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We discuss the theory of ligand receptor reactions between two freely rotating colloids in close proximity to one
other. Such reactions, limited by rotational diffusion, arise in magnetic bead suspensions where the beads are driven
into close contact by an applied magnetic field as they align in chainlike structures. By a combination of reaction-
diffusion theory, numerical simulations, and heuristic arguments, we compute the time required for a reaction to occur
in a number of experimentally relevant situations. We find in all cases that the time required for a reaction to occur
is larger than the characteristic rotation time of the diffusion motionτrot. When the colloids carry one ligand only and
a numbern of receptors, we find that the reaction time is, in units ofτrot, a function simply ofn and of the relative
surfaceR occupied by one reaction patchR ) πrC

2/(4πr2), whererC is the ligand receptor capture radius andr is the
radius of the colloid.

1. Introduction

Ligand receptor pairs build lock-and-key complexes through
the formation of specific noncovalent bonds.1 They play a crucial
role in cell adhesion events that allow the communication,
proliferation, differentiation, and migration of cells.2 The
quantitative understanding and control of the molecular recogni-
tion mechanisms is an important scientific challenge, not only
in the fields of molecular and cell biology but also for
immunodiagnosis,3 a diagnosis of disease based on the detection
of antigen-antibody reactions in the blood serum.

Immunochemistry is often based on the precipitation of large
complexes made of antibodies and antigens.4 For instance, if an
antigen has two different epitopes binding to two antibodies A
and B, to reveal the presence of the antigen, one mixes the sample
to be tested with particles grafted with A and B. One usually
distinguishes between homogeneous and heterogeneous immu-
noassays. The homogeneous assay, an old, well-established
technique, is made by simultaneously mixing the three com-
ponents and by monitoring the formation of small clusters with
changes in the scattered light. It is currently the simplest and
most straightforward test, with several hundred different tests
being available for practitioners. In contrast to homogeneous
tests, heterogeneous assays comprise several steps of mixing
and rinsing; they achieve a much better sensitivity. The sensitivity
of homogeneous assays is generally limited by the poor control
of the composition of the physiological sample to test, which
may contain many adherent proteins. This brings about unwanted
nonspecific adhesion between colloids, the false positives, which

is usually prevented by coating the beads with a protective layer
that in turn reduces the specific adhesion to be detected, the false
negatives. A possible strategy for improving test sensitivity
consists of enhancing the specific adhesion rate by enforcing
some degree of local organization among colloids. For instance,
ultrasonic standing wave patterns have been used5for this purpose,
concentrating the colloids near the nodes, with a resulting 2
orders of magnitude increase in sensitivity.

Recently, Bibette et al. discovered that the combined use of
magnetic fields and specially designed magnetic colloids provided
unique control of the spatial arrangement of the particles.6 Under
a suitable applied magnetic field, the magnetic beads arrange
into linear chains with a finely controlled, adjustable relative
spacing. When the field is switched off, the beads reversibly
disperse if no binding has occurred. The speed of assembly and
disassembly is faster in many cases than the characteristic binding
rates of functionalized particles, thus offering an unmatched tool
to probe the adhesion kinetics with fast time resolution. Kinetic
studies from organized particles functionalized with streptavidin
and biotin are very promising. They allow one to test the kinetics
of biorecognition complex formation as a function of the relevant
physical parameters.

Experimentally, the reaction kinetics is better studied when
most colloids of the magnetic chain carry the receptors but only
a few colloids bear a single ligand. Under these conditions, the
formation of colloid aggregates larger than dimers is prevented,
and the time evolution of dimer formation can been monitored
by light diffusion techniques. The parameters associated with
the ligands and the receptors involved in the reaction can now
be well controlled, allowing for tuning the number or receptors
or ligands per colloid or the spacer length and rigidity. The
theoretical challenge that we thus face is to directly relate the
measured reaction rates and the molecular ligand receptor
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parameters. Related problems have been tackled by scientists
studying bioadhesion in general.7-10 Our contribution not only
clarifies some of the open questions related to the underlying
dimensionality of reaction diffusion problems dealing with
surface-bound ligands or receptors11 but also provides a
convenient framework for interpreting the role of rotational
diffusion in colloidal reaction kinetics. Theoretically, we adapt
to this geometry a formalism introduced for polymers by Doi12-14

and de Gennes15 and used by us in the context of specific
adhesion.16-19

In this article, we consider theoretically and numerically the
reaction kinetics of ligand-receptor binding between two adjacent
colloids in a chain. In the next section, we compute analytically
dimerization rates for the two limiting cases where one bead
carries a single ligand and the other bead is either fully covered
by receptors or carries only one receptor. We also provide
qualitative arguments for understanding the dependence of the
reaction time on the different relevant parameters. Section 3
presents numerical simulation results for the more general case
where one colloid carries an arbitrary number of receptors. The
last section discusses the experimental relevance of these results
and presents directions for future developments.

2. Specific Reactions between Rotating Colloids

We consider two neighboring colloidal beads of identical radius
r that are kept close to one another. Each of the beads is free to
undergo rotational Brownian motion as displayed in Figure 1
with the usual rotational diffusion coefficientDr ) τrot

-1 ) kBT/
(8πηr3) that has inverse dimensions of time, wherekB is the
Boltzmann constant,T is the absolute temperature, andη is the
solvent viscosity.

2.1. Reaction between One Colloid Carrying a Single
Ligand and One Colloid Saturated with Receptors.In this
section, we tackle the simplest reaction geometry where one
bead, say bead number one on the left of Figure 2, carries one
ligand and bead number two is saturated with the complementary
receptors. The only relevant variable is thus the orientation of

bead number one, which can be described with respect to the
axis connecting the centers of the colloids by the usual two
angular variables (θ, φ). We assume axisymmetric reactions for
which the reaction geometry is independent of the angle,φ. A
reaction is assumed to occur provided thatθ is smaller than the
capture angle,θC. This angle also defines the so-called capture
patch with radiusrC ) x2r(1 - cosθC)1/2.

We consider the probability distributionΨ(θ, φ; t) describing
the orientation of bead number one at timet and in particular
the projected probability for axisymmetric systemsψ(θ, t) ) ∫0

2π

dφ Ψ(θ, φ; t). In the absence of reactions, the equilibrium
probability distribution is independent of the angular position of
the bead and reads simplyψeq(θ, t) ) 1/2. All quantitiesf(θ) are
normalized such that∫0

π sin θ dθ f(θ) ) 1. In the presence of
reactions, the probability distributionψ(θ, t) obeys a diffusion
reaction equation of the form

with ∇θ
2 being theθ component of the angular Laplace operator

andQ(θ) being a reaction operator given by the sink function
Q(θ) ) q if θ e θC andQ(θ) ) 0 otherwise. In the limit of very
fast local reactionsθ f ∞, the reaction operator on the right-
hand side of eq 1 can be replaced by the boundary conditionψ(θ,
t) ) 0 forθ e θC. For convenience and without a loss of generality,
Dr is set equal to unity in the following text.

Under most relevant experimental conditions, the reaction
kinetics is probed by some measure of the survival probability,
φ(t) (i.e., the fraction of particles that have not reacted at time
t after the particles have been brought into intimate contact with
each other,φ(t) ) ∫0

π sin θ dθ ψ(θ, t)). Because the forces that
bring the particles together do not bias their orientation, eq 1
obeys the initial conditionψ(θ, t ) 0) ) ψeq ) 1/2.

