearest Neighbors

The K-Nearest Neighbors (KNN) classification method is based on
defining a distance between any arbitrary pairs of objects to dis-
criminate. A natural choice is the Euclidean norm of the feature
space, here the NX dimensional coordinate space X .

The KNN algorithm finds the K nearest neighbors within the
training set, of each new configuration to classify. Decision is
taken based on majority rule, i.e. the most abundant class found
among the K closest neighbors. The optimal K is determined
during the training and validation process, and was set equal to
5, a typical value for this method.

Support Vector Machines

Support Vector Machines (SVM) classify data by means of linear
separation in high dimensional representation spaces. Denoting
φφφ an arbitrary element in a given representation space R, the bi-
nary decision is given by the sign of the affine expression www ·φφφ +b,
with b a numerical constant and www the hyperplane of separation
normal vector. In a few favorable cases, it is possible to use di-
rectly the data definition space as representation space. However,
in many practical situations, efficient classification can only be
achieved by mapping the data (e.g. X or D) onto a larger repre-
sentation space, namely xxx 7→ φφφ(xxx). Training a SVM corresponds to
choosing a suitable representation space R, and finding the opti-

mal b and www. As shown in50,51, given a training set {xxxi}, i = 1 . . .n,
the optimal www can always be expressed as a linear combination
www = ∑i αiyiφφφ(xxxi) with either positive or vanishing αi coefficients,
and yi =±1, depending on the class (fluid 1, gel -1) of the corre-
sponding vector data xxxi.

The subset of vectors {xxxi} participating in the definition of www
with non vanishing coefficients αi > 0 forms the so-called support
vectors. Denoting J the sequence of indices of support vectors,
and K (xxx,xxx′) the product φφφ(xxx) ·φφφ(xxx′) in R, called kernel function,
the SVM decision function for any vector data xxx reads:

sign

(
b+ ∑

j∈J
α jy jK (xxx j,xxx)

)
. (5)

The SVM training optimization problem can therefore be formu-
lated without any explicit reference to the representation space
R, nor the mapping φφφ(x). It only requires an explicit positive ker-
nel function K (xxx,xxx′). As explained in50,51, there are efficient
quadratic optimization algorithms for determining the support
vectors xxx j, the non-vanishing coefficients α j and the shift con-
stant b.

In this study, we used the standard radial basis kernel function

K (xxx,xxx′) = exp
(
−γ||xxx− xxx′||2

)
, (6)

with a default value γ equal to the inverse of the dimension of the
configuration space. This choice assumes that each component of
xxx is of order 1. When using the coordinate space X , the trained
SVM ends up using 297 non vanishing support vectors and coef-
ficients α j, γ = 1/100, b =−0.416 (167 fluid, 130 gel support vec-
tors). When considering the distance space D , the trained SVM
used 161 non vanishing coefficients α j, γ = 1/61 and b = 0.134
(100 fluid, 61 gel support vectors).

Training

The Machine Learning analysis performed in this Letter were con-
ducted using the Scikit-Learn module (version 0.19) for Python
332. An unbiased selection of lipid conformations extracted from
a trajectory at low temperature (288 K) was part of the training
set, with a label gel. Similarly, an unbiased selection of conforma-
tions from a trajectory at high temperature (358 K) was added to
the training set with a label fluid. The number of gel and fluid
conformations were in equal number in the training set. As cus-
tomary, 20 % of conformations were removed from the training
sets, and used for verification and scoring purposes. The training
set therefore consists of a sequence of 370 vectors (elements of
the configuration spaces X or D), used for building the predic-
tion model.

Asserting the predictive capacity of each model

Once defined the training set, with properly labelled gel and fluid
states, 20% of the lipids in each phase were taken apart for form-
ing a validation set. After training the models (i.e. optimizing the
parameters with respect to the 80% remaining conformations) a
prediction score was separately calculated for the gel and fluid
conformations in the validation set. The overall procedure was
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repeated 10 times, each time with the same training set, but in-
dependently drawn validation subsets. The average prediction
scores are those shown in Figure 3.
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2

I. SIMULATIONS

A. Simulation conditions

All simulations were performed using GROMACS 2016.4 [1, 2] along with the CHARMM-36 all-atom force-field [3]
(June 2015 version). A lipid bilayer made of 106 lipid molecules per leaflet, each containing 130 explicit atoms,
was created using CHARMM-GUI [4–7]. It was hydrated with two 8 nm thick water layers on each side (connected
through periodic boundary conditions), using the TIP3P water model, for a total of 29826 solvent molecules. The
force field parameters for DPPC molecules were provided directly by CHARMM-GUI [8, 9].

The above system was first subject to energy relaxation using steepest descent energy minimization, followed by a
10 ps NVT thermalization stage at 288 K. Then, the bilayer was subject to a 1 ns NPT equilibration run coupled to a
semi-isotropic barostat (1 bar in all directions). The system was then further equilibrated at the desired temperature
with the same semi-isotropic barostat during a second NPT equilibration step of 10 ns. Molecular dynamics production
runs of 50 ns were finally generated at the same temperature and with the same semi-isotropic barostat. The analysis
were performed on the last 25 ns of simulations. All time steps were set to 2 fs.

