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ABSTRACT: Following up a recent paper on grafted sliding polymer layers [Macromolecules2005, 38, 1434-
1441], we investigated the influence of the sliding degree of freedom on the self-assembly of sliding polymeric
surfactants that can be obtained by complexation of polymers with cyclodextrins. In contrast to the micelles of
quenched block copolymer surfactants, the free energy of micelles of sliding surfactants can exhibit two minima:
the first corresponding to small micelles with symmetric arm lengths and the second corresponding to large
micelles with asymmetric arm lengths. The relative sizes and concentrations of small and large micelles in the
solution depend on the molecular parameters of the system. The appearance of small micelles drastically reduces
the kinetic barrier, allowing for the fast formation of equilibrium micelles.

1. Introduction

Predicting, controlling, and finely tuning the self-assembly
properties of amphiphiles through molecular design is a problem
of central importance in physical chemistry.1,2 It is arguably
also one of its major contributions to other fields: in the
biological realm, where self-assembled phospholipids build the
walls of liposomes and cells; in cosmetics, pharmaceutics, or
detergency, where many formulations are self-assembled solu-
tions of surfactants, phospholipids and other amphiphile mol-
ecules. In this context, diblock copolymers have emerged as a
paradigm for self-assembly.3-6 Typically, the insoluble block
drives the chains to self-associate, and the compositional
asymmetry between the soluble and insoluble blocks defines
the assembling geometry.5 The many possibilities for architec-
ture building offered by polymer synthesis and the development
of polymer theory led to an unprecedented power of molecular
control over the self-assembling structures of these so-called
macrosurfactants. It is nowadays possible, for instance, to build
different self-assembled structures from diblock, triblocks, and
many other block copolymers, to introduce charges at different
places along the chains with single charge accuracy, to form
reversible or frozen structures, to combine flexible and semi-
flexible blocks, etc. However, a major difficulty still hinders
progress in the predictive power of micellization theories.
Indeed, the macromolecular character of such surfactants implies
that there is a large kinetic barrier for micelle formation, and
the thermodynamic predictions for typical quantities such as
the critical micellar concentration or the aggregation number
are in many cases only marginally relevant. In this paper we
discuss a novel macrosurfactant architecture, based on rotaxane
inclusion complexes,7 that can lead to a significant decrease of
the kinetic barrier to micellization.

Rotaxanes are molecular complexes formed when a ringlike
molecule, the rotor, is threaded over a linear molecule, the
rotating axis.7 Unthreading of the ring can be prevented by
subsequent capping of the axis ends.8,9 Rotaxanes can be made
by combining different linear polymers10,11with different cyclic

molecules, in several solvents.12 One of the most well-studied
systems involves poly(ethylene oxide) andR-cyclodextrins
(CD), which are oligosaccharides of six glucose units assembled
as rings. Moreover, chemical conjugation of cyclodextrins with
a hydrophobic tail leads to a novel type of surfactant13 capable
of integrating to a membrane or adsorb onto a surface.
Surfactants of hydrophobically modified cyclodexrins can form
micelles of rings.14 When an inclusion complex formed by one
R-cyclodextrin and one PEO chain is attached to a surface by
such surfactant or by chemical grafting theR-CD, it results in
a novel structure of polymer layers for which we recently15