The solution of the reaction diffusion equation (eq 1) with the
prescribed boundary and initial conditions can be written as

whereψ(θ, s) ) ∫0
∞ dt ψ(θ, t) exp{-st} is the Laplace transform

of the probability distribution,ν(s)(ν(s) + 1) ) -s, andPν is
the Legendre function of the first kind.20Equation 2 holds outside
the reaction wellθC e θ e π. We show in Figure 3 the time
evolution of the probability distribution,ψ(θ, t), obtained from
the numerical inverse Laplace transformation of eq 2 by the
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Figure 1. Illustration of the rotational diffusion trajectory of the
biotin position over the angle configuration space.

Figure 2. Two colloids facing each other. The left colloid carries
one ligand, and the right colloid is fully covered by receptors. A
reaction occurs within the reaction coneθ e θC, which corresponds
visually to physical contact between the right colloid and the shaded
angular section on the left colloid.

∂ψ(θ, t)
∂t

- Dr∇θ
2ψ(θ, t) ) -Q(θ) ψ(θ, t) (1)

ψ(θ, s) ) 1
2s(1 -

Pν(s)(-cosθ)

Pν(s)(-cosθC)) (2)
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Stenhfest method.21 We also give in Appendix A an equivalent
eigenmode expansion for the time evolution of the probability
distribution.

The reaction starts by instantaneously collecting all particles
within the capture radius, consistent with the assumed limit of
very fast local reactions,qf ∞. The particles outside the capture
radius follow free rotational diffusion until they hit the reaction
well. The trajectories of these particles started outside the capture
radius and diffused into the well region. Such trajectories last
a characteristic timeτrot, but a fraction of the particles miss the
reaction zone. That fraction increases as the capture radius
decreases, implying that the longest decay timeτlong of the
probability distribution is larger thanτrot. This can be computed
from the smallest pole of eq 2 by solvingPν(-1/τlong)(-cosθC) )
0 in units ofτrot. The numerical result is displayed in Figure 4
as a function of the capture angle,θC. In the relevant limit of
small capture radiusrC , r, the inset of Figure 4 shows also that
the longest relaxation timeτlong can be well approximated by

whereR ) (1 - cosθC)/2 ) πrC
2/(4πr2) is the relative capture

surface. The approximationτapprholds to less than 16% deviation

up to θC ) π/4 (R ) 0.15). For even smaller angles, one can
simply writeτappr ) τrot ln Re with ln e) 1, which is accurate
to better than 16% up toθC ) π/8 (R ) 0.04).

The Laplace transform of the survival probabilityφ(s) ) ∫θC

π

sin θ dθ ψ(θ, s) can now be computed from eq 2

wherePν
-1 is the associated Legendre function of indicesν and

-1. Note that the survival probabilityφ(s) and the distribution
function ψ(θ, s) have the same pole and their inverse Laplace
transformsφ(t) and ψ(θ, t) both asymptotically display an
exponential decay of∼exp(-t/τlong), with the same decay time
τlong. Figure 5 shows the time evolution ofφ(t) obtained by a
numerical inverse Laplace transform. As the Figure shows, an
exponential function well describes the time evolution of the
survival probability, except at very short times. Appendix A
discusses the value of the amplitude associated with the
exponential decay. In practice, experiments that cannot resolve
very short time scalest , τlong will not detect any differences
from exponential behavior, and the reaction will appear to be a
first-order reaction.

When the full time evolution of the reaction kinetics is not
experimentally available, it might still be possible to access some
moment of the survival probability,φ(t). The simplest quantity
that is usually available is the average decay time

in units ofτrot. Note that this is a less universal quantity than the
longest decay timeτlong because it depends on the initial state
of the system. However, in the relevant limit where the capture
surface is small,R , 1, the two quantities coincide,〈τ〉 = τlong.

2.2. Reaction between One Colloid Carrying a Single
Ligand and Two Neighboring Colloids Saturated with
Receptors.In magnetic bead experiments, each colloid has two
neighbors, which reduces the time needed for a reaction to occur.
The probability distribution obeys a rotational diffusion equation
similar to eq 1 but with different boundary conditionsψ(θ, t) )
0 for 0 e θ e θC andπ g θ g π - θC (Figure 6). In this case,
the solution can be written as

A procedure parallel to that of the previous section gives the(21) Mallet, A. Numerical InVersion, Mathematica Package, 2000.

Figure 3. Evolution of the probability distributionψ(θ, t) before
and after the reaction has started. Times are given in units ofτrot )
Dr

-1. The extent of the reaction well is given here byθC ) 0.3 or
a relative capture surfaceR ) πrC

2/(4πr2) ) (1 - cos 0.3)/2)
0.022. In the 3D representation, the gray level of the spheres surface
is proportional toψ(θ, t).

Figure 4. Longest relaxation timeτlong (-) of the probability
distributionψ(θ, t) as a function of the capture angleθC and the
approximated valueτappr (---) given in the text. The relative value
τlong/τappr is given in the inset.

Figure 5. Survival probabilityφ(t) for θC ) 0.3 orR ) 0.022. In
this case,τlong ) 3.13τrot. The plot and the inset show that an
exponential decay function well describesφ(t) for most of the time
domain. The amplitude of the exponential function is computed
from the eigenvalue method presented in Appendix A.

1
τlong

=
1

τappr
) - 1

τrot

1
ln R(1 - 1

ln R) (3)

φ(s) ) 1
s(1 + cosθC

2
-

sin θC

2Pν(s)(-cosθC)
Pν(s)

-1 (-cosθC)) (4)

〈τ〉 ) ∫0
∞

φ(t) dt ) lim
sf0

φ(s) ) -ln(Re) + R (5)

ψ(θ, s) ) 1
2s(1 -

Pν(s)(-cosθ) + Pν(s)(cosθ)

Pν(s)(-cosθC) + Pν(s)(cosθC)) (6)
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main relevant physical quantities. The evolution of the probability
distribution is presented in Figure 7. The presence of the two
reaction sinks around the two poles leads to a faster evolution
of the probability distribution, as can be seen by directly
comparing Figures 7 and 3.

The longest relaxation timeτlong is now given by the smallest
pole of eq 6, and it can be computed by solvingPν(-1/τlong)(-cos
θC) + Pν(-1/τlong)(cosθC) ) 0. Figure 8 shows the dependence of
τlong on the reaction angleθC and how it compares to the small-
angle approximation

Note that the relaxation time for this configuration with two
sinks is, in the limit of a small capture radius, close to half of
the longest relaxation time of the configuration with a single
sink. Figure 9 compares the values of the two relaxation times
as a function of the capture angle. As expected, there is almost
a factor of 2 between the two relaxation times in the limit of a
small capture radius, indicating a negligible correlation between
the reaction events at both poles. Note however that the
convergence is slow (∼1/ln R).

One also expects in this case an almost pure exponential
relaxation of the survival probabilityφ(t). Appendix B presents
an eigenmode expansion of both the probability distributionψ-
(θ, t) and the survival probabilityφ(t); it also provides the values
of the amplitudes of the relaxation modes. For comparison, the
value of the amplitude for the case ofθC ) 0.3 is 0.339, to be
compared with the value of 0.897 shown in Figure 5 for one sink.
However,mostof the relevant situationscorrespond tovanishingly
small capture angles, and the amplitudes of cases with one or
two sinks can be taken as unity, with the main difference between
the expected decays residing in the relaxation times. It can also
be shown in this case that the average reaction time is given by

2.3. Reaction between One Colloid Carrying a Single
Ligand and One Colloid Carrying a Single Receptor.We
consider in this section a reaction configuration at the opposite
limit in the range of surface coverage: as before, bead number
one carries one ligand, but bead number two carries only one
complementary receptor (Figure 10). The reaction geometry now
has a larger intrinsic dimension, and the orientation of both beads
needs to be specified here. We choose the two sets of angular
variables (θ1, φ1) and (θ2, φ2) measured with respect to the axis
connecting the centers of the two spherical particles. We further
assume axisymmetric reactions for which the reaction geometry
is independent of anglesφ1 andφ2. A reaction is assumed to
occur provided thatθ1 is smaller than capture angleθC andθ2

is smaller than capture angleθS. Recall that these angles also
define capture patch radiirC ) x2r(1 - cos θC)1/2 and rS )
x2r(1 - cosθS)1/2.

