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Abstract. – We solve the first-passage problem of a non-Markovian process arising in the
reaction diffusion theory of polymer chains. By considering the Rouse chain, a free-draining
dynamic model of a polymer where the chain monomers are represented by beads and the
chain connectivity by harmonic springs, we develop an exact analytical method for describing
the kinetics of end-chain reactions. Our analytical results illuminate the approximations used
previously and are in perfect agreement with numerical stochastic simulations.

Introduction. – The first-passage problem, also known as the Kramers problem in reac-
tion theory, arises in many areas of physics [1]. In its simplest form it refers to a Brownian
particle that diffuses until it comes within the capture radius of a reactive site and a reaction
takes place. Other more complex situations include systems with many particles and many
reaction sites, reactions with moving traps or interactions between the particles and the reac-
tion targets [2]. Kramers seminal work and later developments of his method [3] have allowed
in many cases the calculation of relevant physical quantities such as the survival probability
ρ(t), the fraction of particles which have not yet reacted at time t.

In polymer physics, first-passage problems have received much attention since it was first
realized [4] that the study of fast reactions between groups attached to a polymer chain
can provide a direct measure of the relaxation mechanisms governing polymer dynamics [5].
Theoretical studies have been devoted to chain cyclization, to reactions between different
polymer chains leading to branching or polymerization and to reactions between polymer
chains and stationary traps [6–9]. Interestingly, the first-passage time is also a key ingredient
of the tube theory for the dynamics of entangled polymer melts. The tube theory assumes
that stress relaxation in a strained melt is provided by the diffusive motion of a given chain
out of its confinement tube, which represents the average topological influence of other chains.
The stress relaxation is thus proportional to µ(t), the fraction of the tube length not visited
by the chain ends after time t [10–12].

The motion of a monomer attached to a polymer chain has a strong non-Markovian char-
acter due to chain connectivity. Because of this, analytical theories of reaction diffusion in
polymer physics have so far relied exclusively on approximated methods. In fact, numerical
simulations show that the best existing theoretical predictions for the reaction times can be
significantly different from the simulated results [13]. In this letter we present exact results for
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the first-passage problem of the Rouse chain model, and show that results from our method
are in perfect agreement with stochastic numerical simulations.

The model. – The Rouse model describes a polymer chain by N + 1 Brownian beads
with friction coefficient ζ, connected by harmonic springs with spring constant 3kBTb

−2,
where b is a Kuhn segment length, kB is the Boltzman constant and T the temperature.
The harmonic energy associated with a given configuration of the chain is therefore given
by U(R0, . . . ,RN ) = 3/2 kBTb

−2
∑N

i=1 (Ri − Ri−1)
2, where Ri are the coordinates of i-th

segment. The motion of the chain can be described by the Langevin equations

ζdRi = − ∂U

∂Ri
dt+

√
2kBTζdWi, (1)

where Wi is a Wiener process representing random Gaussian noise. The corresponding prob-
ability distribution Ψ(R0, . . . ,RN ) for the monomer coordinates obeys the diffusion equation

L̂Ψ ≡ ∂Ψ
∂t

−
∑

i

[
kBT

ζ

∂2Ψ
∂R2

i

+
1
ζ

∂

∂Ri

(
Ψ
∂U

∂Ri

)]
= δ(t)Ψ0 (2)

with L̂ being the usual multidimensional diffusion operator including intrachain potential and
Ψ0 being the initial value of the distribution.

The first-passage problem for the chain end can be formulated as a boundary condition
problem. The probability density for configurations where the chain end R0 has not visited
the reactive site Z can be obtained from a solution of equation (2) with boundary condition

Ψ(R0 = Z,R1, . . . ,RN ) = 0. (3)

If this solution Ψ(R, t) is available, then the fraction of unreacted molecules is given by the
integral over the whole configuration space:

ρ(t) =
∫

Ψ(R, t)dR. (4)

Equation (2) without the boundary condition can be easily solved using transformation to
Rouse modes [11]. The immense complexity of the problem arises from the fact that the
boundary condition eq. (3) couples all Rouse modes. making it impossible to reduce the
N -dimensional problem to a set of one-dimensional problems.

