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The role of shape disorder in the collective behaviour
of aligned fibrous matter†

Salvatore Salamonea, Nava Schulmanna, Olivier Benzeraraa, Hendrik Meyera, Thierry
Charitat∗a and Carlos M. Marquesa

We study the compression of bundles of aligned macroscopic fibers with intrinsic shape disor-
der, as found in human hair and in many other natural and man-made systems. We show by
a combination of experiments, numerical simulations and theory how the statistical properties of
the shapes of the fibers control the collective mechanical behaviour of the bundles. This work
paves the way for designing aligned fibrous matter with purposed-designed properties from large
numbers of individual strands of selected geometry and rigidity.

1 Introduction
In natural and composite bundles of nearly fully aligned fibers, as
for instance in hair tresses, ponytails and other natural fagots, the
spontaneously curved shapes of the individual strands allow for
an intrinsic fluffiness of the materials1–4. This was first discussed
by Van Wyk5 who proposed an equation of state (EOS) for the
material compressibility by suggesting that the response of wool
stacks to compression is mostly controlled by the bending modes
of the fiber strands. The suggestion has been widely discussed
in work related to fibrous matter6, in explanations of the com-
pressibility of textiles7, matted fibers8, non-woven fibrous mats,
needled9 or not10, of bulk samples of wool fibers11, for studies
of the shape of hair ponytails12, for predicting droplet formation
at the tip of wet brushes13, or even to study the mechanical re-
sponse of aegagropilae14.

Since van Wyk’s seminal work5 many models have been pro-
posed to understand the collective mechanical elasticity of stacks
of randomly oriented straight fibers15–18. Recently Broedersz
et al. have shown that the elastic properties of such networks
are governed by bending elasticity for low connectivity and by
stretching elasticity for high connectivity18. In this paper, we fo-
cus on the case of highly aligned fibers with disordered shapes.
The statistical mechanics nature of this challenge was first recog-
nised by Beckrich et al.19 who computed the compression modu-
lus of fiber stacks within a self-consistent mean-field treatment in
two dimensions, predicting the shapes of brooms and other fluffy
cones made from fibers. Here we test the validity of a statisti-

a Institut Charles Sadron, Université de Strasbourg, CNRS, 23 rue du Loess, BP 84047
67034 Strasbourg Cedex 2, France. Fax: 33 8841 4099; Tel: 33 8841 4005; E-mail:
thierry.charitat@unistra.fr
† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See DOI:
10.1039/cXsm00000x/
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Fig. 1 Central image: compression of a polypropylene stack and sum-
mary of the different samples (steel wool, denim and polyprolpylene fiber)
investigated in this paper. Circular vignettes: zoom on a volume of typi-
cal size 1 cm. Surrounding pictures: typical shapes of individual fibers of
each sample (∼ 10 cm length).

cal mechanics treatment of this problem by studying both experi-
mentally and numerically the compression behaviour of stacks of
fibers with intrinsic shape disorder (see Fig.1). A generalisation
of the mean field theory introduced in19 compares well with our
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results, revealing the key statistical and mechanical factors that
control the EOS of fibrous matter.

2 Materials and methods
2.1 Experimental systems

Fig. 2 (Top) Example of a fiber stack of steel wool (SW1) with typical
characteristic length scales (Lx,Ly). (Bottom) Single fiber shape and def-
inition of ζ0 (x).

Experiments were performed on 6 different fiber bundles with
caracteristic sizes noted Lx,Ly and D0, see Fig. 2 and 3. A first
class of samples was obtained by unbraiding different commer-
cial climbing ropes of polypropylene (PP1, PP2 and PP3) and
standard denim cloth (DEN). For most fiber studies, fiber bun-
dles were formed by stacking manually a high number (hundreds
or thousands) of individual fibers of the same length, ensuring a
strong alignment. A second class of samples (SW1 and SW2) was
obtained from standard steel wools (Gerlon R©). In this case, com-
pression experiments were directly performed on the purchased
samples.

The fiber sections, as observed by optical microscopy, do not
have regular shapes, and we measured the following approximate
diameters: PP1 and PP2 (∼ 100± 20 µm); PP3 (∼ 20± 5 µm);
DEN (∼ 500±100 µm); SW1 (∼ 200±50 µm) and SW2 (∼ 300±
100 µm) (see ESI section S1).

The individual mass of several fibers of each stack was mea-
sured allowing us to determine the mass per length µ. Together
with the full mass of the stack, it allows us to estimate the number
N of fibers per bundle and the transverse density ρ =

√
N/Ly (see

Table 1).