We consider probability distributionsΨ1(θ1, φ1; t) and
Ψ2(θ2, φ2; t) describing the orientation of the beads at timet
and, in particular, projected probabilities for axiosymmetric
systemsψ1(θ1, t) ) ∫0

2π dφ1Ψ1(θ1, φ1; t) and ψ2(θ2, t) )

Figure 6. Three colloids facing each other. The middle colloid
carries one ligand, and the right and left colloids are fully covered
with receptors. A reaction occurs within the reaction cone 0e θ e
θC andπ g θ g π - θC, which corresponds visually to physical
contact between the right or left colloid and the shaded angular
section on the middle colloid.

Figure 7. Evolution of probability distributionψ(θ, t) before and
after the reaction has started. Times are given in units ofDr

-1. There
are two reaction wells at 0e θ e θC ) 0.3 andπ g θ g θC ) π
- 0.3 with a total relative capture surface ofR ) 2πrC

2/(4πr2) )
2(1 - cos 0.3)/2) 0.044.

Figure 8. Longest relaxation timeτlong (-) as a function of capture
angleθC and approximated valueτappr (---) given in the text. The
relative valueτlong/τappr is given in the inset.

Figure 9. Ratio of the two longest relaxation times for the
configurations with one sink and two sinks. Relaxation timeτlong

2sinks

of the configuration with two sinks is in the limit of very small
capture angles close to half ofτlong

1sink, the relaxation time with one
sink. Note, however, the slow (1/lnR) convergence.

Figure 10. Two colloids within the reaction range. The left colloid,
colloid 1, carries one ligand, and the right colloid, colloid 2, bears
one receptor. A reaction occurs within the reaction cone of 0e θ1
e θC and 0e θ2 e θS.

1
τlong

=
1

τappr
) - 1

τrot

2
ln[R(1 - R)](1 - 2

ln[R(1 - R)]) (7)

〈τ〉 ) - 1
2

ln
R

1 - R
+ 2R - 1 (8)
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∫0
2π dφ2Ψ(θ2, φ2; t). In the absence of reactions, the equilibrium

probability distributions are independent of the angular positions
of the beads and read simplyψ1

eq(θ1) ) ψ2
eq(θ2) ) 1/2. In the

presence of the reaction between the two beads, joint probability
ψ(θ1, θ2; t) obeys the reaction diffusion equation

with reaction functionQ(θ1, θ2) ) q if (0 e θ1 e θC and 0e
θ2 e θS) andQ ) 0 otherwise. When the initial distribution is
the equilibrium distribution,ψeq(θ1,θ2) ) ψ1

eq(θ1) ψ2
eq(θ2) ) 1/4,

the solution of the above reaction diffusion equation can be
formally written as

with G0(θ1, θ1′; t) being the single-particle propagators of the
free diffusion case, as discussed in Appendix C. This formal
solution simply states that the probability distribution at timet
is the equilibrium distribution depleted from all of those
trajectories that have visited the reaction well at any previous
time t′. The bare propagatorsG0 in eq 10 are smooth functions
that are independent of the reaction sink positions, unlike the
probability distributionψ that has a much lower value (vanishingly
small whenq f ∞) inside the sink and strong gradients nearby
when the reaction cones are small,θC , 1 andθS , 1. In the
first approximation,θ′1 andθ′2 can then be set equal to zero in
the expression forG0. The Laplace transform of the survival
probabilityφ(s) ) ∫0

π sin θ′1 dθ′1 ∫0
π sin θ′2 dθ′2 ψ(θ′1, θ′2; s) can

be computed from eq 10, leading to

whereh(s) is the Laplace transform of relaxation functionh(t).
In the limit of instantaneous reaction (q f ∞), the relaxation
function is given by

The longest relaxation time of the survival probability,τ, is given
by the smallest pole in eq 11, which is the smallest solution of
1 + sh(s) ) 0. The existence of such a pole also shows that the
survival probability has a long-time exponential decay,φ(t) ≈
exp{-t/τlong}, that can be effectively interpreted in this limit as
resulting from first-order kinetics. Here it is more convenient to
calculate the average relaxation time〈τ〉 ) ∫0

∞ dt h(t) for an
initially homogeneous distributionψ(θ1,θ2; t ) 0)) 1/4. Because
we are interested in the limit of small reaction patches, we can
approximate the full angle-dependent propagator by its projection
in a flat 2D plane asG2d(θ, 0; t) ) 1/(4πDrt) exp{-2(1 - cos
θ)/(4Drt)}. In this limit, one can analytically perform the
integrations over the reaction cones to obtain

The value of the average time〈τ〉 is insensitive to a permutation
betweenrS andrC as required by the symmetry of the problem.
The situation whererC ) rS is of particular interest. In this
symmetric limit, the average reaction time reduces to the simple
expression

The reaction time in this configuration increases in inverse
proportion to the relative capture surfaceR ) πrC

2/(4πr2), which
is a much stronger dependence than the logarithmic variation
obtained when one of the beads is fully covered with receptors.

2.4. Beyond Numbers: Qualitative Arguments to Under-
stand the main Contributions to the Reaction Times.In the
previous sections, we derived expressions for mean reaction time
〈τ〉 and for asymptotic decay timeτlong in a variety of situations.
The goal of this paragraph is to revisit our results from a more
qualitative point of view in order to distinguish the general features
of the reaction diffusion behavior, such as those associated with
intrinsic dimensionality or the number of degrees of freedom of
the configurational space, from the specific features associated,
for instance, with the spherical geometry or with the details of
the precise distribution of ligands and receptors on the colloidal
surface.

We found that the asymptotic behavior of our expressions for
〈τ〉 orτlongresults from simple geometrical considerations, among
which the dimensiond of the configuration space plays a
prominent role. The case of a spherical bead bearing a single
ligand and surrounded by one or two beads saturated with
receptors belongs to thed ) 2 situation, known as marginal and
characterized by an extra logarithmic dependence on the size of
the system. The case of a bead bearing a single ligand and
surrounded by one or more beads bearing only a few receptors
has an intrinsic dimension,d ) 4; here also scaling trends are
derived from the geometrical features of the Brownian exploration
in configurational space. In contrast, the curvature of the
configuration space plays a lesser role.

As far as the importance of the distribution and numbern of
capture patches around the beads is concerned, further arguments
for understanding our results come from the analogy that can be
drawn between the classical electrostatics on the one hand and
the reaction diffusion dynamics of particles evolving in a flat
Euclidean space on the other hand. These are the geometric
arguments and electrostatic analogies that we discuss below.

2.4.1. Geometric Arguments.Let us first consider a particle
that explores a sphere of radiusr, trying to find a patch of radius
rC, which is small compared withr. We adopt a coarse-grained
description of the Brownian trajectory, mapping it onto a random
walk, with an elementary time stepτpatchand a finite numberN
of different accessible positions. The coarse-grained time step
scales naturally asτpatch) rC

2/(2Dt), withDt being the translational
diffusion coefficient of the reference point along the surface of
a sphere where both quantities are dimensionally related byDt

) Drr2. The number of sitesN is given by the minimal number
of patches necessary to cover the whole sphere:N ) 4πr2/πrC

2.
Note thatN ) R-1, with R being the ratio of the capture area
to the total area. A classical result for bidimensional random
walks22,23states that the actual numberN* of different sites visited
by a walker after a time intervalt is given by

(22) Montroll, E. W.; West, B. J. InFluctuation Phenomena; Studies in
Statistical Mechanics; Lebowitz, J. L., Montroll, E., Eds.; North-Holland:
Amsterdam, 1979; Vol. 7.