coined the acronym SGP layers, for sliding grafted polymer
layers. Contrary to the usual end-grafted polymer layer, in the
SGP layers the chains retain the ability to slide through the
grafting ring, a new degree of freedom that allows, as we
recently have shown, to better relax the layer structure. In
particular, our work suggests that in spherical, starlike layers,
as obtained for instance if one attaches theR-CD ring to a small
colloid, sliding of the polymers through the ring entails a truly
versatile polymer layer structure. At low number of grafts the
chains adopt mostly symmetric configurations with two com-
parable arm sizes whereas with many grafts the adopted
configurations are asymmetric with essentially one long arm
participating in the corona. It was also shown that there exists
an intermediate range of grafting numbers where the number
of arms participating in the corona is constant and where the
addition of more grafts leads to the progressive replacement of
symmetric configurations by twice as much asymmetric ones.
Conversely, in flat dense SGP layers, chains adopt only
asymmetric configurations, having hence the same structure as
the quenched ones. An important consequence for self-assembly
is that the free energy of the curved SGP layers has a different
structure from the usual polymer layers grafted to spherical
surfaces but that the free energy of flat SGP layers only
marginally differs from their nonsliding equivalents. The ability
of polymers to slide in the ring combined with the excluded-
volume interactions disfavors some of the configurations of the
chain. This feature of sliding polymers has some similarity with
interaction driven reorganizations in living polymers such as
for example the alignment induced growth in liquid crystals.16

We consider the micellization of decorated “one-pearl
necklaces” where the driving force for self-assembly is provided
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by the bead decoration, an insoluble chain chemically attached
to the ring molecule (see Figure 1). The consequences of the
sliding degree of freedom on the self-assembly of sliding
polymeric surfactants are discussed by focusing on curved self-
assembled structures, since for flat self-assembled layers only
marginal differences are expected with the usual grafted layers.
After a short reminder on diblock copolymer micellization, we
recall the theoretical description of the spherical SGP layer,
before discussing the possible micellization scenarios for this
new family of macrosurfactant architectures (Figure 1).

2. Micellization of Diblock Copolymers

In this section we briefly discuss the theory of micellization
of block copolymers (see e.g. ref 17). Consider a solution of
monodisperse block copolymer withNc insoluble andNs soluble
units. The insoluble blocks tend to aggregate and favor large
aggregates while coronas of soluble blocks oppose the formation
of large micelles. The free energy per unit volume,F, of the
solution of noninteracting micelles is a sum running over the
aggregation numberp:

whereFp andcp is the free energy and the number density of a
micelle comprisingp surfactant chains, respectively. We assume
that the Kuhn lengths of two blocks are equal between each

other and equal to the solvent sizeb. Thus, the multiplierNTb3

with NT ) Nc + Ns being the total volume of a copolymer.18

This multiplier was often overlooked; a general discussion is
provided by Riess,19 who gives the relevant elementary volume,
in our caseNTb3, for microemulsions, assemblies of droplets,
etc.

The equilibrium distribution of chains in micelles is obtained
by minimizing F with respect tocp along with the mass
conservation constraint

whereφ is the total number of chains per unit volume. This
gives the equilibrium densities ofp-arm micelles in the form
cpNTb3 ) exp{(µp - Fp)/kBT}, where

is the chemical potential of unimers.
Thus, we can rewrite the equilibriumcp as

Rather than the distributioncp, we will often use the more
convenient functionΩp ) ln(c1/cp):

which may be considered as the thermodynamic potential. Given
a value ofc1 in eq 4, we can calculate the whole distributioncp

and the corresponding total chain concentrationφ. Experimen-
tally, the chemical potentialµ is often studied as a function of
φ. We obtained the chemical potential curve from eqs 2-4 with
c1 as the parameter. A kink in the representation (Figure 2,
dashed line) is commonly used as an indicator for the onset of
micellization. Usually only a narrow range of unimer concentra-
tions at equilibrium c1 falls in the physically acceptable
condition: NTφb3 , 1. When no interaction between micelles
is accounted for, the more stringent criterion∑pcpVp < 1 should
be obeyed whereVp is the volume of a micelle comprisingp
surfactants.

The micellization scenario depends on the precise form of
the free energyFp, discussed in the following paragraphs for
quenched copolymers and annealed sliding copolymers.

3. Free Energy of Starlike Micelles

The free energy of a micelle contains the molecular charac-
teristics of the micellization process. Thus, to investigate the

Figure 1. Schematic representation of (a) one sliding unimer comprised
of soluble and insoluble blocks of lengthsNs andNc, respectively, (b)
a sliding small symmetric micelle, and (c) a sliding large asymmetric
micelle.