2.2 Experimental methods
Compression experiments were made using two different experi-
mental setups.

The first one is homemade, from a precision balance used as
a force sensor (Mettler Toledo R©) and a motorized translation
stage. This setup provides a very good resolution (accuracy,
± 2×10−4 N) in a wide range of force (6 decades from 2×10−4 N
to 40 N). The stiffness of the device is of the order of 10 MPa, and
we have systematically corrected for scale plate displacement.

The second setup is a commercial testing system
(ElectropulsTME3000 from Instron R©, 10 N sensor), with a
lower force range (3 decades 10−2-10 N, accuracy ± 10−2 N) but

Fig. 3 Experimental images of a stack of thousands of fibers (PP1) be-
fore compression (top) and under a compression stress P (bottom) and
definitions of D and D0.

a higher stiffness (∼ 100 MPa). This setup was mainly used for
stress-relaxation experiments.

With both setups and for each experiment we measured the
distance D0 between the compression plates at first contact, the
distance D between compression plates at each step of compres-
sion, the projected lengths Lx and Ly (see Fig. 2) and the force F .
We calculated the stress P = F/LxLy and the relative deformation
that we define as D0/D (see Fig. 3).

2.3 Theoretical description

We introduce now the theoretical models used in the following.
We assume that we have a two-dimensional stack of N fibers in
between two hard walls separated by a distance D for a compres-
sion stress P (D = D0 for P = 0). The average distance between
fibers will be noted d = D/N (and d0 = D0/N for P = 0). In-
dividual fiber shape deformations are associated to the bending
energy given by:

Hbend = κ/2
N

∑
n=1

∫ Lx

0
dx
[
ζ
′′
n (x)−ζ

′′
0,n(x)

]2
(1)

where ζn(x) is the deformed shape and ζ0,n(x) the function de-
scribing the spontaneous shape of fiber n (see Fig. 2). Lx corre-
sponds to the chain projection on the x axis. The bending mod-
ulus κ is an intrinsic property of a fiber, directly related to the
Young’s modulus and the fiber geometry. Equation (1) is valid in
the limit of small deformation gradients (ζ ′n � 1) that is a very
good approximation in the case of nearly aligned fiber stacks as
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we checked on experimental and numerical systems.

2.4 Numerical simulations

D
0

θ
0,i

D

P

θ
i

P

Fig. 4 Sketch of the geometry of the numerical simulations at two dif-
ferent compression distances. The insets show the shapes of two neigh-
bouring fibers with the definition of the angles θ0,i and θi between con-
secutive beads i−1, i and i+1.

Numerical simulations were performed using the steepest
descent method20 to find the equilibrium conformations of
compressed fibers represented by the bead-spring model21,22

sketched in Fig. 4 with Nb beads per fiber. Interactions between
beads are modelled by an effective Hamiltonian containing three
terms:

H = HLJ +Hbond +Hangle. (2)

The first term corresponds to the truncated and shifted Lennard-
Jones (LJ) potential23 describing the repulsive interaction be-
tween non-neighboring beads

HLJ = 4ε

[
(σ/r)12− (σ/r)6

]
+ ε for r/σ ≤ 21/6, (3)

where ri, j is the distance between two monomers i and j, and σ

the monomer size. The second term is the connectivity potential

between two adjacent monomers on the same fiber

Hbond =
kb

2
(ri,i+1− r0)

2, (4)

with a strong spring constant kb = 600ε and r0 = σ the distance
between to connected beads for a non-deformed fiber. The last
term is the discrete representation of eqn (1). It corresponds to
the angular potential that controls the chain stiffness and sponta-
neous shape,

Hangle =
kθ

2
(θi−θ0,i)

2, (5)

with θi the angle between bonds (i− 1, i) and (i, i + 1) and kθ

the angular stiffness. The set of non-vanishing reference angles
{θ0,i}(i = 1, ...,Nb) between any three consecutive monomers –
see Fig. 4 – are chosen such that the local fiber gradients remain
much smaller than unity. Fiber shapes can thus be also described
by a single-valued function ζ0 (x) which allows, in the limit of
large fibers, to directly compare numerical results against contin-
uous elastic theories with κ = kθ r0 the bending modulus.

