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Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior
in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when
two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As
a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More
interestingly, polymer collapses when the solvent quality remains good and even gets increasingly
better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong
local concentration fluctuations. Because of the discrete particle based nature of the interactions,
Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of
the co-non-solvency e↵ect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We
explain why co-non-solvency is a generic phenomenon, which can only be understood by the ther-
modynamic treatment of the competitive displacement of (co)solvent components. This competition
can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details
are not required to understand these complex conformational transitions. Therefore, a broad range
of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good
solvents. C

2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914870]

I. INTRODUCTION

The microscopic understanding of smart polymer confor-
mations in a mixture of solvents is scientifically chal-
lenging1 and, at the same time, possesses great tech-
nological implications that span over a broad range of
disciplines.2–5 Therefore, establishing the links between smart
polymer conformations and its specific interactions is a
key to develop any fundamental understanding of their
solubility. Examples of the most commonly known smart
polymers include: poly(N-isopropylacrylamide) (PNIPAm),
poly(N-isopropylmethacrylamide) (PNIPMAm), poly(N,N-
diethylacrylamide) (PDEAm), poly(N-vinlycaprolactam)
(PVCL), and poly(acryloyl-L-proline methyl ester) (PA-
POMe). When some of these polymers are dissolved in
a mixture of solvents, such as aqueous alcohol solutions,
they show a puzzling coil-globule-coil scenario.6–10,14 This
interesting phenomenon is termed as co-non-solvency.

Theoretical understanding of these complex phenomena is
mostly restricted to a limited number of computer simulation
studies,1,8,11–14 which usually deal with chemically specific
details.8,11,12,14,15 Moreover, these simulations require careful
parameterization of force fields that can be cumbersome, if
there are rather delicate di↵erences in interactions. However,
in this context, if a physical phenomenon can be characterized
within a universal concept, such that the chemical details
only contribute to a pre-factor, then the correct physics can
be captured with a rather simple generic model. The use of
generic schemes has several advantages; (1) the parameter
space is not restricted to a specific system, unlike the all-
atom simulations, and a broad range of systems can be

represented within a unified simulation protocol, (2) the
time scale of simulations is not of concern, and (3) because
of the absence of any competing energy scales, one does
not need an advanced molecular dynamics scheme. In this
context, we have recently shown that the complexity of smart
polymers can be captured within a generic model.1 Using a
simple model, we could quantitatively capture the reentrant
coil-globule-coil scenario of PNIPAm6–9 and PAPOMe16 in
aqueous methanol mixtures. Our analysis suggested that
when two competing and individually good solvents are
mixed together, because of the preferential binding of the
better of the two (co)solvents with the polymer, it collapses
within the intermediate solution compositions. At a low
cosolvent concentration, the cosolvent molecules can bind
to two distinctly far monomers forming bridges and leading
to polymer collapse. When the concentration of the better
cosolvent is increased, they decorate the whole polymer and
the polymer opens up. These results are in good agreement
with the simulations incorporating all-atom details14 and
experiments.8 This coil-globule-coil scenario is a generic
e↵ect and many polymers are expected to exhibit similar
behavior as long as one of the solvents is significantly better
than the other. Thus, the behavior is not strictly restricted to the
so called smart polymers exhibiting a lower critical solution
temperature (LCST). But, also polymers with upper critical
solution temperature (UCST) display this behavior, making
the co-non-solvency e↵ect independent of their temperature
sensitivity. In Table I, we present a list of polymers (both
LCST and UCST) that show co-non-solvency e↵ect. It is
interesting to note that well known standard polymers, such as
poly(ethylene oxide) (PEO) and polystyrene, also show co-no-

0021-9606/2015/142(11)/114903/9/$30.00 142, 114903-1 © 2015 AIP Publishing LLC
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TABLE I. A table listing various polymer systems that show co-non-solvency e↵ect when solvated in their respective mixture of solvents.

Polymer (p) Solvent (s) Cosolvent (c)

Poly(N-isopropylacrylamide) (PNIPAm)6–9,21 Water Methanol, tetrahydrofuran (THF), or 1,4-dioxane
Poly(acryloyl-L-proline methyl ester) (PAPOMe)16 Water Methanol ethanol, or iso-propanol
Poly(ethylene oxide) (PEO)17 Water N,N-dimethylformamide(DMF)
Polystyrene18–20 Cyclohexane DMF
Poly(vinyl alcohol)22 Water Dimethyl sulfoxide
Poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC)23,24 Methanol, ethanol, or iso-propanol Water

solvency.17–20 Note that PEO also exhibits LCST of ⇠373 K.25

Moreover, under ambient conditions, pure water is a good
solvent for PEO. Another example may include polymeric
semiconductors26 that show anomalous viscosity with solvent
composition, suggesting a change in polymer conformation.

