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Depleted depletion drives polymer swelling in poor
solvent mixtures
Debashish Mukherji1, Carlos M. Marques 2, Torsten Stuehn1 & Kurt Kremer1

Establishing a link between macromolecular conformation and microscopic interaction is a

key to understand properties of polymer solutions and for designing technologically relevant

“smart” polymers. Here, polymer solvation in solvent mixtures strike as paradoxical phe-

nomena. For example, when adding polymers to a solvent, such that all particle interactions

are repulsive, polymer chains can collapse due to increased monomer–solvent repulsion. This

depletion induced monomer–monomer attraction is well known from colloidal stability. A

typical example is poly(methyl methacrylate) (PMMA) in water or small alcohols. While

polymer collapse in a single poor solvent is well understood, the observed polymer swelling in

mixtures of two repulsive solvents is surprising. By combining simulations and theoretical

concepts known from polymer physics and colloidal science, we unveil the microscopic,

generic origin of this collapse–swelling–collapse behavior. We show that this phenomenon

naturally emerges at constant pressure when an appropriate balance of entropically driven

depletion interactions is achieved.
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The understanding of coil-to-globule transition of a mac-
romolecule in solvent mixtures is a fundamental process for
functional soft matter with a huge variety of applications

that goes beyond traditional polymer science1, 2. This reaches from
the responsiveness of hydrogels to external stimuli3, 4 and bio-
medical applications5–8 to the processing of conjugated polymers
for organic electronics9. In this context, it has been commonly
observed that a polymer can collapse in a mixture of two
competing, well miscible good solvents, while the same polymer
remains expanded in these two individual components. This
phenomenon is commonly known as co-non-solvency2, 10–19.
However, it has also been observed that a polymer can be
collapsed in two different poor solvents, whereas it is “better”
soluble in their mixtures20–23. Thus far a multitude of specific,
system-dependent explanations hindered the emergence of a clear
physical picture of these two intriguing phenomena. While the
phenomenon of co-non-solvency has been recently brought onto a
firmer ground of a generic explanation2, 18, no equivalent
understanding of the collapse–swelling–collapse behavior has yet
been achieved.

In a standard poor solvent, starting from a good solvent
condition, an increase of the effective attraction between the
monomers first brings the polymer into Θ—conditions, where the
radius of gyration scales as Rg ! N1=2

l with Nl being the chain
length24, 25. Upon further increase of the attraction, a polymer
then collapses into a globular state. The resultant collapsed
globule can be understood by balancing negative second virial
osmotic contributions and three-body repulsions. The effective
attraction between the monomers of a polymer can be viewed as a
depletion induced attraction, a phenomenon well described for
colloidal suspensions26–30 of purely repulsive particles. In this
context, monomer attraction will occur when monomer–solvent
excluded volume interactions become large enough. The resulting
isolated polymer conformation can be well described by the
Porod scaling law of the static structure factor S(q)∝ q−4 fol-
lowing the envelope of the correlation peaks in S(q), presenting a
compact spherical globule. Interestingly, even if a polymer exhi-
bits poor solvent conditions in two different solvents, it can
possibly be somewhat swollen by intermediate mixing ratios of
the two poor solvents. A system that shows this
collapse–swelling–collapse scenario is poly(methyl methacrylate)
(PMMA) in aqueous alcohol mixtures. More specifically, water
and alcohol are “almost” perfectly miscible and individually poor
solvents for PMMA. However, PMMA shows improved solubility
within intermediate mixing concentrations of aqueous alcohol
and/or other solvent mixtures20–23.

In this work, we propose a microscopic, generic and thus quite
generally applicable picture of this collapse–swelling–collapse
behavior in poor solvent mixtures. Therefore, we aim to do the
following: (1) devise a thermodynamically consistent generic
(chemically independent) model such that solubility of many
polymers in mixtures of poor solvents, including PMMA in
aqueous alcohol, can be explained within a simplified (universal)
physical concept, (2) develop a microscopic understanding of the
collapse–swelling–collapse scenario and show that micro-
scopically this is a second order effect, and (3) investigate if a
polymer in mixed poor solvents can really reach a fully swollen
state characteristic of good solvents. To achieve the above goals,
we combine generic molecular dynamics, all-atom simulations
and analytical theoretical arguments to study polymer behavior in
poor solvent mixtures.