All the molecular dynamics simulations used the leap-frog integration algorithm [10]. Temperature and pressure
were kept constant using respectively a Nosé-Hoover thermostat [11, 12] (correlation time τT = 0.4 ps) and a Parrinello-
Rahman semi-isotropic barostat [13, 14] (correlation time τP = 2.0 ps, compressibility 4.5× 10−5 bar−1).

Lipid and water molecules were separately coupled to the thermostat. Following GROMACS recommendations for
the CHARMM-36 all-atom force field, a Verlet cut-off scheme on grid cells was used with a distance of 1.2 nm, and
non-bonded interactions cut-offs (Van der Waals and Coulombic) were also set to 1.2 nm. Fast smooth Particle-Mesh
Ewald electrostatics was selected for handling the Coulombic interactions, with a grid spacing of 4 nm. A standard
cut-off scheme with a force-switch smooth modifier at 1.0 nm was applied to the Van der Waals interactions. We did
not account for long range energy and pressure corrections, and constrained all the hydrogen bonds of the system
using the LINCS algorithm.

B. Nature of the gel phase

Whenever a large system (212 lipids or more) was simulated at low temperature, either starting from a molecular
builder configuration (Charmm-gui), or resulting from the annealing of a high temperature configuration, a structure
showing a longitudinal corrugation in the x and y direction was obtained (Fig. S1 right). As many other authors
before, we think that this structure could actually be reminiscent of the experimental Pβ′ DPPC ripple phase [15–17],
see also [18]. In this work we refer to this corrugated phase as a disordered gel phase to distinguish it from the
flat, tilted chains, Lβ′ structure.

On the other hand, simulations of small systems made of 64 lipids each show much less corrugation, and looks
closer to a flat tilted Lβ′ [19] gel phase. The same holds if the 64 lipids system originates from a slow cooling of the
high temperature phase. Figure S2 summarizes the various pathways leading to either a disordered, or a flat tilted
structure.

The stability of the disordered gel phase was challenged by putting the system in contact with an anisotropic
barostat (3 independent axis, same pressure) for 50 ns at 288 K in order to remove any box induced residual stress.
The ripple phase was not perturbed except but a 6% change in the box lateral size. For all practical purposes, the
bilayer behaves mechanically as a solid (fluid bilayers display large box size fluctuations when subject to an anisotropic
barostat).

In addition, the ripple phase was put under tension, both under anisotropic and semi-isotropic barostat conditions,
imposing a 10 mN/m stretching condition during 50 ns at 288 K. The longitudinal instability persisted and no tilted
Lβ′ emerged. The stresses and box sizes obtained at low temperature (288 K) are given in Table I.

The outcome of these ”stress-tests” was that the disordered gel phase shows robustness and metastability (e.g.
apparent stability without evidence of thermodynamic stability). Meanwhile, it is possible to duplicate a 64 lipids
tilted flat configuration, and simulate it at low temperature (Fig. S2). The resulting 256 lipids solid phase also showed
(meta)stability within accessible simulation times. However, once this system was heated and melted, the flat tilted
configuration could not be recovered under quenching, or cooling. Only the disordered gel structure seems to be
spontaneously favored upon system cooling, and reversible temperature cycling.

We therefore considered that the disordered ”ripple-like” gel phase was indeed our low temperature reference phase,
and performed the training and analysis on it.
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FIG. S1. Snapshots of bilayer configurations in the fluid (left) and disordered gel (right) phase, with periodic boundary
conditions (box).

FIG. S2. Synopsis of the conditions allowing for the emergence of a disordered gel (large system, bottom row) or tilted gel
(small system 64 lipids, top row and replication of the small system, middle row). The tilted lipid structures does not show up
spontaneously if the number of lipids is larger than 64, and can only be found by replicating a small system.
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II. SYSTEM ANALYSIS

A. Determination of structural parameters

Values of the average area per lipid Al and order parameter Smol of the bilayer were respectively obtained using
the GROMACS built-in commands gmx energy and gmx order.

For measurements of individual lipid properties (area, order parameter, elongation), atom positions were collected
from trajectories using the Python 3 MDAnalysis module [20, 21]. The individual areas per lipid were obtained from
Voronoi tessellations of the two-dimensional projections of the lipid center of masses, computed using the Voro++
library [22]. The individual volumes per lipid were derived from three-dimensional tessellations of the lipid centers of
mass, again using the Voro++ library. Note that the bilayer geometry requires a specific tessellation procedure: this
was done by introducing ghosts lipids in the water regions. Without these ghost lipids, the tessellation cells cannot
be correctly defined and are unbounded across the membrane-water interface, thus overestimating significantly the
individual volume per lipid. Ghosts lipids are mirror images of bilayer lipids across the local lipid-water interface (cf.
Fig. S3). After the tessellation was made, ghost lipids described in the previous section and their corresponding cells
were removed the lists, and only the volumes of physical lipids were collected and analyzed.

