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ABSTRACT: We study theoretically the structure of sliding grafted polymer layers, or SGP layers. These
interfacial structures are built by attaching each polymer to the substrate with a ringlike molecule such
as cyclodextrins. Such a topological grafting mode allows the chains to freely slide along the attachment
point. Escape from the sliding link is prevented by bulky capping groups. We show that grafts in the
mushroom regime adopt mainly symmetric configurations (with comparable branch sizes), while grafts
in dense layers are highly dissymmetric so that only one branch per graft participates in the layer. Sliding
layers on small colloids or starlike sliding micelles exhibit an intermediate behavior, where the number
of longer branches participating in the corona is independent of the total number of branches. This regime
also exists for sliding surface micelles comprising less chains, but it is narrower.

1. Introduction

Rotaxanes are molecular complexes formed when a
ringlike molecule, the rotor, is threaded over a linear
molecule, the rotating axis.1 The polymeric versions of
rotaxanes are named polyrotaxanes. These necklace
structures are built by threading several ring molecules
over a polymer chain. Unthreading is also prevented by
subsequent capping of the chain ends.2,3 Although the
usual chemical and physical forces are also at work in
polyrotaxanes, the peculiar character of these complexes
is determined by the topological nature of each of its
components. Such materials are thus also known as
topological materials. Polyrotaxanes are being intensely
scrutinized for advanced specific applications as molec-
ular shuttles, “insulated molecular wires”, supramo-
lecular light-harvesting antenna systems, or sliding
gels.4-9 They can be made from different linear poly-
mers10,11 combined with different cyclic molecules in
different solvents.12 One of the most well-studied sys-
tems involves poly(ethylene oxide) and cyclodextrins,
which are oligosaccharides of six, seven, or eight glucose
units assembled as rings. Although in most cases
polyrotaxanes are formed with a very high density of
cyclodextrins threaded over the polymer chain, recent
strategies for complex formation13 allow for only one or
a low number of cyclodextrins per chain. The cyclodex-
trin can then further be grafted to a surface, resulting
in a grafted polymer layer where the chains retain the
ability to slide through the grafting ring. We coin the
acronym SGP layers for such structures, standing for
sliding grafted polymer layers.

Layers of grafted polymers have a wide range of
applications,14 ranging from the colloidal stabilization
of industry formulations, water treatment, and mineral
recovery, to the control of surface wetting and adhesion
or the protection of stealth liposomes from the human
immune system in drug delivery.15 Sparsely grafted
polymers are often referred to as mushrooms, while
more dense systems above the surface overlapping

density are known as brushes. Polymer theories for
mushrooms and brushes have been developed during
the past two decades,16-19 and their predictions suc-
cessfully compared with elegant experiments.20 In this
paper, we revisit grafted polymer theories introducing
a key modification that will allow the polymer to be
attached to the surface in a sliding manner. As we shall
see, this induces important differences in the equilib-
rium and dynamic behavior of the layers, both in the
mushroom and brush regimes. In section 2, we consider
ideal sliding mushrooms of chains grafted with one or
several sliding links. Section 3 discusses denser layers,
and the crossover from sliding mushrooms to sliding
brushes is discussed in section 4. In section 5, we
account for excluded volume correlations and focus on
sliding bulk and surface aggregates that embody the
sliding mushroom as a special case. The final section
reviews our key results and discusses their experimen-
tal relevance.

2. SGP Layers: Mushroom Regime
We study here SGP layers composed of isolated chains

grafted to a planar surface by a sliding link. We assume
Gaussian statistics and will discuss later in section 5
excluded volume effects.

2.1. Fixed Sliding Links. The sliding link is at-
tached to a fixed position on the surface and allows free
exchange of monomers between the two branches of the
chain with the total number of monomers N, see Figure
1. Thus, one branch has n monomers, the other branch
has N - n monomers. The Gaussian nature of the two
branches results in the absence of branch correlations
and the Green function21 of a chain is the product of
the Green functions of the two branches. Let the
grafting point be at a ) {0,0,a}, where a is a monomer
size. The total Green function reads

where r and r′ are the coordinates of free ends. The
Green functions factorize over the directions x, y, and
z, i.e. Gn(r,r′) ) Gn

x(x,x′)Gn
y(y,y′)Gn

z(z,z′). In the x and y
directions, the Green functions retain then bulk struc-
ture: Gn

x(x,x′) ) (3/2πna2))1/2 exp[(-3/2)(na2)(x - x′)2],
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and for a similar term for Gn
z(z,z′) within the z direc-

tion, one needs to account for the impermeability of the
wall:

We focus first on the probability distribution function
P(n) describing the number of configurations with
branches of length n and N - n. The probability
distribution P(n) is calculated from the partition func-
tion Z(n) ) ∫ G(r,r′) dr dr′, as P(n) ) Z(n)/Z, with Z )
∫0

N Z(n) dn. In the limit where the radius of gyration of
each branch is larger then a monomer size, i.e. Rg(n) ∼
axn . a, P(n) can be written as

The equivalence of the two branches is reflected in the
symmetry of this function, which has a minimum at n
) N/2. This partition function is dominated by sym-
metric configurations in the sense that it presents only
a weak divergence at n ) 0 which does not dominate
its integral. Half of the branches (Figure 1) belong to
the central region 1/2 - x2/4 < n/N < 1/2 + x2/4.

We consider now a Gaussian chain grafted to a plane
surface by two fixed sliding links at a distance D
between them. The position of two grafting points are
al ) {0,0,a} and a2 ) {D,0,a}. The chain has two free
ends comprising n1 and n3 monomers and one middle
loop with n2 monomers, while the total number of
monomers in the chain is N ) n1 + n2 + n3. The Green
function of the chain is

The integration over positions of the free ends, r and
r′, gives as before the partition function for the tails and
now also for the loop. It can be expressed for instance
as a function of the number of monomers in the first
tail, n1, and the number of monomers in the loop, n2:

The first term expresses the usual free end contribution
of the form n-1/2, while the last two terms account for
the loop. Since the two free ends are identical, we
concentrate on the probability distribution for the
monomers in the loop P(n2) ) Z(n2)/Z, where the loop
partition function Z(n2) ) ∫0

N-n2 Z(nl,n2) dn1 is given by

and the total partition function is Z ) ∫0
N Z(n2) dn2. A

three-dimensional plot of P(n2) is presented in Figure
2. If the distance D between the links is large, most of
the monomers are in the loop and the sliding chain
behaves as a chain fixed by two ends. For small
distances, a loop is entropically unfavorable and the
monomers are distributed between the two ends. If the
chain is grafted by three grafting points (Figure 3), the
two loops turn out to be identical and the monomers
are distributed equally between them. Thus, for a single
loop, the number of monomers in the loop corresponding
to the maximum of P(n2) goes to N for large D, while
for two loops, it tends to N/2. This implies the emergence
of two loops of equal size (Figure 4). In the general case
of a chain grafted by m sliding links separated by the

Figure 1. Schematic picture and the lengths distribution
function of a Gaussian chain grafted to a surface by a sliding
link. Two branches can exchange monomers, while the total
chain length is fixed N ) 200. The central region which
corresponds to symmetric configurations is defined by the
condition ∫n

N-n P(n) dn ) 1/2 (hatched).

Figure 2. Polymer chain grafted to a surface by two sliding
links al and a2 separated by the distance D between them and
the distribution of monomers in the loop P(n2) for the total
chain length N ) 200. The 2D cuts for D/a ) 5, 15, and 30 are
shown in the inset.

Z(n1,n2) ∼ 1

xnl(N - nl - n2)

exp[- 3D2

2n2
]

n2
3/2

(1 - e-6/n2)

(5)

Z(n2) ) π
exp[- 3D2

2n2
]

n2
3/2

(1 - e-6/n2) (6)

Gn
z(z,z′) ) ( 3

2πna2)1/2[exp(- 3
2na2

(z - z′)2) -

exp(- 3
2na2

(z + z′)2)] (2)

P(n) ) 1

πxn(N - n)
(3)

G(r,r′) ) Gn1
(r,a1)Gn2

(al,a2)Gn3
(a2,r′) (4)
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distances D1, D2, ..., Dm-1 along the x direction such that
nk . 1, the partition function is the product

which is completed by the condition of conservation of
monomers N ) ∑k)1

m+1nk. Since the total partition func-
tion is the convolution integral over all variables, it can
be calculated by Laplace transform.22 This allows us to
calculate the long chain limit of the total partition
function

The structure of eq 7 suggests that different loops are
equivalent to each other. In particular, if the distances

between grafting points are equal, Dk-1 ) D, the
monomers should be equally distributed between the
loops.