3 Single fiber characterization

3.1 Shape characterization

As we will see below, the spontaneous shape of the fibers ζ0(x)
is a crucial determinant of the collective mechanical behavior of
the bundle. We measure ζ0(x) for a large number (∼ 50) of in-
dividual fibers and we expand ζ0(x) on the basis of the eigen-
functions Φqi(x) of the square Laplacian operator that describes
bending curvature elasticity24,25 (see also the ESI section S1 for
more details), ζ0(x) = ∑i ζ0,qi Φqi(x). The corresponding spectra
for average values 〈ζ 2

0,q〉 are displayed on Fig. 5. The dominant
amplitudes are present for q ≤ 2 mm−1. The dispersion of the
variance spreads over 6 decades. A dominant wavelength ap-
pears very clearly for PP2, PP3 and DEN. All spectra exhibit a
power law regime over two or more decades of wavenumber val-
ues. The power exponent denoted α is related to the roughness
of the fiber and the prefactor of the power-law to its root mean
square amplitude.

3.2 Mechanical properties

To determine experimentally the bending modulus κ of fibers
we performed two different types of experiments. The first one
consists in measuring the oscillation period of a horizontal fiber
(see section 3.2.1). This method is particularly suited for steel
fibers (SW1 and SW2) which are sufficiently rigid. However, we
have not been able to apply it to synthetic fibers (PP1, PP2, PP3
and DEN) which are too light and too sensitive to small distur-
bances. For these fibers we have developed an original experience
of stretching, inspired by the work of Kabla and Mahadevan4 (see
section 3.2.2).

3.2.1 Single fiber oscillations

The position of the end of a horizontal fiber is measured over time
during an oscillation experiment (see Fig. 6, see also the ESI for a
video). A simple Fourier transform allows precisely characterising
the fundamental frequency f0 of the system (see Fig. 6 inset),
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Fig. 5 (Color online) Average spectra 〈ζ 2
0,q〉 extracted from measure-

ments of at least 40 fibers of the 6 experimental systems, and best power
law fits with exponent α (solid line) for PP1 (a), SW1 (b), SW2 (c), PP2
(d), PP3 (e) and DEN (f). The insets display typical experimental fiber
shapes.

which is related to the modulus of curvature by the equation24,25:

κ = 3.194×mL4 f 2
0 , (6)

where m is the fiber mass and L its length.

3.2.2 Single fiber stretching experiments

To determine experimentally the bending modulus κ of softer
fibers we performed stretching experiments using the same ex-
perimental set-up as for fiber stack compression. A single fiber
is attached by its extremities to the scale plate and the transla-
tion stage (see the ESI for a video). At each stage of the experi-
ment, we measure the stretching force f and a snapshot is taken
whereby the total length, the projected length and the shape anal-
ysis of the fiber are calculated. To avoid creating new folding
states during the preparation of the fiber, we proceed as follows.
We first measure the projection length L0 of the fiber along the av-
erage direction of the unperturbed free fiber. We then fix the fiber
extremities to the experimental set-up, and impose a distance be-
tween extremities slightly smaller than L0. Forces and distances
are then only considered for distances equal or above to L0.

0 4 8 12

20
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t (s)

x
(m

m
)

10−1 100 101 102
0

20
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60
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S
D

 (
m

m
2
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−1
)

Fig. 6 Position of the end point of a SW2 fiber during an oscillation
experiment. In the inset, the spectral density (SD) obtained by a simple
Fourier Transform of the signal.
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Fig. 7 Shape of a PP1 fiber at different steps of a stretching experiment.

As an example, the shape of a PP1 fiber for a few steps of a
stretching experiment is shown in Fig. 7.

In this example, the reference state ( f (L = L0) = 0) corre-
sponds to step 6. Steps 6 to 12 show clearly that the largest wave-
lengths are first unfolded, as confirmed by the spectra (see the ESI
section 1), where the amplitudes of the modes q1 ' 0.5 mm−1 and
q2 ' 1.0 mm−1 (ie λ1 = 2π/q1 ' 12 mm and λ2 = 2π/q2 ' 6 mm)
decreased significantly more than the other ones. Beyond step
15, the deformation is dominated by elongation. Complete mode
supression is typically not attainable, the fibers breaking before
becoming completely straight.

The force measured during the stretching experiment is shown
in Fig. 8 as a function of the length ratio. Using the equation
of state developped for an extensible fiber by Kabla and Mahade-
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van4

L
L0

= 1+
f

µ0
− 1

4
(1+2

f
µ0

)∑
q

q6ζ 2
0,q

( f/κ +q2)2 +
κ

2µ0
∑
q

q6ζ 2
0,q

f/κ +q2 , (7)

it is possible to deduce the bending modulus κ (J.m) and the
stretching modulus of the fiber µ0 (N).