Figure 2. Chemical potentialµ as a function of the total concentration
for quenched (dashed line) and sliding (solid line) micelles. Parameters
used are:Ns ) 300,Nc ) 62, andσ ) 0.5.
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micellization of sliding polymer surfactants, we have to specify
the explicit form of the correspondingFp. The free energy of a
micelle is the sum of the core and of the corona contributions.
Hereafter energies are expressed inkBT units.

3.1. Core Contribution. We assume that the insoluble blocks
form a dense homogeneous core where soluble blocks and the
solvent cannot penetrate. Hence, the micelle free energy has
two core contributions: (i) the surface tension term,Fc )
4πσRc

2, whereRc is the radius of the core andσ is the core-
solvent surface tension expressed inkBT/b2 units. For an
incompressible core of sizeRc ) (3/(4π)pNc)1/3b, this leads to
Fc ) cσNc

2/3p2/3, where c ) (36π)1/3. (ii) Gaussian elastic
contributions arising from stretching of the insoluble blocks in
the core,Fel ) wpRc

2/(Ncb2) ) wp5/3/Nc
1/3, wherew ) 3π2/80

reflects the spherical geometry of the core. The value ofw is
obtained from a self-consistent field (SCF) theory in the strong
stretching limit.20 Although the elastic contribution of the core
is only larger thankBT for micelles with large cores, we keep
it for convenience.21

3.2. Corona Contribution. For large soluble blocks, as
considered here, the corona is usually envisioned as a star of
soluble blocks radially stretched away from the spherical core.
The partition functionZp of a star withp equal arms of contour
length Ns is given by the critical exponentγp, Zp ∼ Ns

γp-1.22

Star exponentsγp are known exactly in two dimensions and
for ideal chains (d g 4). In three dimensionsε expansions (ε )
4 - d) are available, to first order:22

Recently, Monte Carlo simulations were carried out by Hsu et
al.23 in order to find the exact values ofγp for a large range of
p values. The results do not quantitatively agree with the
classical predictions of the Daoud-Cotton model24 γp - 1 ∼
-p3/2 + ..., indicating that the asymptotic limit of very largep
numbers, where subdominant powers ofp are negligible, is not
yet reached. If we insist on fitting Hsu et al.’s results to the
Daoud and Cotton model, say betweenp ) 20 andp ) 60,
where the simulated arms are still fairly long, the obtained
amplitude is close to 0.2. It seems that the asymptotic limit,
restricted to the leading term, is also out of experimental reach.
The authors showed that the best fit of the simulation data with
a power law∼-pz is obtained withz ) 1.68. Our discussion
below is based on the simulation data, and we will use, for
convenience, the fitting function of the form close to eq 6:
-p(Bp - A)z/16 reflecting the simulation results. The best fit
is

while for p < 4 we take values from the table of ref 23.
When there is a sliding degree of freedom, the free energy

of the corona has a more complex structure. The possibility for
the soluble blocks to slide through a ring results in an annealed
arm length distribution in the coronas of such micelles made
of p-chains. Adjusting the length of the arm in the corona can
decrease the crowding effect originating from the steric repul-
sions between soluble blocks. In our previous paper,15 we found
three possible regimes for the sliding coronas depending on the
number of sliding chains per aggregate. The transition between
these regimes is determined from a threshold value of the
number of armsp*, defined by the conditionsγp* - γp*-1 >
-1 andγp*+1 - γp* e -1. If the number of chains per aggregate

is small,p e p*/2, the corona is fully annealed, and the sliding
chains are likely to adopt any configuration. We call such
micelles symmetric micelles, since symmetric configurations
are prevalent. The corona properties are determined by con-
figurations with 2p arms, and its partition function is given by15