(23) Bouchaud, J. P.; Georges, A.Phys. Rep.1990, 195, 127-293, 321.

∂ψ(θ1, θ2; t)

∂t
- ∇θ1

2 ψ(θ1, θ2; t) - ∇θ2

2 ψ(θ1, θ2; t) )

-Q(θ1, θ2) ψ(θ1, θ2; t) (9)

ψ(θ1, θ2; t) ) 1
4

- q∫0

t
dt′ ∫0

θC sin θ′1 dθ′1 ∫0

θS sin θ′2 dθ′2 ψ

(θ′1, θ′2; t′) G0(θ1, θ′1; t - t′) G0(θ2, θ′2; t - t′) (10)

φ(s) )
h(s)

1 + sh(s)
(11)

h(t) )
∫0

θC sin θ dθ G0(θ, 0; t) ∫0

θS sin θ dθ G0(θ, 0; t)

∫0

θC sin θ dθ ψeq∫0

θS sin θ dθ ψeq
- 1

(12)

〈τ〉 ) τrot
4r2

rCrS
[(rC

rS
+

rS

rC
) ln(rC

rS
+

rS

rC
) + (rS

rC
-

rC

rS
) ln(rC

rS
)]

(13)

〈τ〉 ) τrot(8 ln 2)
r2

rC
2

) τrot
2 ln 2

R
(14)
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Hence, the typical timeτtyp needed by a walker starting from a
random position to find a particular patch (the capture zoneR)
amongNavailable positions obeysN*(τtyp) = N. Solving forτtyp

leads to

When adapting the above expression to the case of a spherical
bead for whichN ) R-1, we finally get

in agreement with our result eq 3.
By contrast, this logarithmic correction is absent in any

dimension equal to or larger thand ) 3, whereN* simply scales
as cdt/τpatch,22,23 with the constantcd depending on both the
dimension and the connectivity of the network that supports the
walk, which we arbitrarily set equal to 1. In thed ) 4 situation
characterizing our two beads with a single ligand-receptor pair,
in the symmetric situationrC ) rS we find that

and a repetition of the previous argument withN* ) t/τpatchgives

Introducing the total volume of the configuration spaceνconf and
of the capture patchνpatch, this geometrical argument gives, in
any dimensiond equal or larger than 3,τtyp ) τpatchνconf/νpatch.
In the case of two spherical beads,τrot ) 4τpatchr2/rC

2, and the
relation becomes

in agreement with eq 14 up to the numerical value of the prefactor
that is not predicted by this approach.

2.4.2. Electrostatic Analogy.Various electrostatic analogies
can be drawn with reaction diffusion problems. The key to a
useful analogy is to recognize a Poisson equation in the reaction
diffusion process and to consider a flat Euclidean configuration
space that greatly simplifies the technical difficulty of the problem.
Our previous geometrical arguments show that neglecting
curvature still allows one to capture the correct leading behavior
of the reaction time.

To start with, it is possible to propose an electrostatic analogy
for the transient diffusion dynamics of an initial distribution of
particle positions; these particles are subsequently absorbed at
the boundary (noted∂R) of the capture zone. In the presence of
many capture zonesRi and starting from a single particle located
anywhere outside them, the resolution of the associated elec-
trostatic problem gives the probabilitypi that the particle
eventually ends its life captured at boundary∂Ri of patchRi.
These techniques are known, in the theory of probability, as
potential theory.

Conversely, the connection between the electrostatic capaci-
tances of a set of perfect conductors in vacuum and the related

reaction-diffusion problem can be used to compute the
electrostatic capacitances of arbitrarily shaped conductors from
stochastic numerical simulations.24Inspired by such connections,
we present here an electrostatic analogy for a stationary reaction-
diffusion process, which, as we shall see, provides useful
predictions for the behavior of a diffusive particle in the presence
of many capture zones.

We start with a single small capture diskR of radiusrC located
at the center of a larger 2D flat disk of radiusa and we name
G the vector position of a point, withF ) ||G|| being the distance
to the center. We suppose that our concentration fieldψ(G) does
not show any explicit time dependence. This situation arises
when particles are injected at the periphery such as to exactly
replace the ones that disappear when hitting the reaction zone.
One has to solve the electrostatic problem

along with the boundary conditionψ(||G|| ) rC) ) 0 with solution

Here,V(G) ) Dtψ(G) plays the role of potentialV(G), and charge
Q is nothing but therate of particles falling into the reaction
zone per unit of time (decay rate). We then compute the total
numberN of particles present in the system:

Mean lifetimeτ of a particle is given by the ratio between decay
rateQ and total populationN:

Ratioa2/2Dt is the time necessary to diffuse over a length equal
to the linear size of the system. Introducingτrot ) a2/(4Dt) and
surface ratioR ) πrC

2/πa2, we get

Equation 5 is recovered when setting radiusaequal to 2r (diameter
of the bead), and we find in the limitR f 0 thatτ-1 ) -τrot

-1

ln(R)-1[1 - ln(R)-1] + O(ln(R)-2), similar to eq 3.
At higher dimensiond, Coulomb potentialVcreated by (hyper)-

spherical chargeQ at a distanceF ) ||G|| from the origin and
vanishing atF ) rC is

whereσd is the (hyper)surface of a unit sphere. Repeating the
above argument, we find that total populationN, between the
reaction patch of radiusrC and an outer boundary of radiusa,
scales as

(24) Zhou, H. X.; Szabo, A.; Douglas, J. F.; Hubbard, J. B.J. Chem. Phys.
1994, 100, 3821-3826.

N* (t) =
t

τpatch
× 1

ln( t
τpatch

)
(15)

τtyp ) τpatchN ln(N) +... = τpatch
4r2

rC
2

ln(4r2

rC
2) (16)

τtyp ) -τrot ln(R) (17)

N ) (4πr2

πrC
2)2

) 1

R2
(18)

τtyp ) τpatch
16r4

rC
4

)
τpatch

R2
(19)

τtyp )
τrot

R
(20)

∆[Dtψ(G)] ) 0 (21)

Dtψ(G) ) Q
2π

ln( F
rC

) (22)

N ) 2π∫rC

a
G dG ψ(G) ) Q

2Dt[a2 ln( a

rC xe) +
rC

2

2 ] (23)

τ ) N
Q

and
2Dtτ

a2
) ln( a

rC
) - 1

2
+

rC
2

2a2
(24)

τ ) τrot(ln( a2

rC
2) - 1 + R) ) -τrot(ln(Re) - R) (25)

V(G) ) Dtψ(G) ) Q
(d - 2)σd[ 1

rC
d - 2

- 1

Gd - 2] (26)
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Clearly, in the limit rC , a, only the first term contributes.
Lifetime τ follows:

Again introducingτrot ) a2/(4Dt), the lifetime arising from the
electrostatic analogy is

If d ) 4 andR ) rC
2/a2, then the lifetime becomes

in agreement with eq 14, except for the prefactor.
2.4.3. Electrostatics Analogy for Many Reaction Sites.The

electrostatic analogy helps us to understand the competition
resulting from the presence of many identical reaction zones in
the configuration space. The analogy shows that then reaction
zones behave as independent patches when their size decreases,
leading to a linear dependence in the numbern of the reaction
rateτn

-1 ) nτ1
-1 + ..., which becomes asymptotically exact in the

limit of a vanishing patch sizerC f 0.
The electrostatic analogy predicts the following behavior for

the reaction time

with some logarithmic corrections in two dimensions and where
τa ) τrotad - 2/rC

d - 2. In this expression, the first term represents
the leading behavior, the second term is a geometric subleading
correction independent of the patch size, the third term is a
“universal’’ geometric subleading term with a quadratic depen-
dencerC

2, and the fourth term is a subleading correction related
to the mutual influence of the reaction sites (mutual polarization
of the conductors). These numbersâ1, â2, andâ3 are constant
once sizea and positions of the patchesRi are fixed. The fourth
term also encompasses thed ) 1 case, where the presence of
a capture patch is dramatic, whatever its size. It competes with
the third term ford) 2 and can be neglected at higher dimensions.