0.9 1.0 1.1 1.2 1.3 1.4
10−4

10−3

10−2

10−1

100

101

L/L0

f
(N

)

PP1

PP2

PP3

DEN

Fig. 8 Measured force as a function of the ratio L/L0 for PP1, PP2, PP3
and DEN samples. Solid lines corresponds to best fits obtained using
eqn (7).

Best fits of the experimental curves by eqn (7) are shown in
Fig. 8 and the moduli are summarized in Table 1.

3.3 Single fiber characteristics

As a summary, we carefully characterized the shapes and the
bending modulus of individual fibers of the six samples that we
studied. We computed the average shape spectrum of the differ-
ent samples ({qi,〈ζ 2

0,qi
〉}) and the average of the bending modu-

lus. The results are summarised in Table 1.

Table 1 Mean value of linear mass density (µ), bending (κ) and stretching
(µ0) moduli and transerve density (ρ).

µ (µg.cm−1 ) κ×1012 (J.m) µ0 (N) ρ (mm−1)

PP1 24 ± 1 3.2±1.7 1.0±0.2 1.2±1
PP2 18 ± 1 3.5±1.8 1.3±0.2 2.5±2
PP3 4.7 ± 0.5 0.43±0.3 1±0.2 6.8±4
SW1 110 ± 2 78±42 - 1.6±1
SW2 610 ± 11 160±70 - 0.6±0.4
DEN 850 ± 10 3800±3200 92± 46 1±0.5

4 Mechanical properties of fiber stacks
4.1 Theoretical description

4.1.1 Ordered stacks: linear elasticity

A perfectly ordered system, consisting of a stack of sinusoidal
fibers ζ0,i(x) = d0/2cos(2πx/λi +ϕi), with (λi = λ for all i, ϕi =

(1− (−1)i)π/2), will be referred to as the reference system (ref)
in the following. In such an ideal configuration, the EOS can
be computed easily from the functional minimization of eqn (1)
leading to

P(2d)
ref = 192

κd0

λ 4

(
D0−D

D0

)
. (8)

This reference model will be compared to the results of numerical
simulations to validate our method.

4.1.2 Self-consistent model

The challenge for a statistical mechanical treatment of aligned
fibrous systems is thus to connect the information contained in
spectra such as those of Fig. 5 and the mechanical behaviour un-
der compression stress. We follow here a two-dimensional ap-
proach first introduced in19. Briefly, fiber shape deformations are
associated to the bending energy given by eqn (1). We assume
that forces between first-neighbours dominate the interaction en-
ergy, an exact assumption for excluded volume potentials in two-
dimensions. Assuming a quadratic form for the interactions, with
a compression modulus B(d), the effective energy can be written
as:

Heff = Hbend +
B(d)

2

N

∑
n=1

∫ L

0
dx [ζn+1(x)−ζn(x)]

2 . (9)

By functional minimization, we deduce the equilibrium shapes of
the fibers and calculate the energy density:

〈e〉 =
κ

2d ∑
q

q4

(
1−
√

q4

4B(d)
κ

+q4

)
〈ζ 2

0,q〉 (10)

where d is the mean distance between fibers. The compression
modulus B(d) has to be determined self-consistently from

Bself (d) = ∂
2 (d 〈e〉)/∂d2, (11)

the compressive stress given by P(2d)
self =−∂ (d 〈e〉)/∂d can then be

calculated using:

P(2d)
self (d) =−

∫ d
d0

Bself(d′)dd′. (12)

Equation (10) is the key result of this approach, it relates the
shape disorder distribution measured by 〈ζ 2

0,q〉 to the energy den-
sity of the stack through a mechanical kernel accounting for bend-
ing rigidity and fiber interactions and allowing to calculate self-
consistently the state equation Pself (d).

4.2 Experimental results

We first perform stress relaxation experiments over long times
(∼ 10 hours). All materials demonstrate a complex relaxation be-
havior, highlighting the effect of fiber rearrangement (see Fig. 9).
Polymer samples (see PP1) exhibit a relaxation of almost 50%
over 10 hours while steel wools relaxes only about 5% over the
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Fig. 9 (Color online) Normalised stress vs times curves for PP1 (�, left
axis) and SW1 (4, right axis) at 50% of deformation in 2s. The orange
area corresponds to the duration of stress experiments (20 s) presented
in Fig. 10 and 11.

same time. This is likely related to the higher friction coefficient
between steel fibers compared to polymers. In all cases, it is clear
from the relaxation experiments that performing the full compres-
sion experiments at high enough strain rate is important in order
to avoid stress relaxation by fiber rearrangement. We have thus
decided to perform compression experiments on all samples with
strain rate of the order of 50 mHz (full compression experiments
in less than 20 s), corresponding to a maximum stress relaxation
of 10% for PP samples and less than 1% for steel wools.