Results
Conformation of polymer. Figure 1 summarizes results for the
normalized squared radius of gyration R2

g ¼ R2
g

D E
= Rg xc ¼ 0ð Þ2
! "

as a function of cosolvent mole fraction xc from the generic model
and for three different cases described in the Supplementary
Table 1. A closer look at the symmetric case of two almost per-
fectly miscible, but otherwise identical solvents (black Δ) shows
that—while the pure solvent (xc= 0) and the pure cosolvent (xc=
1) are equally poor solvents for the polymer, the same polymer
swells within the intermediate cosolvent compositions, reaching a
maximum swelling of R2

g by ~20% at around xc= 0.5. How could
this be? Certainly, if both solvent and cosolvent were perfectly
miscible, nothing should happen in this case, as this would be
nothing but identical to a single component solution. Further-
more, given that this is a case of standard poor solvent collapse,
polymer conformations are determined by depletion forces (or
depletion induced attraction)28. When cosolvents are added into
the polymer–solvent system (such as the addition of alcohol in a
PMMA–water system), the addition of cosolvents not only repels
(or depletes) monomers, but also repels solvents and vice versa. In
this context, if we analyze the all-atom system of aqueous alcohol
mixtures, we find that the total number density of the system ρtotal
shows a minimum at 50/50 mixing ratios at constant pressure of
1 atm and temperature of 300 K, see Supplementary Fig. 1. This
suggests that, when alcohol is added in water, the repulsive forces
between the solution components result in a dip in ρtotal, which is
also known from experiments31. In our generic simulations, we
tune solvent–solvent, solvent–cosolvent, cosolvent–cosolvent
interactions, temperature T and pressure P such that we repro-
duce the density dip observed in the all-atom simulations. Fur-
thermore, the system parameters are chosen such that the bulk
solvent–cosolvent solution mixture remains deep in the miscible
state far from phase separation. The representative simulation
snapshot is shown in Fig. 2 for a 50/50 solvent–cosolvent mixture.
In the main panel of Fig. 2, we show ρtotal used in our generic
simulations. It can be seen that, in the generic model, we also find
a density dip of about 10% at xc= 0.5, which is consistent with the
all-atom simulations. This leads to an effectively reduced repul-
sive interaction around xc= 0.5 because of the reduced number of
solvent particles near the monomer as expected from the varia-
tion of ρtotal with xc. The net result is a swelling of the polymer
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Fig. 1 Polymer conformation and the effect of different mixtures of poor
solvent conditions. Normalized squared radius of gyration R

2
g ¼

R2g
D E

= Rg xc ¼ 0ð Þ2
D E

as a function of cosolvent molar concentration xc.
Results are shown for the generic simulations and for three different cases.
The parameter-specific details of the generic cases are listed in the
Supplementary Table 1. The results are shown for a chain length of Nl= 30,
which corresponds to ! 30‘p with ‘p being the persistence length. Here
Rg xc ¼ 0ð Þ2

D E
= 2.6± 0.4σ2 and R

2
Θ ¼ 2:13 with RΘ ¼ RΘ=Rg xc ¼ 0ð Þ is the

normalized Θ—point gyration radius. Here case 2 closely mimics the
conformational behavior of PMMA in aqueous methanol mixture based on
the parameterization presented in the Supplementary Table 1. Lines are
polynomial fits to the data that are drawn to guide the eye
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chain around xc= 0.5. We coin here the term depleted depletion
for explaining the reduction of depletion forces responsible for
polymer collapse due to mutual solvent–cosolvent exclusion.
Notice, however, that this is a common concept in colloidal sci-
ence, where the modifications of the depletion attraction profile
due to depletant-depletant interactions have been extensively
studied28–30.