One of the most intriguing aspects of the co-non-solvency
e↵ect is that the solvent quality becomes increasingly better
by the addition of the better cosolvent. Thus, the polymer
collapses in a good solvent, making the solvent quality decou-
pled from the polymer conformation. This is very striking
and against the conventional view on polymer solutions.
While the atomistic simulations14 clearly demonstrate that the
solvent becomes increasingly better by the addition of better
cosolvent, it is still di�cult to identify the preferred local
coordination and especially the bridging. In contrast, generic
simulations give a clear microscopic understanding of this
complex phenomenon within a simple simulation protocol.1

Complementary to that computer simulations give a good
microscopic picture of the polymer collapse transitions; it is
also advantageous to devise a general analytical theory consis-
tent with the findings known from computer simulations and/or
experiments. Moreover, because of the complexity of the
system interactions, this discrete particle based phenomenon
cannot be explained using a Flory-Huggins type mean-field
picture. Instead, these complex conformational transitions can
be explained within a Langmuir-like thermodynamic treatment
of competitive displacement of di↵erent solvent components
onto the polymer.1

In this work, we revisit the co-non-solvency e↵ect of
smart polymers in the mixtures of solvents. We extend the
analysis of our previous work1 to better understand the
microscopic picture of co-non-solvency. We will present
an in-depth argument to show that the mean-field theory
is highly unsuitable for these systems and the conceptual
need of a discrete particle-based theory. We also propose a
phase diagram to identify the conformational states of smart
polymers in various bulk solutions and with the change of
cosolvent concentrations.

The remainder of the paper is organized as follows: in
Sec. II, the generic molecular dynamics simulation details are
presented. Results and the theoretical arguments are presented
in Sec. III, and we finally present our conclusions in Sec. IV.

II. MODEL AND METHODS

We start by briefly describing the details of the generic
molecular simulations. A similar model has been used in our
earlier study. A detailed description of model and method

is presented in Ref. 1. Here, a polymer p is modeled using
the well known bead-spring polymer model.27 In this model,
individual monomers of a polymer interact with each other
via a repulsive 6-12 Lennard-Jones (LJ) potential (WCA
potential). Additionally, adjacent monomers in a polymer are
connected via a finitely extensible nonlinear elastic potential
(FENE). Here, p � p interaction energy is chosen as "

p

= 1.0",
and the size of the monomer is �

p

= 1.0�. All units are
expressed in terms of the LJ energy ", the LJ radius �, and
the mass m of individual particles. This leads to a time unit of
⌧ = �

p
m/". The parameters of the potential are such that a

reasonably large time step can be chosen, while bond crossing
remains essentially forbidden.

A bead-spring polymer is solvated in mixed solutions
composed of two components also modeled as LJ beads,
solvent s, and cosolvent c, respectively. Since the solvent
molecules typically are much smaller than the monomers of
PNIPAm and/or PAPOMe in aqueous methanol, we choose
the sizes of (co)solvents to be �

s/c = 0.5�. Note that because
of the reduced size of (co)solvents, the corresponding number
density within the simulation domain should also be adjusted
such that the overall pressure remains ⇠40"/�3. p � s and
p � c interactions are chosen such that c is always a better
solvent than s. In our earlier study,1 the default system con-
sisted of a repulsive p � s interaction, while p � c interaction
was attractive. In this work, we generalize this and investigate
the e↵ect of asymmetry in interaction energies, when both
p � s and p � c are attractive with interactions "

ps

and "
pc

,
respectively. Additionally, we impose conditions; (1) "

ps

< "
pc

, (2) 0.5 < "
ps

< 1.0, and 0.5 < "
pc

< 2.5. Temperature
is set to T = 0.5"/B, where B is the Boltzmann constant.
This leads to a relative energy scale "

pc

� "
ps

 3BT . These
values are typically comparable to the interaction energy scale
for PNIPAm in aqueous methanol. Solvent particles always
repel each other with a repulsive LJ potential, with ✏

i j

= 1.0✏ .
This is a good approximation given that the p � c and p � s

interactions are dominant, which will be discussed at a later
stage.