Stress-relative deformation curves are given in Fig. 10 and
Fig. 11. All materials exhibit a strong non linear elasticity, spread-
ing over five decades of stress values. Using the experimentally
determined spectra ζ0,q and the value of κ, we apply the self-
consistent model (see section 4.1.2) to interpret the compression.
The whole method is illustrated in Fig. 10 in the case of the sam-
ple (SW1).

We assume that the stacks of fibers consist of the transverse
sum of independent planes of effective density ρ, that can be es-
timated from the geometrical characteristics of the bundle (see
Table 1). Since all planes contribute with P(2d)(D) to the total
stress P(3d)(D), we write

P(3d)(D) = ρP(2d)(D). (13)

For very weak relative deformations (D0/D ∼ 1), we observe
a linear behavior corresponding to the deformation of the largest
wavelength λmax. This linear elasticity is well described by P(3d)

Ref =

ρP(2d)
Ref , where P(2d)

Ref is given by eqn (8), and represented by dotted
line in Fig. 10 and 11.

For larger relative deformations (D0/D� 1), we test the predic-
tive power of eqn (10) by solving numerically the self-consistent
eqn (11) for the experimentally determined distributions 〈ζ 2

0,q〉.

100 101
10−1

100

101

102

103

104

105

D0/D

P
(P

a
)

φ exp

SW1

Fig. 10 Experimentally determined compression stress P vs relative
deformation D0/D for SW1 stack (4). Dashed-dotted line represents
the discrete self-consistent theory ρP(2d)

self using the experimentally deter-
mined spectrum, the dashed line the corrected discrete self-consistent
theory ρΦexpP(2d)

self , the dotted line the linear elasticity behavior Pref and
the solid line the total stress Ptot (eqn (14)).

As a result we obtain the 2d-stress P(2d)
self (D) and P(3d)

self = ρP(2d)
self (D)

that is represented as dotted-dashed lines in Fig. 10 for SW1. If
the overall shape of the data is well described by the theory, it
is clear that it is necessary to introduce a scaling factor Φexp to
be able to reproduce the data for large deformation (see dashed
line).

Finally, we calculate the total stress :

Ptot(D) = ρ

(
P(2d)

Ref (D)+ΦexpP(2d)
self (D)

)
. (14)

where Φexp is the only fitting parameters. Ptot(D) is represented
as a solid line in Fig. 10.

The experimentally determined compression stress P and the
theoretical analysis for the six experimental fiber stacks studied
in the paper are given in Fig. 11 with same convention as for Fig.
10. For all studied samples, we observe a very good agreement
between the three-dimensional experimental compression curves
and the theoretical description.

4.3 Numerical simulations
To further understand how fiber shape disorder determines the
compression of the stack, we performed numerical simulations
on 2-dimensional systems. We investigated three classes of two-
dimensional disordered systems. In this configuration, fiber rear-
rangements are forbidden. First, in order to validate our simula-
tion method, we consider a stack of perfectly ordered sinusoidal
fibers referred to as the reference system (ref) in the following
(see Fig. 12 top inset). As a second step, we introduce phase
disorder to the system by choosing a random phase shift ϕi ho-
mogeneously distributed in phase space ϕi ∈ [0,2π], referred to
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s
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e
s
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a
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PP2

SW1 PP3

SW2 DEN

(c)(a)

(d)

(e)

(b)

(c)

Fig. 11 Experimentally determined compression stress P vs relative de-
formation D0/D for the six experimental fiber stacks studied in the paper:
PP1 (�); PP2 (�); PP3 (N); DEN (•); SW1 (4); SW2 (©). Dashed lines
represent the discrete self-consistent theory P(3d)

self using experimentally

determined spectrum, dotted line the linear elasticity behavior P(3d)
ref and

solid line the total stress Ptot(D).

as single mode disordered systems (SMD). Finally, we investigate
fiber stacks with a power-law disorder (PLD), inspired by the fea-
tures of the experimentally measured distributions (Fig. 5). This
allowed us, by varying the exponent α between 2 and 5, to test
the self-consistent model by exploring a range of disorder wider
than that of the experimental systems.

