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Abstract
Using exact enumerations of self-avoiding walks (SAWs) we compute the
inhomogeneous pressure exerted by a two-dimensional end-grafted polymer
on the grafting line which limits a semi-infinite square lattice. The results for
SAWs show that the asymptotic decay of the pressure as a function of the
distance to the grafting point follows a power law with an exponent similar to
that of Gaussian chains and is, in this sense, independent of excluded volume
effects.

PACS numbers: 05.50.+q, 36.20.Ey

(Some figures may appear in colour only in the online journal)

1. Introduction

Imaging and manipulating matter at sub-micron length scales has been the cornerstone of nano-
sciences development [1]. In soft matter systems, including those of biological relevance, the
cohesive energies being only barely larger than the thermal energy kBT , forces as small as
a pico-Newton exerted over a nanometer length scale might be significant enough to induce
structural changes. Examples can be found in the stretching of DNA molecules by optical traps
[2], on the behavior of colloidal solutions under external fields [3] and on the deformations of
self-assembled bilayers [4] to name just a few. Thus, in soft matter, when one exerts a localized
force over a small area, precise control of the acting force requires not only a prescribed value
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Figure 1. A self-avoiding walk (SAW) grafted at the origin x = y = 0 to a wall placed on the y
axis. If the vertex on the wall at (0, 1) is not excluded, the only possibility for the next step would
be toward this vertex. If this vertex is excluded, the SAW will end at the final point (1, 1).

of the total applied force but, more importantly, a precise pressure distribution in the contact
area.

The microscopic nature of pressure has been understood since the seminal work of
Bernoulli two and a half centuries ago: in a container, momentum is transferred by collisions
from the moving particles to the walls [5]. When the particle concentration is homogeneous
so is the pressure. Strategies for localizing the pressure over a nanometer area thus require
the generation of strong concentration inhomogeneities, at equivalently small scales. Bickel
et al [6, 7] and Breidnich et al [8] have recently realized that such inhomogeneities are
intrinsic to entropic systems of connected particles such as polymer chains, and have computed
the inhomogeneous pressure associated with end-grafted polymer chains within available
analytical theories for ideal chains. Their results show that the polymer produces a local field
of pressure on the grafting surface, with the interaction being strong at the anchoring point and
vanishing far enough from it. Scaling arguments were also put forward in [7] to discuss the
more relevant case of real polymer chains, where excluded volume interactions between the
different monomers need to be taken into account. These arguments suggest that the functional
variation of pressure with distance from the grafting point should be the same in chains with
or without excluded volume interactions, albeit with different prefactors.

In this paper, we compute the inhomogeneous pressure applied to a wall by an end-grafted
polymer with excluded volume interactions, modeled by self-avoiding walks (SAWs) on the
square lattice. In figure 1, we illustrate our model with a wall located at x = 0. The wall is
neutral, in the sense that the statistical weight of a monomer placed on the wall is equal to the
weight of a monomer in the bulk. The length of a step of the walk is equal to the lattice constant
a, and we use this as the length unit. The model is athermal, that is, all allowed configurations
of a SAW have the same energy.

The canonical partition function of walks with n steps (Zn) is equal to the number of SAWs
starting at the origin and restricted to the half-plane x � 0, called c(1)

n in [9]. The Helmholtz
free energy is given by Fn = −kBT ln c(1)

n . We can estimate the pressure exerted by the SAW
at a point (0, r) on the wall by excluding this vertex from the lattice. The excluded vertex is
represented as a hatched square in figure 1 at r = 1. The pressure Pn(r) exerted at this point is
then related to the change in the free energy when the vertex is excluded, Pna2 = −�Fn. If we
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call c(1)
n (r) the number of n step SAWs with the vertex at (0, r) excluded, the dimensionless

reduced pressure may be written as

pn(r) = Pn(r)a2

kBT
= − ln

c(1)
n (r)

c(1)
n

. (1)