The cosolvent mole fraction x

c

is varied from 0 (pure
s component) to 1 (pure c component). We consider three
di↵erent polymer chain lengths N

l

= 10, 30, and 100, solvated
in 2.5 ⇥ 104 solvent molecules for N

l

= 10 and N

l

= 30 and
10 ⇥ 104 solvent molecules for N

l

= 100, respectively. The
equations of motion are integrated using a velocity Verlet
algorithm with a time step �t = 0.005⌧ and a damping
coe�cient � = 1.0⌧�1 for the Langevin thermostat. The initial
configurations are equilibrated for typically several 105⌧,
depending on the chain length, which is at least an order of

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
130.79.210.225 On: Wed, 18 Mar 2015 15:29:31



114903-3 Mukherji et al. J. Chem. Phys. 142, 114903 (2015)

FIG. 1. Normalized radius of gyration R̄g= Rg/Rg(xc = 0) as a function of
cosolvent molar concentration xc for three di↵erent chain lengths Nl. Results
are shown for the default system taken from Ref. 1. The error bars are the
standard deviations calculated from six independent simulations. The lines
are drawn to guide the eye.

magnitude larger than the relaxation time in the system. After
this, initial equilibration averages are taken over another 104⌧
to obtain observables, especially gyration radii Rg, chemical
potentials µ

p

of the polymer, and the bridging fractions of
cosolvents �B.

III. RESULTS AND DISCUSSIONS

A. Co-non-solvency: A brief overview

In our previous paper,1 we provided a possible explanation
for the experimentally observed co-non-solvency e↵ect of
smart polymers in aqueous mixtures.6–9 In Fig. 1, we show
the normalized radius of gyration R̄g = Rg/Rg(xc

= 0) as a
function of cosolvent molar fraction x

c

. The data are shown
for three di↵erent N

l

. It can be appreciated that just by adding
a small fraction of the better of the two solvents, the polymer
collapses into a compact globule structure. As discussed in the
Introduction, this reentrant collapse and swelling transition is
facilitated by the preferential binding of cosolvent components
with the polymer. The initial collapse is due to the formation
of bridges that the cosolvent molecules form by binding two
monomers that can be distinctly far along the backbone of
a polymer, while the reopening at higher concentrations is
due to the increased decoration of the polymer by cosolvent
molecules. Therefore, we can identify two kinds of cosolvents:
fraction �B of bridging cosolvents that bind to two monomers,
and a fraction � of cosolvents that are only bound to one
monomer. Note that other than �B and �, there are a large
fraction of free cosolvents that are present in the bulk solution
and usually are required to maintain solvent equilibrium.

It is also interesting to observe an inverse system size
e↵ect in the reopening transition, as observed in Fig. 1.
While the initial collapse (x

c

< 0.1) is reminiscent of a first-
order-like collapse, the reopening (for x

c

> 0.5) is rather
smooth even for longer chain lengths. This is contrary to the
knowledge of critical phenomena. Thus, indicating that this
transition is not a phase transition in a true thermodynamic
sense. This aspect will be discussed at a later stage of this

FIG. 2. Static structure factor S(q) for a chain length Nl = 100 and for two
di↵erent mole fractions xc. A power law of q

�1/⌫ with ⌫ = 0.6 shows an
extended (good solvent) conformation and q

�4 supports a compact globule
structure. For comparison, we have also plotted the analytical scattering
function of a sphere.

manuscript. Furthermore, the cosolvent driven first-order-like
collapse for x

c

 0.1 is reminiscent of the temperature induced
first order transition in PEO.28

To further quantify the collapse, facilitated by bridging
cosolvents, we calculate the static structure factor S(q),28,29

S(q) = 1
N

l

*������
X

i

e

[iq·Ri]
������
2+
. (1)

In Fig. 2, we present S(q) for N

l

= 100. As expected, a
power law well approximated by q

�1/0.6 is observed for x

c

= 0
(pure solvent), a signature characteristic of an extended coil
structure. For x

c

= 0.1, the polymer collapses into a compact
globule, with ⇠60% decrease in Rg with respect to its original
extended Rg at x

c

= 0 (see Fig. 1), as shown by a prominent
scaling law q

�4 in Fig. 2.29 Note that Rg for x

c

= 0.1 is slightly
larger than the equivalent Rg when a polymer collapses because
of pure depletion e↵ects. This is due to the fact that a collapsed
polymer also contains interstitial bridging cosolvent, and their
sizes contribute towards a slightly larger globule.