4.3.1 Reference system (ref)

Numerical simulation for the reference system is shown in Fig. 12
as (∗) (see the ESI section S2 for more results). It exhibits lin-
ear elasticity, and the EOS is well described in a large compres-
sion range, without any fitting parameter, by eqn (8). At very
high compressions, the fibers are fully squeezed and the stress is
dominated by local excluded volume effects leading to a strong
increase well above the bending contribution.

4.3.2 Single mode disorder systems (SMD)

Numerical simulations on disordered systems (SMD) distinctly
exhibit non-linear elastic behavior (see Fig. 12). The compres-

100 101
10−2

10−1

100

101

D0/D

P
2

d
λ4

/κ
 D

0 Ref

SMD

Fig. 12 (Color online) Numerical simulations for Ref and SMD and us-
ing κ = 2000ε: (∗) normalized stress vs relative deformation D0/D for
reference system and (dashed line) linear theory Pre f without any fitting
parameter; (•) SMD systems with δλ 2 = 0.01 and (solid line) eqn (15)
(see the ESI).

sion behaviour is determined by randomness of phase shift, and
the distribution of wavelengths plays only a minor role as shown
in the ESI section S2. A simple analytical approach accounting for
phase disorder for a sinusoidal spontaneous shape of wavelength
λ and amplitude D0 allows calculating the normalized stress as

P(2d)λ 4

192κD0
= 2

∫ umax

0

(1+ cos(2πu)−D/D0)

(1−2u)4 (1+4u)2 du (15)

where 2πumax = arccos(D/D0−1). Numerical simulation data is
well described by eqn (15) without any fitting parameters. We
also show in the ESI (section S2) numerical results for different
fiber systems covering a range of parameters κ, λ and D0.

4.3.3 Power-law disorder system (PLD): numerical simula-
tions

Finally, we investigate fiber stacks with a power-law disorder
(PLD), where the amplitude ζ0,q of each mode follows a Gaus-
sian probability distribution with mean square amplitudes

〈ζ 2
0,qk
〉= 〈ζ 2

0 〉
(

π

Lqk

)α

ζ (α,kmin +3/2)−1 , (16)

with qk = {qkmin , ...qkMax} (k = {kmin, ...kMax}) and where
ζ (α,kmin +3/2) is the generalised zeta function26. Spectra
are shown for different values of α in Fig. 14. To avoid perfect
stacking of fibers, we removed the first long wave-length mode
q < qkmin .

Fig. 14 displays compression results for the PLD cases in the
normalized stress units P2dL4/κ〈ζ 2

0 〉1/2 as a function of the nor-
malized density 〈ζ 2

0 〉1/2/D, for α = 2 and 5 (see also ESI section
S2 for a more extensive set of α values). For the large density
limit, where fibers are in close contact and where shape disorder
is irrelevant, the data collapses on the same master curve, simi-
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Fig. 13 (Color online) Amplitude ζ0,q vs q for PLD systems for α = 2 (♦),
α = 3.5 (◦) and α = 5 (�). Also shown numerical typical fiber shapes.

larly to those of a single mode fiber – see Fig. 12. For the most
significant compression regime, at intermediate densities, we ob-
serve a strong dependence of the compression law on the value
of the exponent α, further confirming that the mechanical prop-
erties of the macroscopic stacks are controlled by fiber disorder.

By following a procedure similar to that applied to fit the ex-
perimental results, we solve numerically the self-consistent rela-
tion eqn (11) for the numerical distributions 〈ζ 2

0,q〉. Theoretical
self-consistent results, presented in Fig. 14 show a remarkable
agreement with compression values from numerical simulations.
The low compression regime is again well described by the linear
elasticity P(2d)

ref without any fitting parameters. The self-consistent
theory is in good agreement with the experimental data for high
compression rates, especially for very rough fibers (α < 4), pro-
vided that a global multiplication factor Φnum be applied as for
experimental results.

5 Discussion
Both for experimental and numerical studies, systematic devia-
tions between the mean-field predictions and the simulations can
be seen in the low relative deformation limit, where the distance
between fibers is of the order of the fibers mean-square ampli-
tude. Mean-field theory poorly describes this limit, because of
the vanishing number of fibers of mean amplitude larger than
〈ζ 2

0 〉1/2. This regime can be qualitatively understood by notic-
ing that, as the force rises sharply from zero, due to fiber-fiber
contacts, it progressively builds up with essentially single-mode
compression behavior. This is shown in Fig. 11 and 14, where the
dashed line corresponds to the single mode expression Pref with
the wavelength λ associated to the first mode of the distribution.