Of course we are interested in the thermodynamic limit p(r) = limn→∞ pn(r), so the
enumeration data must be extrapolated to the infinite length limit. It is worth noting that
the density of monomers at the vertex (0, r) is given by ρ(r) = 1 − limn→∞ c(1)

n (r)/c(1)
n , so

that

p(r) = − ln[1 − ρ(r)]. (2)

The exact enumerations allow us to obtain precise estimates of the pressure exerted by SAWs
at small distances of the grafting point, and we find, rather surprisingly, that the asymptotic
form of this pressure is well reproduced even for these small values of r. In section 2, we give
some details of the computational enumeration procedure. In section 3, the enumeration data
are analyzed and estimates for the pressure as a function of the distance to the grafting point
are presented. Final discussions and conclusions may be found in section 4.

2. Exact enumerations

The algorithm we use to enumerate SAWs on the square lattice builds on the pioneering work
of Enting [10] who enumerated square lattice self-avoiding polygons using the finite lattice
method. More specifically, our algorithm is based in large part on the one devised by Conway
et al [11] for the enumeration of SAWs. The details of our algorithm can be found in [12].
Below we shall only briefly outline the basics of the algorithm and describe the changes made
for the particular problem studied in this work.

The first terms in the series for the SAWs generating function can be calculated using
transfer matrix (TM) techniques to count the number of SAWs in rectangles W vertices wide
and L vertices long. Any SAW spanning such a rectangle has length at least W + L − 2. By
adding the contributions from all rectangles of widthW � N+1 and lengthW � L � N−W+1
the number of SAWs is obtained correctly up to length N.

The generating function for rectangles with fixed width W is calculated using TM
techniques. The most efficient implementation of the TM algorithm generally involves
bisecting the finite lattice with a boundary (this is just a line in the case of rectangles)
and moving the boundary in such a way as to build up the lattice vertex by vertex as illustrated
in figure 2. If we draw a SAW and then cut it by a line we observe that the partial SAW to the
left of this line consists of a number of loops connecting two edges (we shall refer to these as
loop ends) in the intersection, and pieces which are connected to only one edge (we call these
free ends). The other end of the free piece is either the start-point or the end-point of the SAW
so there are at most two free ends.

Each end of a loop is assigned one of two labels depending on whether it is the lower end
or the upper end of a loop. Each configuration along the boundary line can thus be represented
by a set of edge states {σi}, where

σi =

⎧⎪⎪⎨
⎪⎪⎩

0 empty edge,
1 lower loop-end,

2 upper loop-end,
3 free end.

(3)

If we read from the bottom to the top, the configuration or signature S along the intersection
of the partial SAW in figure 2 is S = {031 212 120}. Since crossings are not permitted this
encoding uniquely describes which loop ends are connected.
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Figure 2. A snapshot of the boundary line (dashed line) during the transfer matrix (TM) calculation
on a strip of width 7 with r = 3. The filled circle indicates the grafted start-point of the SAW and
the shaded box the excluded vertex. SAWs are enumerated by successive moves of the kink in the
boundary line, as exemplified by the position given by the dotted line, so that one vertex and two
edges at a time are added to the strip. To the left of the boundary line we have drawn an example
of a partially completed SAW.

The sum over all contributing graphs is calculated as the boundary is moved through the
lattice. For each configuration of occupied or empty edges along the intersection we maintain a
generating function GS for partial walks with signature S. In exact enumeration studies such as
this, GS is a truncated polynomial GS(x), where x is conjugate to the number of steps. In a TM
update, each source signature S (before the boundary is moved) gives rise to a few new target
signatures S′ (after the move of the boundary line) and m = 0, 1 or 2 new edges are inserted
leading to the update GS′ (x) = GS′ (x) + xmGS(x). Once a signature S has been processed it
can be discarded. The calculations were performed using integer arithmetic modulo several
prime numbers with the full integer coefficients reconstructed at the end using the Chinese
remainder theorem.