Preferentiability is required for the observation of the co-
non-solvency e↵ect. Therefore, conformations of polymers in
mixed solvents are intimately linked to the asymmetry in p � c

and p � s interactions "
pc

� "
ps

. In Fig. 3, we present a unified
picture of polymer conformation with changing "

pc

� "
ps

at di↵erent x

c

. It can be appreciated that, for "
ps

= "
pc

,
co-non-solvency is not observed and the polymer remains
in a coil conformation. Only when "

pc

� "
ps

> 0.25BT ,
does the polymer exhibit a coil-globule-coil-like scenario.
More interestingly, the larger the di↵erence "

pc

� "
ps

the
smoother the re-opening transition at larger x

c

values. This
is not surprising given that for a stronger "

pc

, �B has
stronger binding, thus leading to a more stable semi-collapsed
conformation. Thermodynamically, the energy density in the
solvation shell can be increased by increasing the p � c

interaction strength. Increasing energy density by a factor
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FIG. 3. A sketch of the phase diagram showing the change in normalized
radius of gyration R̄g= Rg/Rg(xc = 0) with the varying cosolvent molar
concentration xc and the relative interaction strengths "pc�"ps. Results
are shown for chain length Nl = 30. In the contour plots, the area bound
by the black curve represents maximum collapse with R̄g < 0.6. The red
contour curve represents the boundary when polymer goes from globule-coil
(or vice-versa) by either changing xc at a constant "pc�"ps or by changing
"pc�"ps at constant xc. The region outside the dashed green curve shows
maximum extension of the chain with R̄g � 1.0. Prominent kink in the black
contour curve is due to the error bar associated with that data points.

of two will approximately act in a similar manner as that
of a polymer of twice N

l

. Interestingly enough, increased
"
pc

and/or N

l

has the same e↵ect on the overall polymer
conformation.

We also want to point out that, for "
pc

>> "
ps

, polymer
collapse will occur close to x

c

! 0. A more prominent
representation of the region 0.0 < x

c

< 0.1 will require fine
grids and systematic scanning of the concentrations within
the range 0 < x

c

< 0.1. Here, however, while the initial
collapse is always first order like, the re-opening has much
stronger dependence on "

pc

� "
ps

. Therefore, we abstain from
presenting any more details within 0 < x

c

< 0.1.
The most interesting aspect of this reentrant transition is

that even when the solvent quality becomes better and better by
the addition of the better solvent, the polymer collapses in good
solvent. This makes the polymer conformation decoupled
from the solvent quality and only dictated by the preferential
coordination of cosolvent with polymer. This particle based
phenomenon cannot be explained within a mean-field type
approach.

Before describing an analytical theory, we briefly want to
comment on the suitability of the generic simulation protocol
to study the complexity of smart polymers. One important
aspect of smart polymers, such as PNIPAm, PVCL, and
PAPOMe, is their thermal responsiveness. These polymers
remain in a coil configuration at low temperatures, while
collapsing into a compact globule at high temperatures, thus
presenting a LCST. In this context, it is worth mentioning that
the generic schemes do not present LCST and co-non-solvency
can be studied at one fixed temperature, over full range of
x

c

. Moreover, the co-non-solvency e↵ect is not necessarily
restricted to “so called” smart polymers exhibiting LCST.
Therefore, a broad range of polymers are expected to show
a similar reentrant scenario, as long as they are dissolved in
a mixture of competing good solvents. A list of the possible
polymer systems that show co-non-solvency is presented in

FIG. 4. Part (a) shows simulation snapshot representing a monomer of
PNIPAm. Hydrogen atoms is rendered in steel, green spheres are carbon
atoms, blue sphere is nitrogen, and the oxygen is rendered in red. Part (b)
represents a schematic representation of NIPAm monomer.

Table I. Standard polymers, such as PEO in aqueous DMF17

and polystyrene in a mixture of N,N-dimethylformamide
(DMF) and cyclohexane,18–20 also show co-non-solvency.
Another example includes polymeric semiconductors. It has
been observed that the solution viscosity of polymeric
semiconductors can display a non-monotonic dependency
of solvent evaporation, pointing to possible conformational
changes.26 Therefore, we speculate that many more polymers,
such as polycarbonate or polypropylene, may also exhibit
a similar reentrant transition in appropriate competing good
solvents. Although we have not performed any analysis based
on the temperature e↵ects on the chain collapse, we anticipate
that the UCST associated with the generic model will increase
in the full range of x

c

. On the other hand, LCST behavior, in
principle, can be reproduced using a temperature dependent
interaction parameters that can incorporate hydrogen bonding
within a simplified model.