For a larger number of grafting chains, in the intermediate
regime,p*/2 < p < p*, only p* - p chains adopt symmetric
configurations, while the rest of the chains are stretched out
from the ring. The corona hasp* arms, and its partition function
reads

For even larger micelles,p g p*, all the chains in the corona
are strongly asymmetric, and the partition function of the corona
coincides with the partition function of a quenched star:

The determination of the threshold value of the number of
armsp* strongly depends on our knowledge of the values of
the critical exponentsγp. Our previous estimates15 were based
on the first-orderε expansion (eq 5), yieldingp* ) 9. However,
if we use the values obtained from the computer simulations in
ref 23, we getp* ) 18. Thus, in the following we assume the
latter estimate as most accurate. We use our fitting function (6)
for the values ofγp, and the free energy of the sliding corona
of a micelle Fp

corona ) -ln Zp is determined as a piecewise
function of the number of chainsp.

3.3. Total Free Energy.Combining all terms together, the
energy of a micelle is given by

with

wheref (p) is defined piecewise by eqs 8-10 as discussed in
the previous section for sliding copolymers whereas for
quenched copolymers:f (p) ) -(γp - 1). This free energy
neglects contributions arising from the shielding of the solvo-
phobic chains from the contact with the solvent as well as these
stemming from the extensive part of the corona. They are both
proportional to the aggregation numberp and hence can be
absorbed in the chemical potentialµ (eq 3).

Note that the corona free energy of sliding surfactant unimers
(p ) 1) is F1

s ) -γ1 ln Ns while that of the quenched unimer
is F1

q ) -(γ1 - 1) ln Ns. Thus, the free energy of sliding
surfactant is about-ln Ns less than that of quenched ones with
the same soluble block size.

Next we use the expressions of the free energyFp to compute
the micelle size distribution for both quenched and sliding
copolymers.

4. Micelle Size Distribution: Sliding vs Quenched
Copolymers

A preferred aggregation number is reflected by a minimum
in the potential Ωp. Roughly speaking, the corresponding
aggregates will dominate over unimers if the minimum potential
value is negative. For usual quenched copolymers the potential
has only one, rather sharp, minimum (see Figure 3), and the
polydispersity of spherical micelles is usually very low, the

γp - 1 ) - ε

16
p(p - 3) + o(ε2) (6)

γp - 1 ) - p
16

(1.5p - 6)0.7, p > 4 (7)

Zp ∝ Ns
p Ns

γ2p-1, p e p*/2 (8)

Zp ∝ Ns
p*-p Ns

γp-1, p*/2 < p < p* (9)

Zp ∝ Ns
γp-1, p g p* (10)

Fp ) Fp
corona+ cσNc

2/3p2/3 + wp5/3/Nc
1/3 (11)

Fp
corona) f (p) ln Ns (12)
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distribution cp being sharply peaked around the average ag-
gregation numberpm. In this sense, quenched copolymer
association should be termedclosed association where the
distribution is dominated by aggregates of uniform size with
weak fluctuations appearing at a well-defined unimer concentra-
tion. In the common used classification,openassociation means
that aggregates of different sizes significantly contribute to the
distribution and appear gradually. The practical relevance of
this classification has been critically discussed recently.25

The average aggregation number and the cmc are found from
the conditionsΩp ) ∂Ωp/∂p ) 0.26 The minimum is separated
from the origin by a kinetic barrier. Thus, it takes a typical time
∼exp(Umax/kBT) for isolated chains to form a micelle, withUmax

the maximum of the barrier. A rough scaling estimate gives
Umax/kBT ∼ σNc

6/5.27 Depending on the conditions, this time
for usual block copolymer micelles can be very large. Very
often, quenched copolymer micelles do not form over reasonable
time scales at the cmc, where they are thermodynamically
favored. Only at much higher concentrations, the barrierUmax/
kBT becomes low (see Figure 3).