Some changes to the algorithm described in [12] are required in order to enumerate the
restricted SAW we study here. Grafting the SAW to the wall can be achieved by forcing the
SAW to have a free end (the start-point) on the top side of the rectangle. In enumerations of
unrestricted SAW, one can use symmetry to restrict the TM calculations to rectangles with
W � N/2 + 1 and L � W by counting contributions for rectangles with L > W twice.
The grafting of the start-point to the wall breaks the symmetry and we have to consider all
rectangles with W � N + 1. Clearly the number of configurations one must consider grows
with W . Hence, one wants to minimize the length of the boundary line. To achieve this, the
TM calculation on the set of rectangles is broken into two subsets with L � W and L < W ,
respectively. The calculations for the subset with L � W are performed as outlined above. In
the calculations for the subset with L < W, the boundary line is chosen to be horizontal (rather
than vertical) so it cuts across at most L+1 edges. Alternatively, one may view the calculation
for the second subset as a TM algorithm for SAW with its start-point on the left-most border
of the rectangle.

Exclusion of the vertex at distance r from the starting point of the SAW is achieved by
blocking this vertex so the walk cannot visit the vertex. The actual calculation can be performed
in at least two ways. One can simply specify the position of the starting point (and r) on the
upper/left border and sum over all possible positions. This means doing calculations for a given
width W many times; once for each position of the starting point of the SAW. Alternatively,
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one can introduce ‘memory’ into the TM algorithm. Specifically, once we have created a
configuration which inserts the first free end we ‘remember’ that it did so. We can flag that
the free end has been inserted by adding a ghost edge to the configuration initially in state 0.
Once the first free end is inserted the state of the ghost edge is changed to 1. In the next sweep
the state of the ghost edge is incremented by 1. When the state of the ghost edge has reached the
value r the vertex on the top border is blocked. The problem with the first approach is that we
need to do many calculations for any given rectangle. The problem with the second approach
is that we need to keep r + 1 copies of most TM configurations thus using substantially more
memory. The choice will be a matter of whether the major computational bottle-neck is CPU
time or memory. For this study, we used the first approach.

In more detail the TM algorithm for the case L � W works as follows. A SAW has two
free ends and in the TM algorithm the first free end is forced to be at the top at a distance
k from the left border (this is the starting point of the SAW). We then add a further r − 1
columns; in the next column the top vertex is forced to be empty. After this further columns
are added up to a maximum length of Lm = N − W + 1. This calculation is then repeated for
k = 0 to Lm thus enumerating all possible SAWs spanning rectangles of width exactly W and
length L � W . A similar calculation is then performed with the SAW grafted to the left border
and in each case repeated for all W � N/2.

The calculation above enumerates almost all possible SAWs. However, we have missed
those SAWs with two free ends in the top border where the end-point precedes the starting-
point. That is there is a free end in the top border at a distance > r prior to the excluded
vertex. We need to count such SAWs separately. The required changes to the algorithm are
quite straightforward and will not be detailed here.

We calculated the number of SAWs up to length n = 59 for the unrestricted case and for
an excluded vertex with r = 1, 2, 3, 4, 5, 10, 20. In each case, the calculation was performed
in parallel using up to eight processors, a maximum of some 16 GB of memory and using
a total of under 2000 CPU hours (see [12] for details of the parallel algorithm). We needed
three primes to represent each series correctly and the calculations for all the primes were
performed in a single run.

3. Analysis and results

In tables 1 and 2, we have listed the results for the enumerations of SAWs without additional
restrictions, c(1)

n , and walks which are not allowed to occupy the vertex (0, 1) of the
wall, c(1)

n (1). If we calculate the pressures directly, we note a parity effect, as seen in
the results presented in figure 3. This effect is related to an unphysical singularity in the
generating function of the counts c(1)

n , G(x) = ∑∞
n=0 c(1)

n xn. Besides the physical singularity
at x = xc = 1/μ, where μ is the connective constant, there is another singularity at x = −1/μ

[9]. This point will be discussed in more detail below, and more precise estimates for the
pressures at several distances from the grafting point will be provided.