Another aspect is that the NIPAm monomer has a
hydrophilic part and two hydrophobic parts, as shown in
the schematic Fig. 4. It is generally believed that methanol
molecules bind to the hydrophilic part and thus push away
water molecules towards the hydrophobic part, leading to
polymer collapse. In a generic simulation, however, the
monomer is represented by a sphere, thus eliminating any
e↵ects due to hydro(phob/phil)icity within the model. Our
simulations1,14 suggests that the only dominant interaction is
the preferential coordination of methanol around the NIPAm
monomer (see Fig. 3 of Ref. 14). The collapse is initiated
by bridging and not by any hydrophobic e↵ects that may
occur due to solvent interaction with the alkane backbone.
Chemical details do not play any role in describing this
reentrant transition. In this context, tuning specific (co)solvent-
polymer interactions, a whole new class of heteropolymers can
also exhibit co-non-solvency and related phenomena.30

B. Co-non-solvency: A simple analytical approach

1. Why mean-field theory is inappropriate to describe

co-non-solvency

When a polymer with chain length N

l

at volume fraction
�
p

is dissolved in a mixture of two components s and
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FIG. 5. A schematic representation of the polymer excluded volume v as a
function of cosolvent mole fraction xc. The curve shows that the interaction
parameter �sc between solvent-cosolvent is a key factor to exhibit a swelling-
collapse-swelling scenario. When �sc = 0, the polymer remains swollen.

c, respectively, the standard Flory-Huggins energy FFH of
polymer solutions reads31,32

FFH

BT

=
�
p

N

l

ln �
p

+ x

c

�
1 � �

p

�
ln
⇥
x

c

�
1 � �

p

�⇤
+ (1 � x

c

)
�
1 � �

p

�
ln
⇥
(1 � x

c

)
�
1 � �

p

�⇤
+ �

ps

�
p

(1 � x

c

)
�
1 � �

p

�
+ �

pc

�
p

x

c

�
1 � �

p

�
+ �

sc

x

c

(1 � x

c

)
�
1 � �

p

�2
. (2)

Here, the first three terms represent the entropy of mixing and
the last three terms deal with interactions between di↵erent
components i and j via �

i j

. Expanding Eq. (2) to the second
order gives a direct measure of the excluded volumeV of the
polymer,31,32

V = 1 � 2 (1 � x

c

) �
ps

� 2x

c

�
pc

+ 2x

c

(1 � x

c

) �
sc

, (3)

where �
ps

and �
pc

are the Flory-Huggins interaction param-
eters between p � s and p � c, respectively. The factor �

sc

is the parameter of s � c interaction. When both solvent and
cosolvent are good solvents, �

ps

< 1/2 and �
pc

< 1/2.6 Using
the first two terms of Eq. (3), we find a linear variation of
V with x

c

for the cases of non-interacting s and c (i.e.,
�
sc

= 0), as shown by the blue line in Fig. 5. It is also
clear from Fig. 5 that only when �

sc

< 0, V can become
negative, opening the possibility for the coil-to-globule-to-
coil conformation changes typical of co-non-solvency. It has
been noticed early6 that for common solvent mixtures where
co-non-solvency e↵ects are observed, such as water-alcohol
mixtures, �

sc

> 0, thus precluding any explanation based on a
mean-field, Flory-Huggins type of analysis.

Furthermore, within the mean-field picture described in
Eq. (2), one can get the expression for the shift in chemical
potential of polymer µ̄

p

for �
p

! 0,

µ̄
p

�
�
p

! 0
�
=

@FFH

@�
p

�����p!0

= const � x

c

ln x

c

� (1 � x

c

) ln(1 � x

c

)
+ (1 � x

c

) �
ps

+ x

c

�
pc

� 2x

c

(1 � x

c

) �
sc

.

(4)

FIG. 6. A schematic representation of the shift in chemical potential µp as a
function of cosolvent mole fraction xc.

In Fig. 6, we present a schematic representation of µ̄
p

as
expected from Flory-Huggins picture described in Eq. (4).
Here, µ̄

p

(x
c

= 1) < µ̄
p

(x
c

= 0) because alcohol is a better
solvent compared to water. Consistently with the behavior
of V presented in Fig. 5, µ̄

p

for �
sc

< 0 displays a hump
for intermediate mixing ratios where the solvent quality goes
from good to poor to good again (see red curve in Fig. 6).
However, in our simulations,1,14 not only is �

sc

= 0, but we
also measure a chemical potential trend similar to the black
schematic curve in Fig. 6. Thus, the solvent quality remains
good in the whole composition range, and, in-fact, it even
becomes increasingly better by the addition of the cosolvent.
By the analysis of Eq. (4), it can be seen that a similar trend as
the black curve of Fig. 6 can be obtained from the mean-field
picture when �

sc

>> 0. However, this can only be obtained
at the nonrealistic cost of driving the system towards solvent
phase separation. This further confirms the incapability of
mean-field theory to capture the reentrant co-non-solvency
e↵ect in polymeric systems.

The mean-field picture also suggests that the strength of
s � c interaction should be dominant over p � s and p � c

interactions to observe this reentrant transition. Moreover, if
the mean-field theory is su�cient to understand this reentrant
coil-globule-coil transition then the analysis of the bulk
solution property, that can easily be calculated using molecular
simulations, should also show a preferred s � c coordination
over p � s or p � c coordination.