When the interaction asymmetry between polymer-cosolvent
εpc and polymer–solvent εps is increased (Supplementary Table 1),
where εpc for case 2< case 1< symmetric case, not only the
degree of swelling increases, but the swelling region also shifts
between 0.5< xc< 0.9. This range is found to be in excellent
agreement with the experimental observation of PMMA con-
formations in aqueous alcohol mixtures21, 22. Specifically, our
case 2 closely resembles PMMA in an aqueous methanol mixture.
Indeed, we tune our monomer–solvent and monomer–cosolvent
interactions in the generic model such that we can reproduce the
correct solvation free energy, as measured by the shift in excess
chemical potential per monomer μp, known from all-atom
simulations of a PMMA system in aqueous methanol mixtures
(Supplementary Fig. 4 and Supplementary Note 2). Furthermore,
because we reproduce μp and ρtotal variation with changing xc in
our generic model as known from all-atom simulations under
ambient condition, T= 0.5ε/kB in the generic model corresponds
to 300 K and P= 16.0ε/σ3 corresponds to 1 atm in all-atom
system. While the swelling around xc ! 50%, especially for the
symmetric case, is bulk solution number density dependent (at
constant pressure), the shift in the region of maximal swelling is
cosolvent–monomer interaction dependent. For example,
cosolvent–monomer repulsion for symmetric case> case 1> case
2. This is similar to the PMMA solvation in different aqueous
alcohol mixtures, where the repulsion of methanol–MMA>
ethanol–MMA> propanol–MMA20–23.

Single-chain structure factor. A closer look at Fig. 1 shows that
the degree of swelling, within the range 0.5< xc< 0.9, varies
between 20 and 65% (or 10 and 30% in Rg), depending on the
interaction assymetry. Considering that we are dealing with
combinations of poor solvents, this is a very significant swelling,
making PMMA-based materials permeable to water–alcohol
mixtures. Moreover, analyzing the simulations, it becomes
apparent that the polymer does not necessarily reach a fully

swollen configuration. A quantity that perhaps best characterizes
a polymer conformation is the polymer form factor S(q). In Fig. 3,
we present S(q) for two different values of xc for the system
described by case 1. Part (a) shows S(q) of a fully collapsed chain
in pure solvent (xc= 0) and part (b) presents maximum polymer
swelling (xc= 0.7). For xc= 0.0, the polymer can be well described
by a scaling law known for sphere scattering (Porod scattering),
namely SðqÞ ! q%4 following the envelope of S(q) curve, sug-
gesting a fully collapsed poor solvent conformation. Furthermore,
the data point corresponding to xc= 0.7 shows more interesting
polymer conformations. Within the range 1.5σ−1< q< 3.0σ−1, an
aparent scaling SðqÞ ! q%2 is observed, which crosses over to
SðqÞ ! q%4 for 0.7σ−1< q< 1.5σ−1, suggesting that the polymer
remains globally collapsed, consisting of Θ—blobs. The cross-
over point qΘ gives the direct measure of the effective blob size
‘Θ%blob ¼ 2π=qΘ ! 4:5σ. The largest blobs are observed when the
polymer is maximally swollen.

Discussion
So far we have discussed that the collapse–swelling–collapse
scenario naturally emerges because of the constant pressure.
However, when the number densities for different mixing ratios
are kept fixed (such that the pressure rises within the intermediate
solvent–cosolvent mixing), the collapse–swelling–collapse sce-
nario is not observed. Only when ρtotal is allowed to vary with
changing solvent–cosolvent molar composition (as shown in
Fig. 2), we can observe swelling of a polymer. Therefore, we now
describe the observed collapse–swelling–collapse phenomenon
within the mean-field level by the Flory–Huggins (FH) theory and
its variants. For the case where a polymer with chain length Nl, at
volume fraction ϕp, is dissolved in a mixture of two components s
and c, respectively, FH theory predicts a monomer–monomer
excluded volume of the form24, 25,

V ¼ 1% 2 1% xcð Þχps % 2xcχpc þ 2xc 1% xcð Þχsc; ð1Þ

where χps and χpc are the Flory–Huggins interaction parameters
between p − s and p − c, respectively. The factor χsc is the para-
meter of s − c interaction. When both solvent and cosolvent are
poor solvents, χps> 1/2 and χpc> 1/2. In our simulations,
V ¼ V=Vm is calculated using the expression
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Fig. 2 Dependence of bulk solution number density with different
solvent–cosolvent mixing ratios. Main panel presents ρtotal for the generic
model as a function of cosolvent mole fraction xc. The line is drawn based
on Eq. (3), with ρtotal= 1/v. In the inset, we show a simulation snapshot of
the generic system presenting bulk solution for a xc= 0.5 mixture. The
generic parameters for the bulk solution are chosen such that the density
dip observed in generic model closely resembles aqueous methanol
mixture, see Supplementary Fig. 1
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Fig. 3 Single-chain structure factor. Static structure factor S(q) for a chain
of length Nl= 100. a S(q) at xc= 0.0 and (b) xc= 0.7. In a, we also include
the analytical expression for sphere scattering. In b, red and green lines are
power law fits to the data at different length scales. The black line
represents the Guiner region for q→0 (for large length scales). The vertical
arrow indicates the effective Θ—blob size at q= qΘ, estimated using
‘Θ%blob ¼ 2π=qΘ. Note: to get a better estimate of the cross-over scaling
regime, S(q) is calculated from a simulation of a chain length Nl= 100
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V ¼ 2π
R