Previous work. – Reaction diffusion problems in polymers were first addressed theoret-
ically by Wilemski and Fixman [4] (WF) who considered a more general formulation of the
reaction problem by introducing the sink operator q Q(R), which is proportional to the prob-
ability that the system with coordinates R will react. The shape of Q(R) can accommodate
some molecular information concerning the local reaction landscape. The parameter q mea-
sures the probability of the reaction and allows to tune the binding frequency. The diffusion
equation (2) then becomes

L̂Ψ = δ(t)Ψ0 − qQΨ. (5)

The absorbing boundary condition (3) is recovered with a delta function for the sink shape
Q(R) = δ(R0 −Z) and an infinitely large strength q → ∞. Equation (5) can be rewritten as
an integral equation for Ψ(R, t):

Ψ(R, t) = Ψeq(R) − q

t∫
0

dt′
∫

dR0G0(R0,R, t− t′)Q(R0)Ψ(R0, t′), (6)
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where Ψeq(R) and G0(R0,R, t) are, respectively, the equilibrium distribution and the Green’s
function in the absence of reactions. Superscript 0 refers to the initial values R0 = R(t = 0).
Formally, the Green’s function is the solution of eq. (2) with initial condition Ψ(R, t = 0) =
δ(R − R0). It represents the probability density to find the system at point R at time
t provided it was at R0 at time zero. Equation (6) has a simple physical meaning: the
surviving configurations are all those that have not reacted by visiting the reaction site at
any time before the present. The validity of eq. (6) can be checked by direct substitution
in eq. (2). For the end chain reactions Q(R) depends only on one coordinate: the distance
between the monomer and the reactive site or a distance between chain ends in the case of
cyclization. For simplicity, we name this single coordinate x and all other coordinates y, i.e.
R = {x,y}. Representing the sink function at locus z as Q(R) = δ(x − z), eq. (6) can be
rewritten in Laplace space (f(s) =

∫ ∞
0
f(t) exp[−st]dt) as

Ψ(x, s) =
Ψeq(x)
s

− q

∫
dy0G0(z,y0,x, s) Ψ(z,y0, s) (7)

if one introduces the density of reactive monomers Ψ(x, s) =
∫

Ψ(x,y, s)dy and the analogous
Green’s function. Equation (7) is still a formidable integral equation for Ψ(x, s). The WF
closure relation assumes [4] that the presence of the reaction does not affect the distribution
of other variables y0. In our notation it leads to the simple separation:∫

dy0G0(z,y0,x, s)Ψ(z,y0, s) � G0(z,x, s)Ψ(z, s). (8)

Inserting this closure relation into eq. (7), and taking the limit of infinite reaction strength,
q → ∞, one gets the surviving probability

ρ(s) =
h(s)

1 + sh(s)
(9)

with h(s) being the Laplace transform of the function h(t) defined by h(t) = G0(z, z, t)×
Ψeq(z)−1− 1. In this expression the Green function is evaluated at the locus of reaction from
G0(x0,x, t) =

∫
dy0dyG0(x0,y0,x,y, t), the probability density of the reactive monomer to

be at point x at time t provided it was at x0 at time zero, calculated in the absence of
reactions. The longest reaction time τ of the survival probability can be obtained by the
smallest pole of eq. (9), i.e. by the largest root τ of the equation τ = h(−τ−1); the average
reaction time 〈t〉 is simply given by 〈t〉 = ρ(s→ 0) (see refs. [15] for more details).

A seemingly different approach was proposed by de Gennes [7] and later elaborated by
Fredrickson et al. [15]. The method assumes that there exists an integro-differential opera-
tor L̂dG such that the projected propagator G0(x0,x, t) =

∫
G0(x0,y0,x,y, t)dy0dy obeys

L̂dGG0(x0,x, t) = δ(x − x0)δ(t) analogous to eq. (2), but in “projected” space of reac-
tion coordinate only. Under this assumption, the reaction diffusion propagator is given by
L̂dGG(x0,x, t) = −qδ(x − z)G(x0,x, t) + δ(x − x0)δ(t), an equation which has a solution
analogous to eq. (6). In the limit q → ∞ it reads

G(x0,x, s) = G0(x0,x, s) − G0(x0,z, s)G0(z,x, s)
G0(z,z, s)

(10)

and it leads to eq. (9) after integration over x and x0. It is thus clear that the assumption of
the existence of L̂dG is similar to the WF closure relation (8), providing only an approximated
treatment of this first-passage problem.
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Different approximations were developed by des Cloizeaux and Granek [16] in the context
of tube theory and with path integral methods by Nechaev et al. [9]. These methods and
others [14] are based on poor approximations or wrong assumptions and thus fail to predict
the chain behavior quantitatively and do not withstand comparison with simulations.