2.2. Sliding Links with Lateral Mobility. Let us
turn to the situation where not only the chain can slide
through the grafting points but the grafting points
themselves can freely move on the surface. This can be
the case when cyclodextrins are grafted to the surface
of a liquid membrane. If a chain is grafted by a single
mobile link, the redistribution of monomers between two
branches is the same as in the case of a fixed grafting
point (Figure 1). However, in the case of several mobile
grafting points, the distribution of monomers between
free ends and loops is changed.

Consider two mobile sliding links placed at al )
{x1,y1,a} and a2 ) {x2,y2,a}. We can use again the
expression of the Green function for fixed grafting points
(eq 4), but now the partition function is obtained by the
integration both on positions of free ends and positions
of sliding links: Z(nl,n2) ) ∫ G(r,r′) dr dr′ da1 da2

Integration over the tails nl gives the distribution
function of monomers in the loop

where Z ) ∫0
N Z(n2) dn2 is the total partition function.

P(n2) is presented in Figure 5. It rapidly decreases with
the increasing size of the loop n2, which shows that large
loops are not favorable. In general, when a sliding chain
is grafted by several mobile sliding links, the system
acquires two additional degrees of freedom (two trans-
versal coordinates). Each of them contributes to the
partition function as xnk. Thus,

Applying the Laplace transform to the total partition

Figure 3. Polymer chain grafted by three sliding links with
a distance D between them and the distribution of monomers
in one of the loops P(n2) for the total chain length N ) 200.
The 2D cuts for D/a ) 3, 5, and 10 are shown in the inset.

Figure 4. Fraction of monomers in the loop n2/N correspond-
ing to the maximum of the distribution P(n2) as a function of
a scaled distance between the grafting points D/(axN) for a
chain grafted by two (thick) and three (thin) sliding links.
Compare with Figures 2 and 3.

Z(nl,n2,...,nm+1) ∼ 1

xn1nm+1

∏
k)2

m
exp(-

3(Dk-1/a)2

2nk
)

nk
5/2

(7)

ZNf∞ ∼ ∏
k)2

m 1

(Dk-1/a)3
(8)

Figure 5. Chain grafted by freely moving sliding links and
corresponding distribution of monomers in a loop P(n2) for N
) 200.

Z(nl,n2) ) 1

xn1n2(N - n1 - n2)
(1 - e-6/n2) (9)

P(n2) ) 1
Z

π
n2

3/2
, (n2 >1) (10)

Z(nl,n2,...,nm+1) ∼ 1

xn1nm+1

∏
k)2

m 1

nk
3/2

(11)
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function we get Z ∼ (1/xN)(m-1). The form of the
partition function brings us to the same conclusion: the
system prefers to eliminate the loops. This leads to an
effective entropic attraction between mobile grafts,
which tend to stick together even in the absence of any
additional forces.

2.3. Sliding Grafted Chain under a Pulling Force.
Once the sliding links are stuck together, one needs to
apply the force to separate them. In Figure 6, we plot
the force in units of kT needed to separate the two links
to the distance D: f ) ∂ ln Z/∂D. At large distances, D2/
(Na2) . 1, the force coincides with that of the chain
grafted by two ends, f ) -3D/(Na). At small distances,
D2/(Na2) , 1, the curve has a logarithmic divergence, f
∼ ln(D/a). The curve passes by a maximum coinciding
with the creation of the loop.

We can see the difference between a chain grafted by
one end to a surface and a chain grafted by a sliding
link also when one applies a force parallel to the surface
to one of free ends f ) {fx,0,0}. The partition function
of a sliding grafted chain under a pulling force is

and the total partition function Z ) ∫ Z(r′) dr′ is

where â ) (Na2/6)fx
2 is a scaling parameter associated

with the magnitude of the applied force f and I0(x) is
the zero-order Bessel I function.23 At the same time, the
corresponding partition functions of an end-grafted
chain, denoted by the subscript 0, are Z0(r′) )
GN(a,r′)efxrx′ and Z0 ∼ eâ/xN for large N.