At larger relative deformations, in both experimental and nu-
merical cases, the self-consistent theory correctly described our
results up to a numerical scaling factor (Φexp and Φnum respec-
tively). In both cases, these are the unique fitting parameters that
we introduce in the description.

10−1 100 101
105

106

107

108

109

1010

<ζ
0

2
>
1/2
/d

P
2
d
L
4
/κ
<

ζ 0
2
>
1
/2

α=5

α=2

Fig. 14 (Color online) Normalized stress vs 〈ζ 2
0 〉1/2/d from numerical

simulations for PLD systems for α = 2 (♦) and α = 5 (�) and using κ =

2000ε. Dashed lines represent the discrete self-consistent theory Pself
using numerical spectrum, dotted line the linear elasticity behavior Pref
and solid line the total stress Ptot = Pref. In inset same figure where lines
represent the total stress obtained by adding the discrete self-consistent
theory using numerical spectrum and the linear elasticity Pref for all α.

Fig. 15 displays Φnum and Φexp as a function of α. Values for
both coefficients are comparable to the experimental uncertain-
ties. This clearly demonstrates that this coefficient is not related
to experimental artifacts, further supporting that our 2 dimen-
sional approach is also relevant to describe 3-dimensional exper-
iments up to a consistent density of stress planes ρ, and that it
is the self-consistent approximation that is involved. It is worth
noting that the agreement between numerical simulations and
self-consistent theory is optimal for α ∼ 2, where Φnum is of or-
der unit. This is further supported by the analytical resolution
of the self consistent theory in continuous limit (see ESI, section
S3). This corresponds to the case of the rougher fibers with the
highest number of contacts, a situation where the mean-field self-
consistent approximation is expected to be more accurate. The
experimental fibers in this work have α values close to 2.8-3, were
Φ is quite large. In future work, it will be interesting to identify
classes of experimental fibers with α ∼ 2. It is also important
to note that in our theoretical analysis and computer simulations
all the fibers interactions are purely repulsive. In practice, en-
vironmental conditions such as humidity might add short range
adhesive components (for instance capillary bridges) to the force
between fibers. Without including drastic changes such as that
from the long-range interactions in needled non-woven materi-
als9, these short-range effects are nevertheless worth investigat-
ing in the future for their relevance for the compression of exper-
imental systems such as lacquered hair with cross-linked contact
points. Note that short-range attractions would also provide for
material cohesion of the stacks, enabling for instance to perform
tensile transversal experiments, an experimental geometry better
described by approaches for nonwoven fibrous mats10.
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Fig. 15 (Color online) Normalization factors from the numerical simula-
tions Φnum (∗) and the experimental studies Φexp: PP1 (�); PP2 (�); PP3
(N); DEN (•); SW1 (4); SW2 (©).

6 Conclusions
In summary we have investigated experimentally the mechani-
cal properties of well aligned corrugated fiber stacks, showing
that such fiber stacks display a strongly non-linear elastic be-
havior over 5-decades of stress. We showed that a theoretical
self-consistent description19 connecting fiber shape disorder with
stack compressibility explains well three different classes of fibers.
We also performed numerical simulation studies for a larger class
of fiber disorder. Interestingly we found that fiber shape, as char-
acterized by the phase and wavelength disorder at fixed ampli-
tude, is enough to induce a non-trivial compression behavior. We
also simulated more realistic distributions for fiber disorder, with
the spontaneous fiber shapes reconstituted from a superimposi-
tion of modes with power-law q-dependent amplitudes. For fibers
of moderate corrugation the compression forces compare very
well with our 2-dimensional mean-field theory. While more exten-
sive simulation on 3-dimensional systems will certainly allow to
better probe Van Wyk’s seminal intuition5, our results here show
that bending disorder indeed control the compressive behavior of
aligned fibrous matter provided that the statistical nature of the
fiber shape disorder is accounted for.

7 Acknowledgements
We wish to thank Jérémie Geoffre for his participation to the ex-
periments. We gratefully acknowledge Joachim Wittmer, Jean
Farago and Wiebke Drenckhan for fruitful discussions. N. S.
thanks the Region Alsace for a PhD grant.