1% e%vðrÞ=kBT
# $

r2dr. We use v(r)= −kBT ln[g(r)] as a
guess of the potential of mean force (PMF), which is calculated
from the radial distribution function between non-bonded
monomers g(r). Vm ¼ 2:73σ3 is the bare monomer excluded
volume in the absence of any (co)solvent and corresponds to a
monomer–monomer distance of 0.87σ. Fitting Eq. (1) to the V
data in Fig. 4, we find χps= 1.57, χpc= 1.11, and χsc= 1.74 for case
1 and χps= 1.62, χpc= 0.95, and χsc= 1.74 for case 2. Consistently,
χsc values for both cases are similar and independent of
polymer–solvent interactions. Here, it is important to note that
the V values in Fig. 4 were obtained in simulations that were
performed when the bulk solution density varies over full xc,
keeping pressure invariant. Therefore, the χ values obtained are
not related to constant density case. Furthermore, the value of χsc
obtained here is consistent with the experimental value obtained
in ref.11, but might appear as too strong considering that one is
dealing with well miscible solvents. However, this is simply a
consequence of performing the analysis with free-energy densities
normalized by the monomer volume, a natural choice to inspect
polymer collapsing behavior. Within this normalization, however,
χsc parameter would corresponds to the effective interaction
between two clusters consisting of solvent and cosolvent
particles. Therefore, if one would consider exclusively the
solvent–cosolvent system, the natural choice for normalizing free-
energy densities would be the excluded volume of the solvents
that are about eight times smaller than that of Vm, and that would
lead, in those units, to a value of χ?sc ! χsc=8 ! 0:22. Note also
that standard FH predictions assume that solvent and cosolvent
because of the fixed grid size in the lattice—and also polymer—
are mixed at constant volume, whereas our simulations just as the
experiments are performed at a constant pressure. It should also
be noted that the constant density FH theory put forward in ref.19

requires a strong repulsive interaction parameter between solvent
and cosolvent making χ ' kBT , but in common mixtures of
water and alcohol χ ! kBT . Therefore, in the following, we derive
a FH expression for the V values at constant p, which predicts
effective values for χsc dependent on p. The subtle interaction
details seen here are not only restricted to polymer solutions, but
are also important for sequence dependent miscibility of copo-
lymers32, 33.

In our simulations, we only consider polymer under infinite
dilution ϕp → 0 and the large majority of the volume is occupied
by solvent–cosolvent mixture. Therefore, we concentrate our
analysis on the binary mixture. Additionally, we also consider
that the pure reference solvent and cosolvent systems are

identical, but that s−c interactions are distinct from those for s−s,
and c−c. For this case, the total free energy is written as

Fv
κBT

¼ vF sðvÞ
κBT

þ xcln xcð Þ þ 1% xcð Þln 1% xcð Þ;

þχscðvÞxc 1% xcð Þ;

ð2Þ

where F sðvÞ is the volume-dependent free-energy of the pure
(co)solvent systems and where we consider the explicit depen-
dence of χsc on system volume. Note that, since experiments and
simulations are performed at constant number of molecules N ,
the total volume of the system V is simply given by V ¼ N v. For
a given external pressure P, the molar volume v is thus controlled
by, P= Ps(v) − κBTxc(1 − xc)∂χsc(v)/∂v with PsðvÞ ¼ %∂vF s=∂v,
being the pressure of the reference system. If one assumes a small
variation of the molar volume of the solvent–cosolvent mixture
with respect to that of the reference system, one gets

v ¼ vo 1þ ζ xcð1% xcÞ½ ); ð3Þ

where ζ= κBT/v ∂χsc(v)/∂v[∂Ps(v)/∂v]−1 measures the relative
sensitivity of the interaction parameter and reference pressure to
v. In Fig. 5, we show Ps as a function of v that gives an estimate of
∂Ps(v)/∂v= 20ε/σ6. Equation (3) describes well the observed
density variation of the generic model in Fig. 2 with ζ= 0.26.
Note that ρtotal and molar volume v are simply related by ρtotal=
1/v. Also, to first order in (v−vo)/vo, which for our generic model
is of the order of 10%, one gets