3.1. Critical points and exponents

The critical behavior of a polymer grafted to a surface is well established [13]. It has been
proved that the connective constant of grafted walks equals that of unrestricted walks [14].
The associated generating function has a dominant singularity at x = xc = 1/μ

G(x) =
∑

n

c(1)
n xn ∼ A(1 − μx)−γ1 , (4)

where γ1 = 61/64 is a known [15, 16] critical exponent. Besides the physical singularity there
is another singularity at x = x− = −xc [17, 9].
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Table 1. Number of walks in the half-plane c(1)
n .

n c(1)
n n c(1)

n n c(1)
n

1 3 21 681 552 747 41 176 707 555 110 156 095
2 7 22 1793 492 411 42 465 629 874 801 142 259
3 19 23 4725 856 129 43 1227 318 029 107 006 037
4 49 24 12 439 233 695 44 3234 212 894 649 555 857
5 131 25 32 778 031 159 45 8525 055 738 741 918 835
6 339 26 86 295 460 555 46 22 466 322 857 670 716 727
7 899 27 227 399 388 019 47 59 220 537 922 987 286 933
8 2345 28 598 784 536 563 48 156 073 168 859 898 607 113
9 6199 29 1577 923 781 445 49 411 414 632 591 966 686 887

10 16 225 30 4155 578 176 581 50 1084 313 600 069 268 939 547
11 42 811 31 10 951 205 039 221 51 2858 360 190 045 390 998 925
12 112 285 32 28 844 438 356 929 52 7533 725 151 809 823 220 637
13 296 051 33 76 016 486 583 763 53 19 860 118 923 927 104 821 817
14 777 411 34 200 242 023 748 929 54 52 346 889 766 180 530 489 735
15 2049 025 35 527 735 162 655 901 55 137 997 896 899 080 793 506 959
16 5384 855 36 1390 287 671 021 273 56 363 744 527 134 008 049 572 583
17 14 190 509 37 3664 208 598 233 159 57 958 930 393 586 321 187 515 995
18 37 313 977 38 9653 950 752 700 371 58 2527 696 511 232 818 406 275 131
19 98 324 565 39 25 444 550 692 827 111 59 6663 833 305 674 862 002 802 763
20 258 654 441 40 67 042 749 110 884 297

Table 2. Number of restricted walks in the half-plane c(1)
n (1).

n c(1)
n (1) n c(1)

n (1) n c(1)
n (1)

1 2 21 484 553 893 41 125 845 983 216 200 025
2 5 22 1277 403 184 42 331 741 159 147 128 245
3 13 23 3361 118347 43 874 112 388 226 242 422
4 35 24 8860 136 085 44 2304 278 197 456 842 952
5 91 25 23 319 106 552 45 6071 977 423 574 762 560
6 242 26 61 468 398 004 46 16 006 835 327 039 914 244
7 630 27 161 814 936 995 47 42 181 825 940 070 651 834
8 1672 28 426 530 787 110 48 111 200 914 189 945 767 681
9 4369 29 1123 043 680 259 49 293 056 004 233 059 019 257

10 11 558 30 2960 232 320 818 50 772 575 890 795 109 134 325
11 30 275 31 7795 418 415 398 51 2036 121 996 024 316 003 415
12 79 967 32 20 548 006 324 647 52 5367 866 589 569 286 706 072
13 209 779 33 54 117 914 172 220 53 14 147 607 361 624 429 924 807
14 553 634 34 142 651 034 798 697 54 37 298 221 266 819 312 654 286
15 1453 801 35 375 747 632 401 071 55 98 307 470 253 293 931 954 939
16 3834 878 36 990 456 507 011 029 56 259 178 303 320 281 122 974 230
17 10 077 384 37 2609 158 017 850 105 57 683 144 867 659 867 533 730 505
18 26 574 366 38 6877 742 334 133 961 58 1801 074 652 042 354 959 971 779
19 69 870 615 39 18 119 629 209 950 641 59 4747 450 605 648 675 761 162 683
20 184 216 886 40 47 764 129 557 587 369