The molecular order parameter Smol of individual lipids was calculated by measuring, for every NC − 2 = 14
non-terminal carbon atoms k = 2 . . . 15 of the 2 tails of the lipids, the angle formed between the z-axis of the system

directed along ~uz and the vector
−−−−−−−−−−−→
C(j,k−1)C(j,k+1) defined by the carbon atoms surrounding atom k within the same

tail j = 1, 2. The order parameter Smol,(j,k) of the atom k is obtained from the 2nd Legendre polynomial P2 using

cos(θ(j,k)) = ~uz ·
−−−−−−−−−−−→
C(j,k−1)C(j,k+1), and averaging over j and k:

Smol =
1

2(NC − 2)

2∑
j=1

NC−1∑
k=2

1

2

(
3 cos(θ(j,k))

2 − 1
)

(1)

B. Next-nearest neighbors statistics

After completion of the 3d Voronoi tessellation using Voro++, a list of next-nearest neighbors was established for
each lipid center of mass. We also collected the areas of the polygonal surfaces separating each pair of neighboring
Voronoi cells. The ghost lipids and their corresponding faces were removed from the lists. The neighbor lists were
further curated by removing all the neighbor pairs for which the corresponding face area accounted for less than 1%
of the total surface area of each Voronoi cell in contact. The number of next-nearest neighbors were finally counted
to build the coordination statistics (ng, nf ), where each lipid molecule has ng gel and nf fluid neighbors.

III. COMPARISON BETWEEN MACHINE LEARNING DECISIONS AND STRUCTURAL
CHARACTERIZATIONS OF THE LIPID CONFIGURATIONS

Machine Learning predictions were compared to two typical lipid structural properties: the carbon carbon (CC)
order parameter Smol along the chains and the area per lipid A in the 2d Voronoi tessellation of the lipid projected
centers of mass. The corresponding results are presented in Fig. S4(a) and (b).

The order parameter curves (Fig. S4(a)) clearly discriminate among the low temperature (288 K) and high tem-
perature (358 K) fluid phases, in agreement with published results on these systems [23].

Simulation Stress xx Stress yy Box x Box y
(1) -6 8 7.2 7.2
(2) 0.8 1 7.0 7.4
(3) -21 -18 7.5 7.5
(4) -20 -20 7.4 7.6

TABLE I. Mechanical resistance of the low temperature phase (288 K). Simulation conditions: (1) tensionless semi-isotropic
barostat, (2) tensionless anisotropic barostat, (3) under tension semi-isotropic barostat, (4) under tension anisotropic barostat.
Stress xx: virial stress in the x direction in bars. Stress yy: virial stress in the y direction. Box x: lateral x box size in nm.
Box y: lateral y box size.
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FIG. S3. Comparison of 3-dimensional Voronoi tessellations of a lipid bilayer configuration (A) without and (B) with ghost
lipids. Without ghost lipids, most cells are unbounded, with infinite volume, due to the absence of particle on the opposite side
of the water-membrane interface. As a practical solution of this problem, ghost lipids are added to the data set, mirroring the
lipid center of mass positions. The resulting cells for lipids inside the bilayer display a realistic volume and shape, accounting
for the water interface in a natural way.

The order parameter of the atoms in the lipid tails at low (288 K) and high (358 K) temperature is characteristic
from membranes in the gel and fluid phases respectively [19]. The phase transition can be clearly seen in Fig. S4(b)
as a significant variation in the evolution of the area per lipid Al around 321 K.

Experimental structural values are available at 323 K [24–27]. Nagle et al. obtained for DPPC an area per lipid
equals to 64 ± 1 Å2 significantly close to the value circa 60 Å2 we obtained in our simulations. Using the average
DPPC bilayer thickness reported by Nagle et al., we could estimate an experimental volume per lipid of 1220 ± 50 Å3,
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FIG. S4. Confirmation of the thermodynamic phase of the bilayer using two common structural parameters: (a) the order
parameter Smol,(j,k) with k the atom number, j = 1 (tail sn1) or j = 2 (tail sn2), and (b) the area per lipid Al. (Left) the
average order parameter is shown as a function of the carbon atom index along the chain (from glycerol to terminal end), for
each sn1 and sn2 chain. (Right) the phase transition can be clearly seen in the evolution of the area per lipid as a function of
temperature. A sigmoid fit points to a transition temperature Tm equal to 321 K in our system.

which agrees fairly with our Voronoi value of 1300 Å3

IV. NAIVE CLASSIFICATIONS

The distributions of the areas per lipid and molecular elongations at low and high temperatures are shown in
Fig. S5. Using a naive classification scheme based on a single threshold value for either of the two previous scalar
parameters would at best result in a prediction accuracy of respectively 69% and 67%.

Fig. S6 compares the histogram of molecular order parameters Smol as a function of the temperature of the lipid
bilayer from which the configurations are extracted (288 K or 358 K), and as a function of the result of the Machine
Learning classification procedure. The difference between the distribution at 288 K and the distribution in the a
posteriori gel state ensemble indicates that a small fraction of lipids in the fluid state are already present at 288 K.
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