In contrast to the quenched case, the potentialΩp ) ln(c1/
cp) (eq 5) for sliding micelles can have two minima. One
corresponds to small symmetric micelles with aggregation
numbers up to 9, and the second corresponds to large asym-
metric micelles (Figure 3). The appearance of small micelles
leads to a drastic decrease of the kinetic barrier, such that the
first minimum is separated from the origin by a barrier of order
kBT, leading to the fast formation of equilibrium micelles. The
chemical potentialµ of sliding copolymers as a function ofφ
presents a rounded kink as compared to the quenched case
(Figure 2).

Depending on molecular parameters of the system, the
formation of small micelles can follow (Figure 4a,c) or precede
(Figure 4b,d) the formation of large micelles. Typical examples
of the mass distribution in micelles,pcp/φ, with increasing
polymer concentration are shown in Figure 5. The equilibrium
aggregation number switches between symmetric (small) and
asymmetric (large) micelles as the concentration increases.
Tuning the parameters of the system, either the surface tension
of the core,σ, or the relative length of the blocks (in our case
we varyNc keepingNs constant), we can change the order of
the appearance of small and large micelles. Figure 6 shows the
corresponding state diagram which is related to Figure 7. When
large and small micelles coexist, the large ones usually dominate
by mass. Hence, we represent the boundary between large and
large plus small micelles by a dashed line.

Though the full potential (eq 5) is uneasy to handle analyti-
cally, we may somewhat simplify it by omitting the stretching
of the insoluble blocks. The aggregation number of a vanishing
minimum of this approximate potential (for some chemical
potential) is then solution of the following equation:

The left-hand side of this equationh(p) collects all the terms

Figure 3. PotentialΩp ) ln(c1/cp) as a function of the aggregation
numberp for sliding micelles (solid line, total surfactant concentration
φ ) 3 × 10-8) and for quenched micelles (dashed line,φ ) 1 × 10-10,
dash-dotted line,φ ) 3 × 10-8, same as for sliding micelles) for the
set of parameters:Ns ) 300, Nc ) 70, andσ ) 0.5. Micelles form
almost without kinetic barrier from sliding polymer surfactants.

Figure 4. Typical examples of the potentialΩp ) ln(c1/cp) for a different set of parameters. (a) Large micelles appear first:Ns ) 300,Nc ) 60,
σ ) 0.5,φ ) 3.3× 10-5. (b) Small micelles appear first:Ns ) 300,Nc ) 55, σ ) 0.6,φ ) 2.0× 10-8. (c) Large micelles dominate:Ns ) 1000,
Nc ) 60, σ ) 0.5, φ ) 2.8 × 10-5. (d) The depth of the two minima is of the same order:Ns ) 10 000,Nc ) 60, σ ) 0.7, φ ) 7.8 × 10-7.

(p - 1)
∂f (p)
∂p

- f (p) + f (1)

p2/3 + 2p-1/3 - 3
) 1

3

cσNc
2/3

ln Ns
(13)
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depending onp. Thus, in this approximation the desired
aggregation numbers depend only on the combination of
parametersâ ) 1/3cσNc

2/3/ln Ns. It is easy to see that in the
quenched copolymer case there is indeed only one solution of
pm and in the Daoud-Cotton limit pm ∼ (σNc

2/3/ln Ns)6/5, a
classical result.

It is worthwhile discussing the number of solutions of eq 13
as a function of the parameterâ for sliding copolymers. It can
be obtained by counting the number of intersections ofh(p)
(Figure 7) with the line parallel to the abscissa. In the first
region,â j 1.38, there is only one intersection. It corresponds
to one minimum inΩp(p). The number of armsp is small; thus,
this region corresponds to the coexistence of unimers with small
symmetric micelles. In the region 1.38j â j 2.77 there are
three intersections showing the existence of two minima
separated by a barrier. Small micelles with aggregation numbers
p < p*/2 ) 9 coexist with large micelles withp > p* ) 18. In
the third regime,â J 2.77, there are only asymmetric micelles
of high aggregation numbers. The crossover values of the

parameterâ are compatible with Figure 6, where the crossover
values ofNc are 40 and 93. For given values of parameters (Nc,
Ns, σ) it should further be checked that the micelles exist for
physical concentrations.