References
1 C. R. Robbins, Chemical and physical behavior of human hair,

Springer, 2002, vol. 4.
2 B. Audoly and Y. Pomeau, Elasticity and geometry: from hair

curls to the non-linear response of shells, Oxford University
Press, 2010.

3 M. Baudequin, G. Ryschenkow and S. Roux, The European
Physical Journal B-Condensed Matter and Complex Systems,
1999, 12, 157–162.

4 A. Kabla and L. Mahadevan, Journal of the Royal Society Inter-
face, 2007, 4, 99–106.

5 C. Van Wyk, Journal of the Textile Institute Transactions, 1946,
37, T285–T292.

6 T. G. Gutowski, Z. Cai, S. Bauer, D. Boucher, J. Kingery and
S. Wineman, Journal of Composite Materials, 1987, 21, 650–
669.

7 N. Pan, Textile Research Journal, 1993, 63, 336–345.
8 D. Poquillon, B. Viguier and E. Andrieu, Journal of materials

science, 2005, 40, 5963–5970.
9 J. S. Soares, W. Zhang and M. S. Sacks, Acta Biomaterialia,

2017, 51, 220 – 236.
10 M. N. Silberstein, C.-L. Pai, G. C. Rutledge and M. C. Boyce,

Journal of the Mechanics and Physics of Solids, 2012, 60, 295
– 318.

11 P. DeMaCarty and J. Dusenbury, Textile Research Journal,
1955, 25, 875–885.

12 R. E. Goldstein, P. B. Warren and R. C. Ball, Physical review
letters, 2012, 108, 078101.

13 T. Yamamoto, Q. Meng, Q. Wang, H. Liu, L. Jiang and M. Doi,
NPG Asia Materials, 2016, 8, e241.

14 G. Verhille, S. Moulinet, N. Vandenberghe, M. Adda-Bedia
and P. Le Gal, Proceedings of the National Academy of Sciences,
2017, 114, 4607–4612.

15 J. Wilhelm and E. Frey, Physical Review Letters, 2003, 91,
108103.

16 M. Gardel, J. Shin, F. MacKintosh, L. Mahadevan, P. Matsu-
daira and D. Weitz, Science, 2004, 304, 1301–1305.

17 G. A. Buxton and N. Clarke, Physical Review Letters, 2007, 98,
238103.

18 C. P. Broedersz, X. Mao, T. C. Lubensky and F. C. MacKintosh,
Nature Physics, 2011, 7, 983.

19 P. Beckrich, G. Weick, C. Marques and T. Charitat, Europhysics
Letters, 2003, 64, 647.

20 M. R. Hestenes and E. Stiefel, Journal of research of the Na-
tional Bureau of Standards, 1952, 49, year.

21 G. S. Grest and K. Kremer, Physical Review A, 1986, 33, 3628.
22 K. Kremer and G. S. Grest, The Journal of Chemical Physics,

1990, 92, 5057–5086.
23 D. Frenkel and B. Smit, Understanding molecular simulation:

from algorithms to applications, Academic press, 2001, vol. 1.
24 A. E. H. Love, A treatise on the mathematical theory of elastic-

ity, Cambridge University Press, 1892, vol. 1.
25 L. Landau and E. Lifshitz, Theory of Elasticity, 3rd, Pergamon

Press, Oxford, UK, 1986.
26 I. Stegun and M. Abramowitz, Handbook of Mathematical

Functions with Formula’s, Graphs, and Mathematical Tables,
National Bureau of Standards, 1970.

1–9 | 9

Page 9 of 10 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
8 

Fe
br

ua
ry

 2
01

9.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ité
 d

e 
St

ra
sb

ou
rg

, S
er

vi
ce

 C
om

m
un

 d
e 

la
 D

oc
um

en
ta

tio
n 

on
 2

/2
8/

20
19

 3
:2

6:
23

 P
M

. 

View Article Online
DOI: 10.1039/C8SM01896K

http://dx.doi.org/10.1039/c8sm01896k


 

107x63mm (300 x 300 DPI) 

Page 10 of 10Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
8 

Fe
br

ua
ry

 2
01

9.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ité
 d

e 
St

ra
sb

ou
rg

, S
er

vi
ce

 C
om

m
un

 d
e 

la
 D

oc
um

en
ta

tio
n 

on
 2

/2
8/

20
19

 3
:2

6:
23

 P
M

. 

View Article Online
DOI: 10.1039/C8SM01896K

http://dx.doi.org/10.1039/c8sm01896k