The corresponding expansion for the reaction rate is

and strong deviations from linearity are expected as soon as ratio
nτrot/τa is on the order of unity. We defer the derivation of these
results to Appendix D.

For a collection ofn patches located in a (hyper)spherical
volume of radiusa and dimensiond g 3 and in the limitrC f

0, τa ) τrotad - 2/rC
d - 2, clearly dominates the other terms in

expression 31, promoting1/n behavior. A numerical illustration
of the linearity ofτn

-1 with n in the particular case ofd ) 4 is
provided in the next section.

The calculation in two dimensions is slightly more cumbersome
but also leads to a behaviorτn ) τa/n + â1τrot + (â2 + â3)τpatch,
with τa ) 2τrot ln(a/rC) Now, the domination ofτa/n overâ1τrot

is only logarithmic, and a deviation from the linear behavior of
τn

-1 with n is expected in all realistic cases, as implied by the
exact result of eq 7 and shown in Figure 9.

As a conclusion, these qualitative arguments give the right
scaling behavior of the mean reaction time but fail to predict
prefactors such as 2 ln 2 in eq 14. They also predict the linearity
of the inverse reaction time in the number of patches as well as
the slow convergence to this linear regime in the case studied
in section 2.2, corresponding ton) 2. The qualitative arguments
do not account for the more complicated result in eq 13. We
finally note that the rigorous approach of section 2, where the
initial concentration of particles is fixed, leads naturally to the
determination of the inverse reaction time (decay rate)τ-1,
whereas the qualitative electrostatic analogy, with a fixed reaction
rateQ, rather gives reaction timeτ.

3. Numerical Simulation of Reactions between
Rotating Colloids

In this section, we numerically simulate the reaction-diffusion
process that eventually leads two rotating colloids to bind. We
will consider several different geometries similar to those
described analytically in section 2. We assume as before that the
two colloids are always kept close to each other as shown in
Figure 2, which implies that the reactions are governed only by
the rotational Brownian dynamics of the beads that we now
describe.

The orientation of each colloid is characterized by a unit vector
ẑ that is a function of two angle parametersẑ≡ (θ, φ) of the unit
sphere,ẑ ≡ (sin θ cos φ, sin θ sin φ, cos θ). The rotational
Brownian dynamics of the colloids can be materialized by the
random walk performed byẑ in its configurational space. One
random step is defined by an infinitesimal rotation around the
current orientation, and it is performed by adding a small fixed
valueδθ to angleθ and choosing a random value of angleφ:
0 e φ e 2π. Figure 1 shows one realization of the random walk
performed byẑ on the unit sphere. The connection between the
number of moving steps performed and the physical timet is
provided by the rotational diffusion coefficientDr ) 〈θ(t)2〉/4t.
We measureDr for one colloid and several values of angular
stepsδθ. Correlation functionf(p) ) 〈ẑ(q + p)‚ẑ(q)〉 is sampled
every 1000 steps for a total duration of 106 random steps. By
fitting the correlation functionf(p) with the expected shape
exp(-2Drp), we obtainDr for the given step size. The measured
values ofDr are shown in Table 1, and they obeyDr ) 0.25(δθ)2.
Below, we choose random step sizeδθ ) 0.01 that optimizes
the rapidity of the simulations and the compactness of angular
space exploration so that our simulations do not miss any of the
possible reactions.

3.1. Reaction between One Colloid Carrying a Single
Ligand and One or Two Colloids Saturated with Receptors.
We first consider the case where one colloid carries a single
ligand and the second colloid is fully saturated with receptors.
In this limit, we perform only a simulation on the orientation of
the colloid bearing the ligand. As explained before, a reaction
occurs if the orientation vector is anywhere within the reaction
patch defined by angleθC. The reaction time is proportional to
the number of stepspr required to bring the orientation vector

N ) ∫rC

a
dGσdG

d - 1ψ(G) )

Q
Dtd(d - 2)[ ad

rC
d - 2

+ rC
2(d2 - 1) - d

2
a2] (27)

2Dtτ ) 2
d(d - 2)

ad

rC
d - 2

(28)

τ ) τrot
4

d(d - 2)
ad - 2

rC
d - 2

(29)

τ )
τrot

2R
(30)

τn )
τa

n
+ â1τrot + â2τpatch+ â3τpatch( a

rC
)2d - 2

(31)

1
τn

) n
τa(1 - [â1

nτrot

τa
+ â2

nτpatch

τa
+ â3

nτpatch

τa

a2d - 2

rC
2d - 2]) (32)

Table 1. Measured Values ofDr for Different Random Step
Sizesδθ

δθ 0.002 0.005 0.01 0.02 0.05
Dr 1.0× 10-6 0.65× 10-5 2.5× 10-5 1.0× 10-4 0.65× 10-3
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into the reaction patch,θ < θC. Its value will depend both on
starting orientationẑ(p ) 0) and on the particular random walk
realization. Our simulations compute dimensionless average
reaction times of〈τ〉 ) 〈prDr〉 measured over 1000 different sets
of initial random positions and different random walks. If the
initial random orientation falls within the reaction patch, then
the colloid reacts immediately, consistent with the assumptions
in section 2.1. In particular, the dependence of the average reaction
time on the patch size is expected under these conditions to
follow eq 5.

We compute in a similar manner average reaction times for
the situation where the colloid bearing the ligand is in a chain
and can thus react with either of the two nearest neighbors in
the chain. From the point of view of our simulation, we allow
reactions to occur within reaction patches of angleθC located
at both poles. In this configuration, the average reaction time is
expected to follow eq 8 in section 2.2.

We plot in Figure 11 the average reaction time in units ofDr

for simulations performed withDr ) 2.5 × 10-5 as a function
of capture angleθC. The theoretical predictions (eqs 5 and 8) are
shown as solid lines, and the symbols represent computed values
from the numerical simulations. Symbols and lines show almost
perfect agreement. As explained in section 2.2 and shown in
Figure 9 for the longest relaxation time, the reaction between
one colloid carrying one ligand and two saturated neighboring
colloids is in practice 2 times faster that the reaction between
a colloid with one ligand and one saturated colloid. The
logarithmic corrections to the factor of 2 are due to the weak
persisting correlations between events at opposite poles.

3.2. Reaction between One Colloid Carrying a Single
Ligand and One Colloid Carrying More Than One Receptor.
We consider in this section the reactions between two colloids,
one colloid carrying a single ligand, and a second colloid bearing
n receptors. Then receptors are randomly distributed over the
surface of the colloid, with excluded volume radiusa) RθS, and
the relative positions of the receptors are quenched.

We have argued in section 2.4 that the average reaction time
for a reaction between one ligand andn receptors should scale
asn-1 for systems where the average distance between reaction
patches remains larger than the size of the patch (i.e., for colloids
with a receptor surface coverage well below saturation). We plot
in Figure 12 dimensionless reaction rate〈τ〉-1 as we increase the
number of receptorsnwith fixed reaction cone sizeθS. Each data
point is an average over 500 different initial conditions for the
ligand and receptors distributions. Because we expect that the
reaction rate is in the linear regime a function only of the total

coverage rate, the data is plotted against the combinationn(1 -
cosθC)/2 ) nR that measures the relative surface covered byn
patches.