Figure 7 also shows the aggregation number of quenched
copolymer micelles as a function ofâ (dashed line); the
difference with large sliding micelles is due to a shift in the
free energy of a unimer fromF1

s to F1
q. The Daoud-Cotton line

is also shown (dotted line). As already discussed, no agreement
can be obtained using a simple Daoud-Cotton power law.

5. Concluding Remarks

Sliding diblock copolymer surfactants where the soluble and
insoluble blocks are topologically tethered by a small ring show
a much reacher micellization behavior than the corresponding
quenched diblock copolymers. When the size of the insoluble
blocks is not too long, both small micelles (with an aggregation
number slightly smaller thanp*/2 ) 9) and large micelles (with
an aggregation number slightly larger thanp* ) 18) may coexist
in the solution. In the small micelle each copolymer participates
in the corona with two arms whereas in the large micelle the
asymmetric arm length distribution is dominant. Hence, coronas
in small and large micelles comprise a similar number of arms.
Small micelles can form without appreciable kinetic barrier at
the lowest concentration where they are thermodynamically
favored. The barrier opposing the formation of the larger micelle
remains modest. This is in marked contrast with the corre-

Figure 5. Evolution of the mass distribution in micelles,pCp/φ, with
increasing total concentrationφ: (a) 2× 10-10, (b) 5× 10-10, (c) 2×
10-9, and (d) 8× 10-8 for Ns ) 300, Nc ) 70, andσ ) 0.5. Free
unimers first transform in small micelles, and then the large micelles
appear and consume the most of the unimers.

Figure 6. Schematic diagram of different types of micelles present in
a solution. Labels designate regions where the indicated structures are
dominant. Parameters used:Ns ) 300,σ ) 0.5. The boundary between
the region of big micelles and the region of the coexistence of small
and big micelles is indicated by dashed line because big micelles usually
dominate by mass in both regions.

Figure 7. Graphical solution of eq 12. For values ofâ ) 1/3cσNc
2/3/ln

Ns between 1.38 and 2.77 a small symmetric micelle and a large
asymmetric one can be more stable with respect to the unimer (for
different chemical potentials). The bold dashed line (p < 3) was not
calculated. The thin dashed line corresponds to quenched copolymers,
where there is only one micelle size. The dotted line corresponds to
the Daoud-Cotton model for quenched copolymers.
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sponding quenched copolymers where kinetic barriers are very
high at the same concentrations. Which micelle appears first
with increasing concentration depends on the block asymmetry.
At somewhat higher concentrations, the micelle size distribution
broadens and covers the whole range from the small to the large
aggregation number described previously.

For large insoluble blocks only the large micelles, similar to
the quenched ones, form. Because of the loss of the sliding
degree of freedom upon association, the annealed cmc is higher
than the quenched one. On the other hand, the kinetic barrier is
markedly lower for annealed copolymer micelles (typically by
a factor 2) that may form at the cmc within experimental times.

Our description of starlike micelles is based on excellent
values of the vertex exponents from a recent simulation by Hsu
et. al.23 We think that this improves over the standard Daoud
and Cotton model for the classic quenched micelles.

Sliding copolymers are a new interesting example of nonionic
annealed copolymers. Some charged micelles can also display
a similar behavior as reported by Zhulina and Borisov for
insoluble/annealed-polyelectrolyte diblocks.28 To our knowledge,
only flat brushes of complexing polymers have been studied
theoretically.29 Diblocks where the soluble block forms a
complex with small colloids (proteins) also belong to the class
of annealed copolymers. One may speculate whether such
diblocks also form two types of micelles.
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