χscðvÞ ¼ χsc voð Þ þ v
∂χscðvÞ
∂v

%%%%
xc!0

ζxc 1% xcð Þ: ð4Þ

Since v∂χscðvÞ=∂v ! ζ, this shows that χsc obtained between
different ensembles is only perturbed to the second order in ζ.
This will lead to an effective expression χsc(v)= χsc(vo) −
0.096xc(1 − xc). Furthermore, if we choose xc= 0.5, the above
equation will lead to a ~11% variation in χsc values with respect to
the standard values calculated when ρtotal is kept constant. This
suggests that effective χsc obtained in different ensembles is rather
close. Therefore, showing that, in this system, χsc parameter
relevant to the FH analysis keeps consistent values throughout the
range of compositions. It should also be mentioned that the
variation in χsc is a result of bulk density variation at xc, which is
about 10% (see Fig. 2). Moreover, we find that when the density is
kept constant, there is no variation of polymer conformation over
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full xc range, while pressure of the system goes up with a max-
imum at xc= 0.5.

Our numerical predictions successfully account for polymer
swelling in solutions of poor solvent mixtures, as the simulations
quantitatively demonstrate. While this fascinating polymer
behavior is driven by purely repulsive interactions, it also reveals
the subtle balance of depletion forces and bulk solution properties
that enable such a paradoxical phenomenon. Indeed, polymer
collapse in repulsive solvents can be understood by depletion
induced attractions28. The dominant contribution to depletion
induced attraction originates from direct monomer–solvent
repulsion, and is thus proportional to solvent number density
ρtotat dictating the number of depletants. When a few solvent
molecules are replaced by cosolvents, for example, a water by an
alcohol, this preserves the solvent density to the first order. Under
these conditions, one smoothly interpolates between two polymer
collapsed states, without any swelling at intermediate composi-
tions. Here, however, interactions between solvent components
play a delicate role in dictating the depletion forces by bringing in
contributions proportional to second (or to even higher)-order
contributions of ρtotat, see Fig. 2. Interestingly, it is well known
from colloidal sciences that such second order effects may reduce
colloid–colloid attractive forces29, 30. Moreover, these studies in
colloidal systems typically deal with two component systems
where size asymmetry of 10 is needed to observe higher order
effects. In our study, size asymmetry between monomer and
solvent is significantly smaller and second order effects originate
because of the peculiar properties of the solvent–cosolvent mix-
tures. Thus, the polymer case occurs in a different interaction
regime compared to colloidal effect. The solvent–cosolvent
excluded volume is slightly stronger than the corresponding
values for solvent–solvent and cosolvent–cosolvent molecules,
leading to a slightly smaller solution density and a corresponding
diminution of the effective depletion interaction. At intermediate
compositions, where solvent–cosolvent interactions are dominant
in the solution, the effect is the strongest. Therefore, a broad
variety of polymer/solvent systems are expected to display such a
behavior.

A standard measure of the attractive forces leading to polymer
collapse is provided by the monomer excluded volume V. For
poor solvents, V is negative and the dimensions of the chain can
be understood by balancing the second (negative) virial osmotic
contributions and the three body repulsion24, 25, leading to

R3
Θ

R3
g

% 1 ¼ V
%% %%: ð5Þ

In the inset of Fig. 4, we show 1=Rg
& '3 as a function of V,

where the Rg is taken from Fig. 1a and V is given by the values in
the main panel of Fig. 4. The data are well described by the
theoretical prediction in Eq. (5). Extrapolating the data to V ¼ 0,
we estimate RΘ ¼ 1:46 (or RΘ= 2.34σ), further suggesting that
the polymer remains below Θ—conformation, even when it swells
within intermediate mixing ratios.