As the Figure shows for two different reaction cone sizesθS

) 0.03 and 0.06, the reaction rate increases linearly withn and
then crosses over to a saturating regime. The inset in the Figure
shows that in the linear regime the two data sets collapse onto
a single line of predicted slope 1/(2 ln 2)≈ 0.7 (eq 14). As the
number of receptors increases, the reaction rates appear to
approach the saturation values displayed in Figure 11 and
predicted from eq 5. The simulation results indicate that the
asymptotic limit is better reached by the smallest patches. Note,
however, that the saturated case computed in section 2.1 is slightly
different from the high-coverage limit in our simulations as a
result of the unavoidable presence of nonreacting interstitial zones
between the different reaction patches.

3.3. Asymmetric Reactions.When one considers reactions
between ligands and receptors of arbitrary size, it might be
convenient to allow for the flexibility of having different capture
radii rC for the ligand andrSfor the receptor that occupy different
relative fractionsRC andRS of the total colloid surface. We have
shown in section 2.3 that the dimensionless average time〈τ〉 in
this case is expected to vary as〈τ〉 ) (RCRS)-1/2g(x) with x )
(RC/RS)1/2 andg(x) being the functiong(x) ) (x + x-1) ln(x +
x-1) - (x - x-1)ln x.

We plot in Figure 13 results for the reaction rate of asymmetric
patch sizes. We consider two complementary cases, the first
with θC ) 0.03 andθS ) 0.06 and the second withθC ) 0.06
andθS ) 0.03. Becauseg(x) is invariant under the inversion of
its argumentg(x) ) g(x-1), the initial slopes of the rate curves
should be the same if plotted as a function ofn(RCRS)-1/2. The
Figure shows that this is indeed the case, and the obtained slope
agrees well with the analytical predictions.

Figure 11. Average reaction time for a colloid carrying a ligand
that reacts (i) with one colloid (]) saturated with receptors as
described in section 2.1 and (ii) with the two nearest neighbors in
a chain of colloids (O), both saturated with receptors, as described
in section 2.2. The solid lines are given, respectively, by eqs 5 and
8.

Figure 12. Reaction rate〈τ〉-1 as a function of total receptor surface
coveragenR for two different values of patch anglesθC andθS: (i)
(O) θC ) θS) 0.03 and (ii) ([) θC ) θS) 0.06. The saturated values
displayed in Figure 11 and predicted from eq 5 are represented by
(O) a dashed line and ([) a dotted-dashed line.

Figure 13. Reaction rate as a function of surface coverage of the
streptavidins’ asymmetric size of the reaction patch.O indicates
0.03 for biotin size and 0.06 for streptavidin, and] is reversed
biotin/streptavidin patch size.
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4. Conclusions

Recent progress6,25 in the kinetic control of specific reactions
between colloids carrying ligands and receptors calls for a rigorous
theoretical description of the reaction diffusion mechanisms
involved. The new techniques allow for the extraction of the
actual time evolution of the reaction survival probability from
experiments involving colloids bearing binding pairs with a
tailored molecular architecture. The challenge is thus to develop
a theoretical framework that is useful in connecting the observed
reaction rates to the molecular characteristics of the biorecognition
molecules. In this article, we considered reactions between two
freely rotating colloids kept close to each other. This is the simplest
model situation arising when magnetic beads are driven to form
long chains by applied magnetic fields. For the bead size of
interest in the experiments, the magnetic force constrains the
average position of the bead centers but does not act on the
rotational component of the Brownian motion.

Experimentally, all of the colloids carry a given number of
receptors, and a small fraction of the beads carry one ligand. A
reaction occurs when the ligand receptor pair comes within a
reaction distance. Upon application of the magnetic field, the
beads are brought into contact, and a reaction thus occurs when,
by rotational diffusion, one ligand and one receptor align within
some reaction angle. The value of this angle or correspondingly
the value of the capture reaction radius is one of the molecular
characteristics of the ligand receptor pair. For instance, when the
two moieties are perfectly bound to the colloid surface, one
requires alignment within a very small angle. A larger reaction
patch will suffice if a spacer is used to tether either the ligand
or the receptor to the surface.

We found that in all experimentally relevant situations the
time required for a reaction to occur is larger than the characteristic
rotational time of the diffusion motionτrot, a result that can be
easily understood by the number of diffusion paths that do not
intersect with the reaction patch. Quantitatively, the reaction
time is determined byR, the relative surface occupied by the
reaction patchR ) πrC

2/(4πr2) whererC is the capture radius
and r is the radius of the colloid.

When the colloids are completely covered with receptors, only
the diffusion of the ligand limits the reaction. In this asymptotic
regime, the average reaction time〈τ〉 is larger than the rotation
time τrot by only a logarithm factor of relative reaction surface
R, 〈τ〉 = -τrot ln R. If the colloid carrying the ligand can react
with either of the two neighbors in the chain, then the reaction
time is reduced by roughly a factor of 2.

When the colloids carry only one receptor, the reaction-
diffusion problem has a larger intrinsic dimension, and we find
that the average reaction time has a stronger dependence on the
value of the relative reaction surface,〈τ〉 = τrot(2 ln 2)/R. The
reaction time in this case is thus larger than that in the saturated
case by a factor of-2 ln 2/(R ln R)

For most experimentally relevant situations, the colloids carry
a finite numbernof receptors. We found by analytical arguments
and by numerical simulations that for small numbers of receptors
the reaction time decreases inversely with the number of receptors
(i.e., the reaction rate increases linearly withn). This linear
behavior crosses over for largen to the value corresponding to
saturation. We found numerically that linearity holds roughly
over half of the time gap, so the linear variation withn is therefore
valid up ton ≈ -2 ln 2/(R ln R).

Our predictions compare favorably with experimental results.
In ref 25, the reaction time of 100 nm colloids of biotin/streptavidin
pairs can be converted into a reaction patch size. For biotins and
streptavidins firmly bound to the surface, a capture radius as
small as a few angstroms is obtained, indicating the need for an
almost perfect orientation of the colloids for the reaction to occur.
If a spacer is introduced into the ligand, the receptor, or both,
then the reaction times decrease correspondingly, a variation
that can be quantitatively understood in terms of the patch size
computed within our theoretical framework.

One of the important simplifying assumptions of our work is
that the translational degrees of freedom associated with the
Brownian motion of the center of the bead are irrelevant. This
seems indeed to be the case in the experiments that inspired this
work, but one can easily be confronted with situations where two
neighboring beads need to overcome some repulsive potential
in order to be in contact. The associated diffusion-reaction
problem combines both rotational and translational diffusion.
The theoretical and numerical techniques used in the present
work are also well adapted to provide answers for the more
complex situation.

A second simplifying assumption concerns the absence of
hydrodynamic correlations between the two beads when they
are within the reaction range. Although previous work26 has
shown that this is the case for model colloids at moderate distances,
the presence of a stabilizing polymer corona could couple the
Brownian motions of the two colloids. Accounting for such effects
is an interesting theoretical challenge for a better understanding
of the reaction dynamics in these systems.
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Appendix A: An Alternative Solution of the Reaction
Diffusion Equation for One Colloid Carrying a Single

Ligand and One Colloid Saturated with Receptors

Equation 1 of section 2.1 can also be solved by the usual
eigenmode expansion of the probability distribution

wherePν is the Legendre function of the first kind andνk is the
discrete eigenvalues obtained fromPνk(-cosθ) ) 0 and 1/τk )
νk(νk + 1) in units ofτrot. Amplitudesak are extracted from the
projection ofψ(θ, t ) 0) into the base functionsPνk:

It can be easily checked that for a patch angleθC ) 0.3, six
modes are enough to give an accurate representation of the
distribution probability, except at very short times where
oscillations are still perceptible. The survival probabilityφ(t)
has a corresponding form

(25) Cohen-Tannoudji, L.; Bertrand, E.; Baudry, J.; Robic, C.; Goubault, C.;
Pélissier, M.; Johner, A.; Lee, N.; Thalmann, F.; Marques, C.; Bibette, J., Submitted
for publication, 2007.