For a relatively large force, fx, both end-grafted and
sliding chains are fully stretched with comparable
configurations. However, for relatively small fx, a sliding
chain prefers symmetric configurations with two
branches of more or less equal size. In this limit, the
sliding chains resemble two end-grafted chains com-
prised of N/2 monomers. To illustrate such behavior, we
compare the average distance from the grafting point
in the x direction for both chains. The average distance

for an end-grafted chain is 〈Rx〉0 ) (Na2/3)fx, while the
average distance for a sliding chain is

The resulting curves are plotted in Figure 7. The
increasing force provokes the transition of a sliding
chain from a symmetric configuration with two branches
of size N/2 to fully stretched with a single branch of
length N.

The same behavior is expected for the average square
distance from the grafting point. In the case of an end-
grafted chain, we obtain 〈Rx

2〉0 ) (Na2/3)(1 + 2â), while
for a sliding chain

A sliding chain has more degrees of freedom as
compared to an end-tethered chain. The dispersion of
the size

of the chain under a pulling force is larger than that of
the end-grafted chain of the same length (Figure 8). As
expected, the dispersion of a sliding chain coincides with
the dispersion of an end-grafted chain when the chains
are very stretched.

3. SGP Layers: Brush Regime
When the grafting density in the SGP layers is high

enough, the different chains and chain branches will
interact strongly. Each chain can exchange monomers
between two branches. Although lengths of individual
chains are equal, lengths of their branches can vary

Figure 6. Extension force, f, of a chain grafted by two sliding
links as a function of a distance D between them (solid) in
comparison to the extension of the end-grafted Gaussian chain
of the same length (dash). The total chain length is N ) 200.

Z(r′) ) ∫0

N
dn ∫ dr Gn(r,a)GN-n(a,r′)efxrx′ (12)

Z ) 6eâ/2I0(â/2) (13)

Figure 7. Transversal dimension of a sliding chain 〈Rx〉/
xNa2/6 as a function of the scaled force â ) xNa2/6 applied
to a free end (solid) in comparison with the dimension of the
end-grafted chain of the same length N (dash dot) and two
times shorter chain N/2 (dash).

〈Rx〉 )
〈Rx〉0

2 (1 +
I1(â2)
I0(â2)) (14)

〈Rx
2〉 )

〈Rx
2〉0

2 (1 - 1 - 2â
1 + 2â

I1(â2)
I0(â2)) (15)

∆(â) ) x〈Rx
2〉 - 〈Rx〉

2

〈Rx
2〉

(16)
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from chain to chain. Hence, one can assume that the
branches of the sliding chains are independent “chains”
of annealed length composing a brush with annealed
polydispersity (Figure 9). We will treat a polydisperse
brush in the framework of the self-consistent field
theory of brushes in the strong stretching regime19 valid
for high grafting densities. In this limit, the configura-
tions of chains are considered as trajectories, z(n), of
effective “particles” moving in the field U which depends
only on the distance from the grafting surface. Thus,
the molecular weight of a chain n is analogous to the
time needed for a “particle” for traveling from any
distance z0 to the grafting surface z ) 0. This analogy
leads to a Newton equation of motion for z(n), the
distance from the grafting surface

This allows to relate the distance, z, the molecular
weight of a chain, n, and the self-consistent potential,
U. We consider all three variables to be dimensionless.

Let σ(n) be the number of chains per unit area with
molecular weight n. Then, S(n) ) ∫n

N σ(n) dn is the
number per unit area of chains with molecular weight
larger than n. The total number of chains per unit area
is S0 ≡ S(n ) 0). The polydispersity, σ(n), is related to
the distribution of chain lengths, P(n). Thus, we can
write S(n) ) S0 ∫n

N P(n) dn, where P(n) is normalized:
∫0

N P(n) dn ) 1. This expression can be rewritten as

The concentration at a given height z (or potential
U) is constructed by chains whose ends start at larger
heights z′ (lower potentials U′ < U):

Here, the expression for dz/dn is obtained from the
integration of eq 17.