This collapse–swelling–collapse scenario of PMMA in aqueous
alcohol appears as the opposite effect to that of coil-globule-coil
scenario, e.g., PNIPAm in aqueous alcohol, often referred to as
co-non-solvency2, 11, 12. However, the coil-globule-coil transition
occurs when individually good, but competing, solvents for a
polymer are mixed together and as a result polymer collapses
within the intermediate mixing ratios. Because this is micro-
scopically a good solvent system, it is dictated by the competition
between solvent and cosolvent preferential adsorption with the
polymer2, 34. Typical systems where co-nonsolvency is observed,
require an interaction contrast of about 4kBT17. Therefore, a small

change (i.e., ~10%) in bulk solution density does not significantly
influence the polymer conformation. On the contrary, the
collapse–swelling–collapse behavior, studied here, is due to a
subtle balance of repulsive microscopic interactions and the bulk
solution density. Furthermore, our analysis also suggests that the
collapse–swelling–collapse sequence in poor solvent mixtures is
driven by the mean-field behavior, i.e., contrary to the co-
nonsolvency effect that can not be described by a Flory–Huggins
mean-field picture because of the strong enhancement of the
cosolvent concentration in the vicinity of the polymer chain18.
Here, the solvent–cosolvent interaction parameter χsc, though
quite small, plays a key role. Our results clarify that although
collapse–swelling–collapse and co-nonsolvency appear as two
symmetric manifestations of polymer solubility, they are in fact
driven by markedly different physical mechanisms.

In conclusion, we have performed molecular dynamics simu-
lations to unveil the microscopic origin of polymer swelling in
poor solvent mixtures. We propose a unified generic picture of
the polymer collapse–swelling–collapse phenomenon. This con-
formational change is due to a delicate balance between the
depletion forces and the bulk solution density at constant pres-
sure. Combining the Flory–Huggins type mean-field picture with
molecular dynamics simulations, we show that the polymer
swelling in poor solvents is dictated by reduced depletion forces
that originate from the bulk solution properties. These results
show semi-quantitative agreement of the polymer swelling
behavior in mixtures of two miscible poor solvents such as the
solvation of PMMA in aqueous alcohol mixtures. While the
polymers swell significantly, the mostly swollen polymer structure
still remains below Θ—conformation. Even when we take PMMA
as a test case, there are systems, such as corn starch35 and poly(N-
(6-acetamidopyridin-2-yl)acrylamide)36, which also show
collapse–swelling–collapse behavior. Interestingly, the
solvent–cosolvent mixtures in these cases are also aqueous alco-
hol mixtures. Further supporting that the delicate balance
between microscopic repulsion together with density dip of the
bulk solution plays a key role in describing this phenomenon.
Being potentially applicable to a large variety of polymers, the
concepts presented here may pave ways towards the functional
design of “smart” polymeric systems for advanced biomedical
purposes.

Methods
All generic simulations are based on the “well-known” bead-spring model of
polymers37. In this model, individual monomers of a polymer interact with each
other via a repulsive 6–12 Lennard–Jones (LJ) potential with a cutoff rc= 21/6σ.
Additionally, adjacent monomers in a polymer are connected via a finitely
extensible nonlinear elastic potential (FENE). The parameters are chosen such that
a reasonably large time step can be chosen. The results are presented in units of the
LJ interaction energy ε, LJ length unit σ and unit of mass m. This leads to a time
unit of τ= σ(m/ε)1/2.

A bead-spring polymer p is solvated in mixed solutions composed of two
components, solvent s and cosolvent c, respectively. The mole fraction of the
cosolvent component xc is varied from 0 (pure s component) to 1 (pure c com-
ponent). The size of monomers is σp= 1.0σ and sizes of the (co)solvent molecules
are chosen as σs/c= 0.5σ. This specific choice of σs/c is due to the fact that the
monomers are typically twice the size of solvent molecules such as water and
smaller alcohol. Because s and c are both individually poor solvents for the poly-
mer, p–s and p–c interactions are always repulsive LJ with a cutoff rc= 21/6σij,
where σij is the diameter of p–s and p–c interactions given by the combination rule
σij= (σi + σj)/2. Here we choose, σpp= 1.0σ, σps= 0.75σ, σpc= 0.75σ, σss= 0.50σ, σcc
= 0.50σ, and σsc= 0.50σ. We consider two different cases of solvent qualities that
are dictated by the pairwise ε. A detailed description of ε between the LJ interaction
energies of the individual “pure” poor (co)solvents are presented in Supplementary
Table 1.