(26) Stark, H.; Reichert, M.; Bibette, J.J. Phys.: Condens. Matter2005, 17,
S3631-S3637.

ψ(θ, t) ) ∑
νk

akPνk
(-cosθ) exp(-

t

τk
) (33)

ak )
∫θC

π
sin θ dθ ψ(θ, t ) 0) Pνk

(-cosθ)

∫θC

π
sin θ dθ(Pνk

(-cosθ))2
(34)
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with the coefficientsbk given by

For all practical purposes, the survival probability in the limit
of small capture anglesθC , 1 is well approximated by the first
term of the eigenfunction expansion (eq 35), and we show in
Figure 14 the value ofb1 as a function ofθC.

Appendix B: Alternative Solution of the Reaction
Diffusion Equation for One Colloid Carrying a Single
Ligand and Two Colloids Saturated with Receptors

The inverse Laplace transform of the probability distribution
ψ(θ, s) in eq 6 of section 2.2 can also be obtained directly by
an eigenmode expansion

with νk in this case being the discrete eigenvalues obtained by
solvingPνk(- cosθ) + Pνk(cosθ) ) 0, and one also has 1/τk )
νk(νk + 1) in units ofτrot. The amplitudesak are given by

The survival probabilityφ(t) follows a similar expansion

with the coefficientsbk given by

Figure 15 shows the decay of the value of amplitudeb1 of the
survival probability as a function ofθC. For most relevant
purposes, the value can be taken as unity.

Appendix C: Accuracy of the Solution Obtained from
the Propagator

The solution of a diffusion reaction equation can be obtained
by solving a diffusion equation with the appropriate boundary
conditions in only a limited number of cases. The cases treated
in sections 2.1 and 2.2 for a reaction between one colloid carrying
a ligand and one or two saturated colloids are among the rare
examples where such a simple method can be applied. This simple
method cannot be used, for instance, for the case solved in section

2.3 for one colloid with one ligand reacting to one colloid with
one receptor. In these cases, a different method needs to be applied
to extract the relevant physical information; this method often
relies on decoupling approximations that we now discuss and
validate.

We discuss in this Appendix the accuracy of the so-called
propagator-based solution to the reaction diffusion equation (eq
1). The solution is based on the formal rewriting of the differential
equation (eq 1) as an integral equation

for the case where the reaction starts at timet ) 0 from equilibrium
distributionψ(θ, t ) 0) ) ψeq. Q(θ) describes the shape and rate
of the reaction well, andG0(θ, θ′; t) is the propagator associated
with the corresponding free-diffusion problem in the absence of
reactions

that measures the probability of finding a particle at timet and
angleθ, knowing that it was at angleθ′ at time t ) 0. The
propagator can be computed either from the eigenmode expansion

with Pm being the usual Legendre polynomials, or from the
equivalent Laplace-transformed form

φ(t) ) ∑
νk

bk exp(-
t

τk
) (35)

bk )

∫θC

π
sin θ dθ ψ(θ, t ) 0) Pνk

(-cosθ)∫θC

π
sin θ dθ Pνk

(-cosθ)

∫θC

π
sin θ dθ(Pνk

(-cosθ))2

(36)

ψ(θ, t) ) ∑
νk

ak[Pνk
(-cosθ) + Pνk

(cosθ)] exp(-
t

τk
) (37)

ak )
∫θC

π - θC sin θ dθ ψ(θ, t ) 0)[Pνk
(-cosθ) + Pνk

(cosθ)]

∫θC

π - θC sin θ dθ[Pνk
(-cosθ) + Pνk

(cosθ)]2

(38)

φ(t) ) ∑
νk

bk exp(-
t

τk
) (39)

bk )

∫θC

π - θC sin θ dθ ψ(θ, 0)[Pνk
(-cosθ) + Pνk

(cosθ)]

∫θC

π - θC sin θ dθ[Pνk
(-cosθ) + Pνk

(cosθ)]

∫θC
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(-cosθ) + Pνk
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(40)

Figure 14. Variation of amplitudeb1 of the eigenfonction expansion
of survival probabilityφ(t) as a function of capture angleθC.

Figure 15. Variation of amplitudeb1 of the eigenvalue expansion
of survival probabilityφ(t) as a function of the capture angleθC.

ψ(θ, t) ) ψeq -

∫0

t
dt′ ∫0

π
sin θ′ dθ′ G0(θ, θ′; t - t′) Q(θ′) ψ(θ′, t′) (41)

∂G0(θ, θ′; t)

∂t
- ∇θ

2G0(θ, θ′; t) ) δ(θ - θ′) δ(t) (42)

G0(θ, θ′; t) )
1

2
∑
m)0

∞
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G0(θ, θ′; s) )

- 1
2Drot

π
sin πν(s)

Pν(s)(cosθ) Pν(s)(-cosθ′) (44)
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with Pν being the Legendre functions. Thes-dependent index is
computed fromν(ν + 1)) -s/Drot. Both forms assume an initial
equilibrium distribution ofψeq ) 1/2.

When the reaction sink is represented by a delta functionQ(θ)
) qδ(θ - θC), eq 41 assumes the simple time convolution form

that can be easily solved by Laplace transform and written as

In the limit of very fast local reactions, one can take the limit
q f ∞ to obtain an expression for the Laplace transform of the
probability distribution identical to expression 2 in section 2.1.
In this description of the reaction diffusion problem, the
probability distribution holds for the whole angle domainθ ∈
[0,π] and vanishes only at the pointθ ) θC. The longest relaxation
time of this problem is thus equivalent to the longest relaxation
time of solution 2, but the survival probabilityφ(t) and the average
time〈τ〉 ) ∫0

∞
φ(t) dt will, in principle, be different. Note however

that the differences are only marginal in the limit of a very small
capture radius.

When the reaction sink has a finite width, sayQ(θ) ) q for
0 e θ e θC andQ(θ) ) 0 otherwise, eq 41 does not reduce to
a time convolution. However, a functional simplifying assumption
can be made by noticing that for small reaction patches the
propagator varies only slightly inside the reaction sink and one
can thus write the time convolution equation

and the corresponding solution for the probability distribution,
here in the limit ofq f ∞

Inserting the explicit form (eq 44) for the propagatorG0(θ, 0;
s) and the value of the equilibrium distributionψeq ) 1/2 yields

The expression above should also be compared with the Laplace
transform of the probability distribution (eq 2) of section 2.1:
the angular dependence is identical, and the longest relaxation
time, given by the smallest pole of∫0

θC sin θ dθ Pν(s)(-cosθ),
has a similar asymptotic dependence ofτlong = τrot ln R in the
limit of small patches. The Laplace transform of the survival
probability φ(s) ) ∫θC

π sin θ dθ ψ(θ, s) can be conveniently
written as

whereh(s) is the Laplace transform of the relaxation function
h(t) given by

As for previous cases, the survival probability here also has the
longest relaxation time, obtained by solving 1- (1/τlong)h(-
1/τlong) ) 0, identical to the relaxation time of the probability
distribution,τlong = τrot ln R.