Solution. – In this letter we consider for the sake of simplicity a one-dimensional Rouse
chain. The end reaction in one-dimensional polymer chains is relevant for instance to describe
contour length fluctuations in branched polymers or to study specific adhesion mediated by
tethered ligands, a problem discussed in Jeppesen et al. [17]. An extra advantage of 1d systems
is that the capture radius can be set to zero. This eliminates one parameter from the model
but keeps all its complexity. Generalizations of our method to higher dimensions and other
reaction situations are straightforward. Our starting point is the exact Smoluchovski equation
eq. (2) for the N -dimensional Green’s function of the coordinates of all monomers R = {x,y},
where x is the coordinate of the reactive monomer and y is a vector representing all other
monomer positions. The full Green’s function G(R0,R, t) follows also eq. (7), with the simple
sink function Q(R) = δ(x− z):

G(R0,R, t) = G0(R0,R, t) − q

t∫
0

dt′
∫

dR′δ(x′ − z)G0(R,R′, t− t′)G(R′,R0, t′). (11)

The presence of the delta sink function defines an hypersurface Ω for the integration of all
coordinates except the reactive one. Let us denote all points on this surface by Z. Let us also
write with small letters the arguments of projected Green’s functions, i.e. the arguments of
Green’s functions integrated over non-reacting monomers: G(x0,R, t) =

∫
Ω
G(R0,R, t)dy0.

Since G0 does not depend on q and G(x0,Z) → 0 as q → ∞, we conclude (following the
same steps as in de Gennes calculations [7, 15]) that the Green function at the absorbing
surface asymptotically obeys G(x0,Z′, t) = q−1g(x0,Z′, t)+O(q−2). With this notations, the
projected, q → ∞ form of eq. (11) is in Laplace time

G0(x0,Z, s) =
∫
Ω

g(x0,Z′, s)G0(Z′,Z, s)dZ′ . (12)

This is an integral equation for g(x0,Z, s), where Z lies on the surface Ω, and x0 and s are
parameters. The function g(x0,Z, s) has a physical meaning of first-passage time density of
arrival at the point Z, and eq. (12) is called a renewal equation in the Markovian case. In the
following we will omit common argument s from our notation.

At this stage the problem is reduced to finding g(x0,Z) as defined in eq. (12). If g(x0,Z)
can be found, the final answer to the original problem is simply expressed as

G(x0,R) = G0(R0,R) −
∫
Ω

dZ′g(x0,Z′)G0(Z′,R). (13)

Equation (12) can be solved by an iteration method. If we define integral operators
K̂f(x0,Z) ≡ ∫

Ω
f(x0,Z′)G0(Z′,Z)dZ′ and Îf(x0,Z) = f(x0,Z), eq. (12) can be recast as

g = λG0 −
(
λK̂ − Î

)
g (14)

by multiplying it by so far unspecified function λ(x0, s) and adding g to both sides. Here we
omit arguments for simplicity. Equation (14) can be solved iteratively:

g(1) = λG0; g(i+1) = λG0 − λK̂g(i) + g(i), (15)
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where the superscript refers to the order of the iteration. The first few iterations give

g(1) = λG0; g(2) = 2λG0 − λ2K̂G0; g(3) = 3λG0 − 3λ2K̂G0 + λ3K̂2G0, (16)

which lead to the Green’s functions

G(1)(x0, x) = G0(x0, x) − λG0(x0, z, x),

G(2)(x0, x) = G0(x0, x) − 2λG0(x0, z, x) + λ2G0(x0, z, z, x),

G(3)(x0, x) = G0(x0, x) − 3λG0(x0, z, x) + 3λ2G0(x0, z, z, x) − λ3G0(x0, z, z, z, x), (17)

where we defined the n-point Green’s functions as G0(x0, z, x) =
∫
Ω
G0(x0,Z)G0(Z, x)dZ,

G0(x0, z, z, x) =
∫
Ω

∫
Ω
G0(x0,Z)G0(Z,Z′)G0(Z′, x)dZdZ′, and so on. The result (17) can

be rewritten in a compact way if we formally define the operator Ẑ as an operator that inserts
one z argument in G0; i.e. ẐG0(x0, x) = G0(x0, z, x); Ẑ2G0(x0, x) = G0(x0, z, z, x):

G(n)(x0, x) = (I − λẐ)nG0(x0, x), (18)

where λ(x0) can be found self-consistently from the condition that

G(n)(x0, z) = (I − λẐ)nG0(x0, z) = 0. (19)

This is an n-th order algebraic equation for λ(x0). For instance, the first-order iteration gives
λ(x0) = G0(x0, z)/G0(x0, z, z) and

G(1)(x0, x) = G0(x0, x) − G0(x0, z, x)G0(x0, z)
G0(x0, z, z)

, (20)

which for the simple Markovian process G0(x0, x1, x2) = G0(x0, x1)G0(x1, x2) leads to the
Wilemski-Fixman-de Gennes (WFdG) results eq. (10). All other iterations do not change this
result. Thus, the WFdG method is exact only for Markovian processes. Equation (17) (or
equivalently (18)) together with eq. (19) constitute the main result of the paper. It expresses
the Green’s function in the presence of reaction via a series involving all n-point Green’s
functions calculated without the reaction.