We consider a chain of length Nl= 30 solvated in a mixture of 2.0 × 104 solution
particles, in some cases, we also use Nl= 100 solvated in 5.0×104 solution particles.
The interactions between different solvent particles are all chosen as repulsive LJ to
mimic depletion effects, as in the case of standard poor solvent collapse. LJ
interaction energies ε are chosen to match the typical thermodynamic condition
known from all-atom simulations. The equations of motion are integrated using a
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velocity Verlet algorithm with a time step δt= 0.01τ. The simulations were usually
equilibrated for 107 MD time steps. The measurements are typically observed over
another 106 MD steps. During this time, observables such as the gyration radius Rg,
static structure factor S(q), chemical potential of polymer μp, and the polymer
excluded volume V is calculated. The temperature is set to 0.5ε/kBT, which is
employed using a Langevin thermostat with damping constant γ= 1.0τ−1.

One of the most important aspects of modeling PMMA in aqueous alcohol is to
incorporate bulk solution properties. As mentioned earlier in the main manuscript
text, alcohol and water are poor solvents for PMMA, while it swells in
water–alcohol mixtures. Analyzing the experimental data31 and all-atom simula-
tions of aqueous alcohol mixtures, it has become apparent that the excess volume
of the mixtures increases (or decrease in the total solution number density ρtotal)
from the mean-field values, which follows in a nonlinear dependence with xc
(Supplementary Fig. 1). This deviation is most dominant at intermediate mixing
ratios. In our generic simulation protocol, we choose interaction parameters of the
solution components such that ρtotal of the solution decreases at around 50–50
mixture, while keeping the solution at constant pressure. For this purpose, we
choose εss= εcc= 0.5 and εsc= 2.5, keeping all the interactions repulsive (Supple-
mentary Table 1). It is important to mention that ρtotal= 5.5σ−3 for pure xc= 0 and
xc= 1 solutions. This corresponds to a pressure of p≈ 16.0± 0.5ε/σ3. The advan-
tage of this choice of ρtotal is that the solution remains stable over full xc range,
when the ρtotal decreases by ≈10% at xc= 0.5.

We also want to mention that even when the parameters are chosen as repulsive
with c−s being more repulsive than c−c and s−s interaction, our bulk solution
remains homogeneous over the full range of mixing ratios. In this context, it is
important to note that the solution phase separation is intimately linked to the
solution density. Within our choice of ρtotal, we do not see any phase separation. In
Supplementary Fig. 2, we show three simulation snapshots for different ρtotal and
for xc= 0.5. It can be appreciated that there is no signature of phase separation
when ρtotal= 5.2σ−3, phase separation can only be seen for ρtotal 6:4σ

%3. Suggesting
that the bulk solution remains stable. Furthermore, to quantify the possibility of
any phase separation we calculate the quantity η defined as,

η ¼ Vss þ Vcc % 2Vsc: ð6Þ

Here V ij is the excluded volume of the i−j interaction defined as,

V ij ¼ 2π
Z 1

0
1% e%vijðrÞ=κBT
h i

r2dr; ð7Þ

where vij is the potential of mean force between i and j components. We find
η ¼ %0:4σ3 for ρtotal= 5.2σ−3, η= −5.5σ3 for ρtotal= 6.4σ−3, and η< −30.0σ3 for
ρtotal= 8.0σ−3. It can be appreciated that η→0 for ρtotal → 5.2σ−3, further suggesting
that the bulk solution is stable.

The details about generic simulations and all-atom force field parameters are
given in the electronic Supplementary Material. Generic simulations are performed
using the ESPResSo + +molecular dynamics package38, all-atom simulations are
performed using the GROMACS package39, and simulation snapshots are rendered
using VMD40.

Data availability. All presented and analyzed the data is included in both main
text and in the Supplementary Material, including the methods, force fields, and
theory developed. Generic simulation scripts will be made available through the
ESPResSo++ webpage http://www.espresso-pp.de/.
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Supplementary Figure 1: Total number density ρtotal of the bulk solution as a function of cosolvent mole fraction
xc for aqueous methanol solution for ambient pressure and 298 K temperature. The data is extracted from the
all-atom simulations. Solid lines are linear interpolation between the data points of xc = 0.0 and xc = 1.0.
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Supplementary Figure 2: Simulation snapshots of the generic system presenting bulk solution arrangements for
three different densities. The results are shown for xc = 0.5.
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Supplementary Figure 3: Gyration radius Rg of a PMMA chain as a function of methanol mole fraction xc.
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Supplementary Figure 4: Chemical potential shift µp = µp/kBT per monomer as a function of cosolvent mole
fraction xc. The master curve is obtained by normalizing µp with a chain length Nl dependent function f(Nl) =
2Nl/(Nl + 1). The line is a fit to the data by Supplementary Eq. 2.
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Supplementary Table 1: Lennard-Jones (LJ) interactions for the generic model. p, s and c represents polymer,
solvent and cosolvent, respectively.