We have analyzed the series using differential approximants [18]. We calculate many
individual approximants and obtain estimates for the critical points and exponents by an
averaging procedure described in [19, chapter 8]. Here and elsewhere uncertainties on estimates
from differential approximants were obtained from the spread among the various approximants
as detailed in [19]. The results for unrestricted grafted SAWs are listed in table 3 under r = 0.
We also list estimates for the cases r = 1, 2, 5 and 10. From these estimates, it is clear that
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p(1)
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Figure 3. Pressure pn(r) for r = 1, calculated with the enumeration data for c(1)
n and c(1)

n (1) using
expression (1).

Table 3. Estimates of the critical points and exponents for SAWs with an excluded vertex a distance
r from the origin (r = 0 is the unrestricted case). The estimates were obtained from third-order
approximants with L being the degree of the inhomogeneous polynomial.

r L xc γ x− γ−

0 0 0.379 052 260(64) 0.953 097(70) −0.379 0526(38) 1.5002(19)
0 4 0.379 052 241(20) 0.953 072(17) −0.379 0492(30) 1.5023(13)
0 8 0.379 052 243(14) 0.953 071(15) −0.379 0498(21) 1.5016(12)

1 0 0.379 052 2582(30) 0.953 0884(24) −0.379 0425(97) 1.5074(74)
1 4 0.379 052 2575(38) 0.953 0879(30) −0.379 030(26) 1.523(29)
1 8 0.379 052 257(11) 0.953 090(14) −0.379 058(16) 1.4988(69)
2 0 0.379 052 292(16) 0.953 123(13) −0.379 0511(33) 1.5011(24)
2 4 0.379 052 276(12) 0.953 1115(97) −0.379 0478(89) 1.5036(60)
2 8 0.379 052 306(26) 0.953 135(20) −0.379 057(21) 1.498(20)
5 0 0.379 052 18(21) 0.953 04(17) −0.379 114(61) 1.457(37)
5 4 0.379 052 25(31) 0.953 13(24) −0.379 099(40) 1.467(29)
5 8 0.379 052 26(29) 0.953 13(25) −0.379 074(31) 1.482(20)

10 0 0.379 0483(12) 0.9494(12) −0.379 230(55) 1.369(32)
10 4 0.379 0493(40) 0.9503(32) −0.379 237(29) 1.369(14)
10 8 0.379 0508(22) 0.9514(14) −0.379 246(91) 1.365(54)

all the series have the same critical behavior. That is a dominant singularity at x = xc with
exponent −γ1 = −61/64 and a non-physical singularity at x = x− = −xc with a critical
exponent consistent with the exact value γ− = 3/2.

The critical behavior can be established more rigorously from a simple combinatorial
argument. The number of walks c(1)

n (r) with the point at (0, r) excluded is clearly less than
the number of unrestricted walks c(1)

n . On the other hand, if we attach a single vertical step to
the grafting point of an unrestricted walk, we obtain a walk which does not touch the surface
at all and hence these walks are a subset of c(1)

n (r). This establishes the inequality

c(1)

n−1 � c(1)
n (r) � c(1)

n , (5)

and hence shows that up to amplitudes the asymptotic behaviors of these sequences are
identical.
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3.2. Pressure

Having established the critical behavior of the series we can now turn to the determination
of the pressure exerted by the polymer on the surface. Since all the series have the same
dominant critical behavior it follows from (1) that the pressure is given by the ratio of the
critical amplitudes.