A quantity that best describes the relative intermolecular
a�nity and/or the interaction strength is the fluctuation theory
of Kirkwood and Bu↵ (KB).33 KB theory connects the pair
distribution function to thermodynamic properties of solutions
using the “so called” KB integrals,

G
i j

= 4⇡
⌅ 1

0

⇥
g
i j

(r) � 1
⇤
r

2
dr, (5)

where g
i j

(r) is the pair distribution function. In Fig. 7, we
summarize G

i j

between di↵erent solvent components. It can
be appreciated that, for 0.1 < x

c

< 0.5, p � c coordination is
at-least an order of magnitude larger than the G

i j

values be-
tween the solvent components in the bulk solution, suggesting
that the fraction of cosolvent molecules in close contact with
the chain is always much larger than its natural, mean-field
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FIG. 7. Kirkwood-Bu↵ integral G
ij

between di↵erent solution components
as a function of cosolvent molar fraction xc. Lines are the polynomial fits
to the data that are drawn to guide the eye. The data were obtained from the
semi-grand canonical simulations incorporating all-atom details.14 For pure
solvent at xc = 0.0 and pure cosolvent at xc = 1.0, individual coordinations
Gpc and Gps are undefined, respectively.

proportions in the bulk solution. This is contrary to what
is know from the analysis based on the mean-field theory
presented above. Furthermore, the shift in chemical potential
µ̄ can be estimated from the KB theory. If a polymer p at
dilute concentration is solvated in a mixture of solvent s and
cosolvent c, µ

p

can be calculated using34

 
@µ

p

@⇢
c

!

p,T

=
G

ps

� G
pc

1 � ⇢
c

(G
cs

� G
cc

) , (6)

where µ
p

= µ
p

/BT and ⇢
c

is the cosolvent number density.
The change in µ

p

is shown in Fig. 8. Data clearly show the
trend known for the case when �

sc

= 0, suggesting that the
solvent quality becomes better and better by the addition of
better (co)solvent. This decoupling between solvent quality
and the polymer conformation is contrary to the conventional
understanding from mean-field predictions. Additionally, this
conformational transition of polymer in mixtures of competing
good solvents is not a phase transition in true thermodynamics
sense and is only dictated by the preferential adsorption of
one of the (co)solvents. Therefore, an analytical description
is needed that can incorporate the concept of competitive
adsorption by taking into account the strong deviations of
local concentration from mean-field values. We will address
this in Sec. III B 2.

2. Competitive adsorption of the cosolvent as a model

for co-non-solvency

We have recently proposed that the polymer collapse
in co-non-solvency phenomena can simply be understood as
the result of the attractive interactions induced by cosolvent
molecules that form a bridge between two monomers.1 Confor-
mational collapse, at low x

c

, is thus induced by the increase
of such bridges, while polymer swelling at larger cosolvent
fractions is due to the progressive replacement of these bridges
by single site cosolvent molecules that are attached to one
monomer only. Thus, for high enough x

c

, these non-bridging
cosolvent molecules eventually decorate the whole chain
backbone to facilitate the reopening. In Fig. 9, we show �B, the

FIG. 8. Shift in chemical potential of a single monomer µp as a function of
methanol mole fraction xc. µp is calculated by integrating the Eq. (6). G

ij

are taken from Fig. 7. Dashed line is plotted according to the Eq. (13).

fraction of backbone sites participating in bridge formation, as
a function of x

c

. Note that � and �B are cosolvent molecules
that are directly in contact with the monomers at a distance
21/6�

pc

⇠ 0.84�. It can be appreciated that, within the range
0.1 < x

c

< 0.4, �B obtained from the numerical simulations
shows a distinct hump that is consistent with the range of
x

c

when the polymer collapses into a (compact) globule
and then gradually begins to expand. To devise a theoretical
formulation, we view the polymer as a substrate with N sites
exposed to the bulk solution, of which n

s sites are occupied by
s (solvent) molecules, n

c sites by non-bridging c (co-solvent)
molecules, and 2n

c

B

sites by bridging c (co-solvent) molecules,
with N = n

s + n

c + 2n

c

B

. The observed sequence of collapse
and re-swelling of the polymer correspond to a fast growth of