In order to use this result, let us calculate the n-point Green’s function of 1d Rouse chain
G(x0, 0, x1, t1, . . . , xn, tn). It is defined as the probability density that the reaction coordinate
will change from x0 to x1 in time t1, then to x2 in time t2 and so on. It is given by

G0(x0, 0, x1, t1, . . . , xn, tn) =
∫
Ω

n∏
j=1

G0(Rj−1,Rj , tj)dRj , (21)

where G0(R0,R, t) is the full N -dimensional Green’s function for all monomers. Since the
2-point Green’s function is Gaussian, the n-point projected function will also be Gaussian of
the general form

G(x0, 0, x1, t1, . . . , xn, tn)P (x0)=
1√

(2π)(n+1) detA
exp


−1

2

n∑
j,k=0

A−1
jk (xj − 〈x〉)(xk − 〈x〉)


 ,

(22)
where A−1

ij are unknown functions of all times t1, . . . , tn and 〈x〉 is the average equilibrium
value of the reaction coordinate. P (x0) in the left-hand side is the equilibrium probability
distribution for the reactive monomer P (x0) = (2πj(0))−1/2 exp[−(x0 − 〈x〉)2/(2j(0))]. Ac-
cording to well-known properties of Gaussian distributions, the matrix elements A−1

nm are to
be obtained from the inversion of the matrix with elements Anm = j(

∑max(m,n)−1
l=min(m,n) tl) with

j(t) of the usual 2-point Green’s function, obtained by WF and Doi [4, 6].
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Fig. 1 – (a) Stochastic simulation results for ρ(t) and its normalized derivative −4t3/4 dρ
dt

for N =
100, 200 and 500 (from right to left). The plateau in the normalized derivative provides the value of
Cρ as N → ∞. (b) Cρ values as predicted by the WFdG closure approximation, by the stochastic
simulations and by our iteration method up to order 9. The extrapolation of our results to infinite n
by second-order polynomial of

√
napp exactly coincides with the simulation.

Results and discussion. – The most demanding test for a reaction diffusion theory is to
calculate the cyclization rate ρ(t) at early times, when the motion of the chain end is strongly
non-Markovian. Let us consider a Rouse chain with the reactive sites attached to its ends. In
this case reaction coordinate x is the end-to-end distance. Given its initial equilibrium distribu-
tion P (x0) and the first passage propagator G(x0, x, t), the fraction of unreacted chains reads

ρ(t) =
∫ ∞

−∞
dx0P (x0)

∫ ∞

−∞
dx G(x0, x, t). (23)

From the scaling properties of the Rouse chain [12] we know that at early time the answer
scales as

ρ(t) = 1 − Cρ(t/τR)1/4 or ρ(s) = s−1 − Γ(5/4)Cρs
−5/4τ

−1/4
R . (24)

Therefore in order to compare different theories at early times we need only one number,
for example Cρ. Direct stochastic simulations of eq. (1) using standard Brownian dynamics
algorithms give

Csim
ρ = 1.45 ± 0.03. (25)

The procedure used to extract the value of Cρ from the ρ(t) data is illustrated in fig. 1(a).
In the context of contour length fluctuations, analogous simulations were presented in [12].
Indeed, one can also calculate Cρ using the result for another coefficient Cµ from [12] as
following. For short times, only the chain with the ends close to each other are important,
and therefore the distribution P (x0) can be replaced by a constant P (x0) ≈ √

3/(2π). The
constant Cµ in µ(t) ≈ 1 − Cµ(t/τR)1/4 is thus Cµ =

√
(π/3)Cρ ≈ 1.5, with τR the Rouse

time [11]. From the WFdG method eq. (10) one gets

CdG
ρ = 2

√
(2)π−7/4

(
1 +

√
2
)
≈ 0.92 (26)

which is slightly lower than the first iteration of our method and significantly lower than the
exact result (fig. 1(b)).

In order to calculate C(n)
ρ using our iterative solutions, we numerically calculate λ(x0, s)

from each x0 at some fixed large s, and then perform numerical integrations in order to
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calculate the value of the survival probability at order n, ρ(n). Integrals over t1, . . . , tn were
performed by an integration method analogous to the Gauss method. The results for C(n)

ρ

for n = 1, 3, 5, 7 and 9 are shown in fig. 1(b) as a function of 1/
√
n. Even orders of n do not

correspond to real solutions of eq. (19), and odd orders of n have one unique solution.
Figure 1(b) shows that the new method extrapolated to 1/

√
n = 0 gives

C∞
ρ = 1.44 (27)

in perfect agreement with the simulation results eq. (25).

Conclusions. – We have shown that the first-passage time for end-reactions in a Rouse
polymer chain, which is a strongly non-Markovian problem, can be solved by an exact iteration
method. We provided a solution for the most stringent case of polymer cyclization, and showed
that it agrees exactly with stochastic simulations of the same problem. We are convinced that
this method will allow solving a variety of other first-passage problems in non-Markovian
processes.
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