One way of estimating the amplitudes is by a direct fit to an assumed asymptotic form.
Here we assume that the asymptotic behavior of our series is similar to that of unrestricted
SAW [20]. The asymptotic analysis of [20] was very thorough and clearly established that the
leading non-analytic correction-to-scaling exponent has the value 3/2 (there are also analytic,
i.e. integer valued corrections to scaling). We repeated some of the steps in this analysis with
the same result for the leading non-analytic correction-to-scaling exponent. Naturally, there
may be further non-analytic correction-to-scaling exponents with values > 3/2, but these
would be impossible to detect numerically with any degree of certainty. So here we assume
that the physical singularity has a leading correction-to-scaling exponent of 1 followed by
further half-integer corrections, while we assume only integer corrections at the non-physical
singularity. We thus fit the coefficients to the asymptotic form

c(1)
n (r) = μn

⎡
⎣nγ1−1

⎛
⎝A(r) +

∑
j=2

a j(r)/n j/2

⎞
⎠ + (−1)nn−γ−−1

∑
k=0

bk(r)/nk

⎤
⎦ . (6)

In the fits we use the extremely accurate estimate μ = 2.638 158 530 35(2) obtained from
an analysis of the series for self-avoiding polygons on the square lattice [21] and the
conjectured exact values γ1 = 61/64 and γ− = 3/2. That is, we take a sub-sequence of terms
{c(1)

n (r), c(1)

n−1(r), . . . , c(1)

n−2m−1(r)}, plug into the formula above taking m terms from both the
a j and bk sums, and solve the 2m linear equations to obtain estimates for the amplitudes.

It is then advantageous to plot estimates for the leading amplitude A(r) against 1/n for
several values of m as done in figure 4. The behavior of the estimates for the leading amplitudes
shown in this figure supports that (6) is a very good approximation to the true asymptotic form.
In particular, note that the slope becomes very flat as n is increased and decreases as the number
of terms m included in the fit is increased. From these plots, we estimate A = 1.124 705(5),
A(1) = 0.801 625(5), A(2) = 0.975 64(2) and A(5) = 1.093 25(10), where the uncertainty
is a conservative value chosen to include most of the extrapolations from figure 4.

The amplitude ratios A(r)/A, and hence the pressure, can also be estimated by direct
extrapolation of the relevant quotient sequence, using a method due to Owczarek et al [22]:
given a sequence {an} defined for n � 1, assumed to converge to a limit a∞ with corrections
of the form an ∼ a∞(1 + b/n + · · ·), we first construct a new sequence {pn} defined by
pn = ∏n

m=1 am. We then analyze the corresponding generating function

P(x) =
∑

pnxn ∼ (1 − a∞x)−(1+b).

Estimates for a∞ and the parameter b can then be obtained from differential approximants,
that is a∞ is just the reciprocal of the first singularity on the positive real axis of P(x).
In our case, we study the sequence of ratios an(r) = c(1)

n (r)/c(1)
n , which has the required

asymptotic form. Using the same type of differential approximant method outlined above,
we find that A/A(1) = 1.403 0218(5), which is entirely consistent with the estimate
A/A(1) = 1.403 030(15) obtained using the amplitude estimates from the direct fitting
procedure.

Next we compare these results for the pressure with the ones for Gaussian chains as
expressed in equation (4) in [6]. That expression is for polymers in a three-dimensional half-
space confined by a two-dimensional wall, and corresponds to finite values of the radius of
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Figure 4. Estimates for the leading amplitudes obtained by fitting to the asymptotic form (6) plotted
against 1/n while truncating the asymptotic expansion after 4 to 7 terms.