FIG. 9. Bridging fraction of cosolvents �B as a function of cosolvent mole
fraction xc for Nl = 100. The data corresponding to red diamond are the
direct calculation of �B from the simulation trajectory. The prediction of
analytical theory from Eq. (8) is plotted for two di↵erent ⇣ parameters. Here
⇣ = 0.05 corresponds to the translational entropic term corrected with a loop
contribution, as observed earlier.1
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n

c

B

as x

c

increases, followed by a displacement of n

c

B

by n

c for
larger x

c

values. Such a sequence is typical for competitive
displacement in adsorption phenomena.35 Our results from
numerical simulations for n

c

B

and n

c, or alternatively for the
fractions �B = n

c

B

/N and � = n

c/N , are very well described
by a competitive adsorption model with the following asso-
ciated free energy density of adsorption for non-bridges and
bridges:

 

BT

= � ln(�) + ⇣�B ln(2�B)

+ (1 � � � 2�B) ln(1 � � � 2�B)

� E� � EB�B �
µ

BT

(� + �B) , (7)

with µ = BT ln(x
c

) being the chemical potential of the
cosolvent in the bulk solvent mixture and the adsorption
energies E and EB measure the excess a�nities of individual
non-bridging and bridging cosolvent molecules to the chain
monomers. The first three terms in Eq. (7) express entropic
contributions of the adsorbed bridges and non-bridges to the
energy densities, while the two following terms measure
contact energies between the cosolvents bridges and non-
bridges with the polymer backbone. The unusual pre-factor ⇣
is, as discussed later, a consequence of assuming a logarithmic
form for the dependence of the energy required to make a
bridge on the average density of existing bridges. This is the
case, for instance,1 if one assumes that in order to make a new
bridge at density �B, the chain needs to make a loop of length
` = 1/�B, with associated penalty ⇠ log ` ⇠ log(1/�B).

Minimization of Eq. (7) with respect to �B and � leads to
the implicit equation for the bridge density �B(xc

),

16�B
⇣
x

c

= x

⇤
c

8><>:
 

x

⇤
c

x

⇤⇤
c

!1/2

(1 � 2�B)

±
s 

x

⇤
c

x

⇤⇤
c

!
(1 � 2�B)2 � 16�B

⇣
9>>=>>;

2

, (8)

with x

⇤
c

= exp(�E) and x

⇤⇤
c

= exp(�EB + 2 ln 2e � ⇣) are the
characteristic concentrations related to the adsorption energies
E and EB for non-bridges and bridges, respectively. Fig. 9
shows that this expression describes very well our simulation
results, with ⇣ = 0.05.

Equation (8) can equivalently be derived by considering
the two pseudo-chemical reactions,

cosolvent + empty site⌦ non � bridge,
cosolvent + 2 empty site⌦ ⇣ bridge.

(9)

A schematic representation of this reaction is presented
in Fig. 10. When the solvent and cosolvent interactions
with the polymer backbone empty sites are described as
pseudo-reactions, a cosolvent molecule reacts with one empty
adsorption site to form one adsorbed non-bridge, while
it reacts with two empty sites to make ⇣ bridges. The
associated equilibrium standard mass-action laws can thus be

FIG. 10. A schematic representation of the chemical reaction described in
Eq. (9). Part (a) describes a typical polymer conformation decorated by
non-bridging and bridging cosolvent molecules. While part (b) shows that
a polymer segment and a cosolvent forms a single adsorbed non-bridging
cosolvent, part (c) represents two segments and a cosolvent makes a bridge
(or a bridging cosolvent).

written as
x

c

x

⇤
c

=
�

1 � � � 2�B
,

x

c

4x

⇤⇤
c

=
�⇣

B

(1 � � � 2�B)2
,

(10)

with equilibrium reaction constants 1/x

⇤
c

and 1/x

⇤⇤
c

. Note
that the reaction equilibrium concentration x

⇤⇤
c

has been,
for mathematical convenience, defined up to a factor four.
Solving the mass-action laws for �B gives Eq. (8). In
this pseudo-chemical language, the factor ⇣ describing the
e↵ective number of bridges formed by the interaction between
one cosolvent molecule and the two empty sites of the
backbone appears as a consequence of assuming a power-
law dependence for the equilibrium constant of the pseudo-
chemical reaction. Note that the actual shape of Eq. (8) is quite
sensitive to the value of ⇣ . In particular, the choice ⇣ = 1,
corresponding to a standard chemical reaction between free
species in solution, leads to a prediction that cannot describe
our data (see red curve in Fig. 9).