LJ energy Symmetric Case 1 Case 2 Cut-off

ϵpp 1.0ϵ 1.0ϵ 1.0ϵ 21/6σ

ϵps 3.5ϵ 3.5ϵ 3.5ϵ 0.75× 21/6σ

ϵpc 3.5ϵ 2.5ϵ 2.0ϵ 0.75× 21/6σ
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Supplementary Note 1: Computational details

In this work a modified OPLS force field of methyl acetate [1] was used to simulate PMMA. We use the SPC/E
water model [2] and OPLS force field for methanol [3]. A more detailed analysis of the all-atom force field will be
presented elsewhere [4].
The temperature is set to 300 K using a Berendsen thermostat with a coupling constant 0.1 ps. The time step for

the simulations is chosen as 1 fs. To obtain equilibrium solvent density, initial configurations are equilibrated for 5 ns
using a Berendsen barostat [5] with a coupling time of 0.5 ps and 1 atm pressure. The production runs are performed
in canonical ensemble. The electrostatics are treated using Particle Mesh Ewald [6]. The interaction cutoff is chosen
as 1.4 nm.
We use PMMA chains of lengths Nl = 30 solvated in a simulation box consisting of 2.0 × 104 solvent molecules

with varying xc. In Supplementary Fig. we show a plot of the all-atom simulation of PMMA in aqueous methanol.
We also want to point out that the case 2 in the generic model is tuned to reproduce PMMA solvation in aqueous
methanol. However, the all-atom chain consists of ∼ 15ℓp with ℓp being the presistance length of the chain, while in
the generic model we have simulated a chain of 30ℓp length. If we now take Rg for the maximally swollen chain Rg

and normalized it by (Nl/ℓp)
1/3 taking a collapsed chain, we find Rg (Nl/ℓp)

−1/3 = 0.67σ for the generic model and
0.59 nm for all-atom chain. This gives a conversion of 1σ ∼ 0.9nm between all-atom and generic simulation.
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Supplementary Note 2: Shift in chemical potential

In order to further consolidate the relevance of the generic model for explaining polymer swelling in poor solvent
mixtures, we now investigate the thermodynamic consistency between the all-atom data and the generic simulations. It
is important to mention that the solvation of macromolecules is intimately linked to the energy density within the sol-
vation volume, which is dictated by the relative interaction strengths between monomers and (co)solvent components
and the relative size of (co)solvents with respect to the monomer size. In our definition thermodynamic consistency
is referred to when we reproduce correct solvation energy (or chemical potential) between two models. Here, we
calculate chemical potential µp using the Kirkwood-Buff theory of solutions [7, 8]. If p at a dilute concentration is
solvated in a mixture of s and c, µp can be calculated using [9],

(

∂µp

∂ρc

)

p,T

=
Gps −Gpc

1− ρc(Gcs −Gcc)
, (1)

where µp = µp/kBT , and ρc is the cosolvent number density. Gij is the Kirkwood-Buff integral that is related to the

pair distribution function gij(r) via Gij = 4π
∫

∞

0
[gij(r)− 1] r2dr. The integration of Supplementary Eq. 1 gives a

direct estimate of the shift in µp with increasing xc.
In Supplementary Fig. we show µp as a function of xc. The shift in µp per monomer between solvent and cosolvent

is ∼ 2kBT , i.e. f(Nl)µp/Nl ∼ 2kBT . Considering f(Nl) ∼ 2, this leads to [µp(xc = 0)− µp(xc = 1)] /Nl ∼ kBT for
polymers. It is also clear that the generic model correctly reproduces intermolecular affinities and its description
within the standard Flory-Huggins theory.

µ̄p (φp → 0) = const− xc lnxc − (1− xc) ln (1− xc)

+ (1− xc)χps + xcχpc

− 2xc (1− xc)χsc. (2)
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