Table 4. Pressure at a distance r from the grafting point for SAWs and Gaussian chains.

r p(r)-SAWs p(r)-Gaussian

1 0.338 63 0.159 15
2 0.142 18 0.063 66
3 0.073 34 0.031 83
4 0.043 47 0.018 72
5 0.028 44 0.012 24

10 0.007 35 0.003 15

gyration. If the expression is generalized to the d-dimensional case and restricted to the limit
of infinite chains, where the radius of gyration diverges, the result is

pG(r) = PG(r)ad

kBT
= �(d/2)

πd/2

1

(r2 + 1)d/2
, (7)

where we recall that r is dimensionless, measured in units of the lattice constant a. In table 4,
we have listed the estimated pressures for SAWs and the pressures obtained for Gaussian
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Figure 5. (a) The pressure p(r) exerted by a polymer on a surface at a distance r from the grafting
point. Data for polymers are modeled as SAWs or Gaussian chains. The dashed line is a 1/r2 fit.
(b) Both data have the same 1/r2 scaling form, even for values close to r = 2. The dashed lines
are guidelines with slope equal to −2.

chains in d = 2, on the semi-infinite square lattice. In figure 5, we have plotted the pressure for
polymers modeled as SAWs and as Gaussian chains. In this figure, the dashed line represents
a decay in pressure with the same asymptotic form, ∝ 1/(r2 + 1), as the Gaussian chain but
normalized so the curve passes through the SAWs data point for r = 10. Quite clearly the
SAWs data are well represented by this form even for small distances r > 2. For r = 20, the
SAWs data were indistinguishable from zero pressure.

4. Final discussions and conclusion

Since our model is athermal and discrete, it is not really possible to compare our results with
those obtained for the Gaussian chain. However, as was already mentioned by Bickel et al
[7], the excluded volume interactions should not change the scaling form of the pressure.
Figure 5(b) clearly shows a 1/r2 decay of the pressure, even for small distances. According to
Bickel et al [7], this similarity is due to the fact that the pressure and the monomer concentration
in the vicinity of the wall are linearly related. On the other hand, it seems that the concentration
is not affected by the molecular details or by the differences between chain models. In our
case, despite the fact that ρ(r) and p(r) are related by a logarithmic relation, as shown in
expression (2), we have for r � 1 a small concentration leading to a linear relation between
those quantities. Actually, even for r ∼ 2, we can observe a linear dependence, as shown in
figure 6.

Since the grafted chain is in mechanical equilibrium, the force F applied to the walk at
the grafting point, which is in the negative x direction in figure 1, should be equal to the sum
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Figure 6. Relation between pressure and concentration of monomers near to the wall at a distance
r from the grafting point. For r > 1, a linear relationship is observed.

of the forces applied by the wall at other contact points, which are in the positive x direction.
Thus, the dimensionless force is given by

f = Fa

kBT
= 2

∞∑
r=1

p(r). (8)

For Gaussian chains, integrating equation (7), we find fG = 1. For SAWs, we may estimate
the force summing the results for r = 1, 2, . . . , 5 and obtaining the remaining contributions
(r = 6, 7, . . . ,∞) using the asymptotic result p(r) ≈ Ap/(r2 + 1), where Ap ≈ 0.742 35 was
estimated using the result of p(r) for r = 10. The result of this calculation is fSAW ≈ 1.533,
larger than the one for Gaussian chains. As mentioned above, it does not seem straightforward
to compare the two models, since a Gaussian chain is a mass-spring model and therefore it
is, unlike SAWs, not athermal. We may also mention that if p(r) for SAWs is extended to
real values of r using a numerical interpolation procedure and the data for Gaussian chains
are rescaled so the areas below both curves are the same, the difference between the curves
is quite small, the maximum being close to the origin and of order 10−3. Due to the limited
precision of the estimates for SAWs and to the expected small dependency of the results on
the interpolation procedure, we will not present these results here, but we found that in general
the rescaled results for the pressure of Gaussian chains are larger than the pressures for SAWs
at small values of r, but the inverse situation is found for larger distances. This net effect may
be understood if we recall that the pressure is a monotonically growing function of the local
density at the wall (equation (2)) and that the effect of the excluded volume interactions should
be a slower decay of this density with the distance from the grafting point, as compared to
approximations where this interaction is neglected.