In a previous work,1 we argued that a value of ⇣ = 0.05
can be understood by considering loop contributions to the
cost of making a bridge. When a pure configurational cost
for distributing the bridges amongst the possible occupation
sites is combined with the entropic cost of loop formation,
one can write ⇣ = 2 � m. Here, the critical exponent m can be
estimated within a simple scaling argument. In this context,
one can characterize the loop formation by a partition function
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FIG. 11. A comparative plot of the normalized radius of gyration R̄g= Rg/
Rg(xc = 0) as a function of cosolvent molar concentration xc for a chain
lengths Nl = 100. Three legends represent the direct calculation of R̄g (green
diamond symbol), R̄g calculated from �B(xc) in Fig. 9 (red diamond sym-
bol), and solid line represents theoretical prediction in Eq. (14).

of vanishing end-to-end distance R

e

! 0,32

Z

Nl
(R

e

! 0) / q

Nl
N

l

↵�2, (11)

and the partition function at finite R

e

is given by

Z

Nl
(R

e

) / q

Nl
N

l

��1. (12)

Here, 1/q is the critical fugacity and the universal exponent
↵ � 0.2.32 From these two cases, one can estimate the free en-
ergy barrier to form a loop of length ` as 4F (`) = mBT ln(`),
with m = � � ↵ + 1 being the critical exponent.32 Although
this gives m = 1.95 for loop formation in self-avoiding walks,
in excellent agreement with our findings, it is worth pointing
to the fact that our simple analytical description does not
address other possible contributions to bridge formation, such
as cooperative or other non-trivial entropic e↵ects that might
be determinant in the dense chain globule. Note that, consistent
with the data from numerical simulations, we do not account
for any change of chain rigidity due to competitive solvent
displacement.

This selective adsorption model also provides for an
analytical prediction of the shift in the chemical potential µ

p

as a function of x

c

,
µ
p

BT

= const + (2 � ⇣) �B

� ln
8><>:1 + �B

1�⇣/2
 

x

c

x

⇤⇤
c

!1/2

+

 
x

c

x

⇤
c

!9>=>; . (13)

Fig. 8 shows a comparison between predictions from Eq. (13)
and the values of the chemical potential obtained from Eq. (6).
A very good agreement is obtained by simply inserting into
Eq. (13) the values for ⇣ and concentrations obtained from the
fit of the bridging fraction, further confirming the consistency
and validity of our approach.

3. Estimation of polymer gyration radii

The process of collapsing a polymer chain from the
fully swollen athermal state to a compact globule is well

understood.18,31,32 Starting from the swollen state, an increase
of the attraction between the monomers first brings the poly-
mer into ⇥�conditions, where Rg ⇠ N

1/2
l

. Further increase of
the attraction then collapses the polymer into a globular state.
The dimensions of the collapsed globule can be understood
by balancing the second virial osmotic contributions with
attractive coe�cient �|V | and three body repulsions. This
leads to Rg ⇠ [N

l

/V]1/3. In this regime, a simple formula that
interpolates between⇥�conditions and the collapsed state can
be written as

�
R⇥/Rg

�3 � 1 / V . In our case, however, most of
the significant behavior occurs when the polymer is collapsed
and the interpolation formula,

"
Rg

Rg(xc

= 0)

#�3

� 1 = V , (14)

describes very well the chain Rg with x

c

over the full
composition range when V = 100�B(xc

), see Fig. 11 build
from the corresponding variation of the bridge fraction �B(xc

)
in Fig. 9. It is important to note that even when we only show
results for N

l

= 100, the shorter chain length of N

l

= 30 also
displays the similar behavior consistent with V = 30�B(xc

),
thus suggesting that, in general,V ' N

l

�B(xc

).

IV. CONCLUSION

We present a comprehensive analysis of the co-non-
solvency e↵ect of smart polymers in a mixture of good
solvents. Our results suggest that co-non-solvency is a generic
e↵ect that is not restricted to any specific chemical systems.
While the co-non-solvency has been traditionally associated
with smart polymers exhibiting LCST like PNIPAm, PVCL,
and/or PAPOMe,1,6–8,10,16 standard polymers, such as PEO,
poly(vinyl alcohol), and polystyrene, also exhibit co-non-
solvency.17,20,22 Therefore, polymers presenting UCST also
display co-non-solvency, suggesting that the temperature
sensitivity of a particular polymer does not play a critical role
in describing its conformation in mixtures of two competing
good solvents. Furthermore, this reentrant transition is dictated
by the preferential coordination of one of the cosolvents
with the polymers. More interestingly, even when the chain
collapses, the solvent quality becomes increasingly better. This
makes the solvent quality disconnected from the conformation
of the macromolecules. This discrete particle-based phenom-
enon cannot be explained within a mean-field theory. Instead, it
can be explained using a thermodynamic treatment of a simple
selective adsorption picture, where the preferential interaction
with the chain includes both, enthalpic contributions and
entropic conformational e↵ects. Therefore, this work presents
a unified theoretical and computational framework, which can
pave the way for a more generic understanding of polymeric
solubility in mixtures of solvents.
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