The previous study shows that for the case of one bead with
one ligand and one bead saturated with receptors there are only
marginal differences associated with the details of the reaction.
Indeed, requiring that the reaction takes place exactly atθ ) θC

or allowing for reactions anywhere inside the patchθ e θC leads
essentially to the same reaction behavior in the relevant limit of
small patches.

The situation for the case of one bead carrying one ligand and
one bead carrying one receptor is rather different. We have
considered in section 2.3 a reaction model based on the reaction
functionQ(θ1, θ2) ) q if (0 e θ1 e θC and 0e θ2 e θS) and
Q ) 0 otherwise. Such a model states that a reaction occurs
whenever the ligand and the receptor are simultaneously inside
the reaction patch, centered atθ ) 0. This implies a decoupling
approximation in the mathematical treatment of the solution,
and one might wonder why the delta function,Q(θ1, θ2) ) qδ(θ1

- θ2), that allows for an exact solution of the problem is not
used. It can easily be shown, along the same lines of the
calculations discussed in this Appendix, that the requirement of
having both the ligand and the receptor at the same angular
position is too stringent and leads to a divergent reaction time.

Appendix D: Electrostatic Analogy for Many Reaction
Sites

We consider a collection of identical spherical reaction zones
Ri in dimensiond. We call σd the (hyper)area of a sphere of
radius 1 so that the volume of a patchνpatchreadsσdrC

d/d and the
total volume of the configuration space isνconf ) σdad/d. The
electrostatic problem consists of finding the chargesqi borne by
each conductorRi, then calculating the potentialV(G) generated
between the conductors, and finally integrating this potential
over the volume between the conductors.

When isolated, each sitei creates a potentialVi

whereFi stands for the relative distance from the center ofRi.
The average potential due to the other charges nearRi is

with rij being the mutual distance betweenRj andRi. Because
all the conductors must be simultaneously set equal toV ) 0,
shift δVi cannot depend on indexi. This is achieved by adjusting
chargesqi, which now depend on the relative spatial arrangement
of the reaction zones. In practice, the set ofqi must fulfill n -
1 linear constraints, leaving only one degree of freedom for the
total chargeQ ) ∑i)1

n qi. Thus, in the limitrC , rij ≈ a, δV reads

ψ(θ, t) ) ψeq - q∫0

t
dt′ G0(θ, θC; t - t′) ψ(θC, t′) (45)

ψ(θ, s) ) ψeq

s (1 -
qG0(θ, θC; s)

1 + qG0(θC, θC; s)) (46)

ψ(θ, t) ) ψeq - q∫0

t
dt′ G0(θ, 0; t - t′) ∫0

θC

sin θ′ dθ′ ψ(θ′, t′) (47)

ψ(θ, s) ) ψeq

s (1 -
G0(θ, 0; s)

∫0

θC
sin θ dθ G0(θ, 0; s)

∫0

θC
sin θ dθ ψeq

ψeq )
(48)

ψ(θ, s) ) 1
2s(1 -

Pν(s)(-cosθ)

1

∫0

θC sin θ dθ
∫0

θC sin θ dθ Pν(s)(-cosθ))
(49)

φ(s) )
h(s)

1 + sh(s)
(50)

h(t) )
∫0

θC sin θ dθ G0(θ, 0; t)

∫0

θC sin θ dθ ψeq
- 1 (51)

Vi(Fi) )
qi

(d - 2)σd( 1

rC
d - 2

- 1

Fi
d - 2) (52)

δVi ) ∑
j*i,j)1

n qj

(d - 2)σd
( 1

rC
d - 2

-
1

rij
d - 2) ) δV (53)
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where theC2 constant is of order unity and depends only on the
relative spatial arrangement of the reaction sites. The resulting
potential

has the property that its spatial average value around any boundary
∂Ri is zero. In the equation,F represents any point outside the
reaction zone. Because by assumptionVi(rC) ) 0 and because
the potential created by the other charges is harmonic (∆V ) 0),
the average value ofVtot at boundary∂Ri coincides at the lowest
order with its value at the center ofRi, and shift-δV ensures
that it vanishes for all sitesRi. This holds because by assumption
the size of the patches is small compared to the inter-patch
distances. The only deviations to the equipotential conditionV
) 0 are anisotropic and correspond to the mutual polarization
effect discussed below. Then, the total number of particlesN is
given by the integration over all configuration space of the total
potentialνtot. The integration of all of the constant terms lead
to a common factorνtot - nνpatchrepresenting the total volume,
exclusive of then reaction zones. The integration of the
nonconstant terms (power lawFi

-d - 2) presents no difficulty, but
again, care must be taken to remove the excluded volume
contributions. As a result, we find that ind dimensions,d g 3,

with B1 andB2 being two constants of order unity, and

with â1 ) 4B1, â2 ) 4B2, τrot ) a2/4Dt, andτpatch ) τrotrC
2/a2

whereτa is the leading asymptotic time corresponding to a single
capture site

Let us evaluate the polarization corrections. In dimensiond, the
field generated by a conductori is Ed(Fi) ) qiFi

-(d-1)/σd, and the
polarization gained by the second conductor is the product of the
electric field and the total volume (polarizability)σd/drC

d of the
conductor: Pij ) σdEd(rij)rC

d/d. This reaction potential is about
Pijrij

-(d-1) near the first conductor. This typically shifts the
potential by another amountδV′

and the reaction time is modified by an extraâ3τpatch(rC/a)d-2,
which is negligible ford g 3.

The calculation in two dimensions can be made in a similar
way, with some extra care due to the nondecreasing behavior of
Vi(Fi) at largeFi. We find that the potential shiftδV reads

whereC2 is again on the order of unity and independent of the
patch size.

Our total populationN reads

and the reaction time is

with B2 ) (n- 1)/(2n) ln(a/rC) + 1/4 andâ2 ) 4B2 being constants
of order ln(a/rC) or unity, B1 is a first-order constant,τrot )
a2/4Dt, τpatch ) τrotrC

2/a2, and τa ) -τrot ln(R). Now, the
domination of termτa/n overâ1τrot is only logarithmic. Finally,
in two dimensions, the polarization corrections lead to another
termâ3τpatch, which, except for the logarithm ln(a/rC), compares
with â2τpatch.

We conclude that the electrostatic analogy supports our
numerical findings concerning the reaction rate as a function of
the surface coverage, presented in Figures 12 and 13. With an
effective dimensionality ofd ) 4 and a ratiorC/a of orderθs/2π
g 0.01, it is not surprising that the linear behavior of the reaction
rate withn holds.
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δV )
1

n
∑
i)1

n

δVi )
n - 1

n

Q

(d - 2)σdrC
d - 2

-

1

2n
∑

i,j)1,i*j

n 1

(d - 2)σd

qi + qj

rij
d - 2

)
(n - 1)

n(d - 2)σd

Q

rC
d - 2

+
C2

σd

Q

ad - 2
(54)

Vtot(F) ) ∑
i

Vi(Fi) - δV (55)

N ) Q
Dt{ 1

n(d - 2)
ad

rC
d - 2

+ B1a
2 + B2rC

2} (56)

τn )
τa

n
+ â1τrot + â2τpatch (57)

τa ) 4
d - 2

ad - 2

rC
d - 2

τrot (58)

δV′ ) QrC
da2 - 2d (59)

δV )
(n - 1)Q

2πn
ln( a

rC
) + ∑

i,j)1,i*j

n qi + qj

2π
ln(rij

a)
)

(n - 1)Q
2πn

ln( a
rC

) + QC2 (60)

N ) Q
Dt

{a2

2n
ln( a

rC
) + B1a

2 + B2rC
2} (61)

τn )
τa

n
+ â1τrot + â2τpatch (62)
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