It is of some interest to obtain the total force applied to the chain at the grafting point
for ideal chains, modeled by random walks on the semi-infinite square lattice. This force may
be calculated considering the shift of the grafting point by one lattice unit in the positive x
direction in figure 1. The change in free energy under this operation will be proportional to
the force. These calculations should lead to the same result of the ones above, where the force
was obtained summing over the pressures at all other sites of the wall besides the origin, since
the total force applied on the chain has to vanish.
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Let us start by briefly reviewing the calculation of the number of random walks on a
half-plane of the square lattice. If we call cn(�ρ) the number of n-step random walks on a
square lattice starting at the origin and ending at the point �ρ = xi + yj, the number of RWs on
the half-plane x � 0 may be calculated by placing an absorbing wall at x = −1, so that any
walk reaching the wall is annihilated. This may be accomplished by using an image walker,
starting at the reflection point of the origin with respect to the wall and ending at �ρ. We will
place the starting point of the random walk at (s, 0), where s = 0 corresponds to walks starting
at the origin. In this case, the image walker starting point will be at �ρ0 = −(s + 2)i, with
distances measured in units of the lattice constant a. The number of walks confined to the
x � 0 half plane is given by [23]

c(1)
n (�ρ, s) = cn(�ρ) − cn(�ρ + (2 + s)i). (9)

Since we are interested in the large n limit, we may use the Gaussian approximation for the
number of walks

cn(�ρ) = 4n

nπ
exp

(
−|�ρ|2

n

)
. (10)

For the half-plane, we obtain

c(1)
n (�ρ, s) = 4n

nπ

[
exp

(
−|�ρ|2

n

)
− exp

(
−|�ρ + (2 + s)i|2

n

)]
. (11)

To obtain the total number of walks, we integrate this expression over the final point �ρ

c(1)
n (s) =

∫ ∞

0
dx

∫ ∞

−∞
dy c(1)

n (�ρ, s). (12)

The result is

c(1)
n (s) = 4n

√
π

∫ (2+s)/
√

n

−s/
√

n
e−x2

dx, (13)

for n � s, we have the asymptotic behavior

c(1)
n (s) = 4n 2(s + 1)√

nπ
, (14)

which has the expected scaling form (4), with exponent γ = 1/2 and amplitude A =
2(s + 1)/

√
π . The change in free energy between the cases with s = 0 and s = 1 is therefore

given by −kBT ln 2, so that the force applied to the polymer by the wall at the grafting point
will be fRW = ln 2 ≈ 0.6931, which is lower than the forces obtained for Gaussian chains and
estimated for SAWs.

It should be mentioned that for SAWs the sum of the pressures corresponding to two
distances p(ri) + p(r j) is always smaller (for finite |ri − r j|) than −�F(ri, r j)/(kBT ), where
�F(ri, r j) is the change in free energy when both cells, at ri and r j are excluded. In other
words, an effective attractive interaction exists between the two excluded cells, so that the free
energy decreases as the cells approach each other. This effect is due to walks in the unrestricted
case which visit both excluded cells, and are therefore not counted in either c(1)

n (r1) or c(1)
n (r2).

The total force f ′
SAW, resulting from the simultaneous exclusion of all cells besides the one at

the grafting point r = 0, must thus be smaller than the force fSAW defined in equation (8). It is
easy to find, since the number of SAWs with n steps d(1)

n in this case is given by d(1)
n = 1+c(1)

n−1,
that for a given value of n the force at the grafting point will be f ′

n,SAW = − ln(d(1)
n /c(1)

n ). For
large n, we obtain f ′

SAW = ln μ ≈ 0.9701, smaller than fSAW = 1.533, as expected.
Finally, we should also stress that although the pressure applied by the SAWs and by

the Gaussian chains display a similar power-law behavior, other possible walks on the lattice
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might lead to different results. Recently, the pressure exerted by directed walks starting at the
origin on the limiting line of a semi-infinite square lattice was obtained [24]. In the limit of
large directed walks, the asymptotic decay of the pressure with the distance to the grafting
point also follows a power law, albeit with an exponent smaller than the one obtained here for
SAWs and Gaussian chains.
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