We will write the potential U in the form U ) (w2/
2)φ2, which corresponds to a θ solution, where the mean
field approximation is justified. Here, w2 is the effective
third virial coefficient. This form will allow us to get
analytical results, which remain qualitatively correct
also for a more conventional choice assuming two-body
interactions (good solvent). We can eliminate the volume
fraction, φ, and write eq 19 as a closed equation for
P(U′):

The solution of this equation, obtained using the
Laplace transform24 is

The chemical potential of a chain is a sum of the
chemical potentials of the two branches µchain ) [µ(n) +
µ(N - n)]/2 where µ(n) ) ∫0

N U(n′) dn′. We can write
µchain(n) as a functional of P(n) which we integrate by
parts using the symmetry of P(n)

Minimization of the free energy functional

with respect to P(n) along with the normalization
condition ∫0

N P(n) dn ) 1 gives the equilibrium distri-
bution of chain lengths:

In a densely grafted layer, the chains adopt very
dissymmetric configurations and behave as end-grafted
chains. The strong stretching approximation ignores
local density fluctuations in the layer. We expect the δ
functions in eq 24 to stand for localized functions
decaying over one correlation length (blob size). This we
consider next.

4. Transition from Sliding Mushrooms to
Sliding Brushes

As we have seen, a single Gaussian chain grafted by
a sliding link prefers symmetric configurations, while

Figure 8. The dispersion ∆ ) x(〈Rx
2〉-〈Rx〉

2)/〈Rx
2〉 of a

sliding chain (solid) and an end-grafted chain, ∆0, of the same
length (dash) under a pulling force applied to a free end.
Inset: the relation, ∆/∆0, between dispersions of sliding and
end-grafted chains.

Figure 9. Schematic picture of a brush of sliding polymers.

d2z
dn2

) dU
dz

(17)

S(n) ) S0 ∫z

H
P(z) dz ) S0 ∫0

U
P(U′) dU′ (18)

φ(z(U)) ) S0 ∫0

U
P(U′) dn

dz
(U,U′) dU′ )

S0 ∫0

U P(U′) dU′

x2(U - U′)
(19)

x2
w

xU ) S0 ∫0

U P(U′) dU′

x2(U - U′)
(20)

U(n) ) wS(n) (21)

µchain )
wS0

2
[∫0

n
dn′ ∫n′

N
P(n′′) dn′′ +

∫0

N-n
dn′ ∫n′

N
P(n′′) dn′′] )

wS0

2
[∫0

n
(N - n +

n′)P(n′) dn′ + ∫n

N
(N - n′ + n)P(n′) dn′] (22)

F{P(n)} )
S0

2

2 ∫0

N
P(n)µchain{P(n)} dn (23)

P(n) ) {1
2

δ(n) 0 < n < N
2

1
2

δ(N - n) N
2

< n < N
(24)
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sliding chains in a densely grafted brush adopt stretched
asymmetric configurations. Thus, there must be a
crossover region between the two configurations as the
grafting density is increased. Such an intermediate
situation can be modeled as a Gaussian chain in a box.
The walls of the box mimic the steric repulsion of
neighboring chains and the decreasing distance between
the walls models the increasing grafting density. To
model the steric repulsion between two branches of the
same chain, we place a wall with a height equal to the
size of the shortest branch in the middle of the box as
depicted in Figure 10. Assume that the shortest branch
has n monomers and the distance between the walls is
D. The shortest branch and the part of the longest
branch of length n are confined in smaller boxes of width
D/2, while the rest of the longest branch of length N -
2n is in the box of width D.

Such intermediate regime corresponds to Na2 > D2

and na2 < D2. In these limits, the partition function of
the chain confined in the box is

where the perpendicular component is

and the component parallel to the grafting surface is21

Since na2 < D2, we can approximate this expression by
the first mode

Thus, the partition function has the form

which is valid for n corresponding to the short branch.
Normalization of this function leads to the following
expression for the distribution of the ends

In the limit Na2 . D2 and na2 , D2, this function
can be approximated by

This gives the estimate of the crossover value for the
length the shorter branch: xn* ∼ D/a. Above the
overlap grafting density, the size distribution of the
branches is bimodal, the shorter branch comprising of
order D2/a2 monomers counts one blob. When the
overlap density is approached from above, the size
distribution spreads over the whole interval and more
symmetric configurations are favored (Figure 10).

5. SGP Layers in Curved Geometries: Stars and
Micelles

We consider now the case where the sliding links that
anchor the polymer are attached to curved surfaces,
with radii much smaller than the unperturbed chain
size. This might be the case, for instance, if cyclodextrin
rings are attached on a packed configuration, resulting
in a starlike polymer. More commonly, this would also
be the result of the micellization of amphiphilic mol-
ecules carrying cyclodextrins as the headgroups. In any
of these cases, the resulting starlike object is composed
of a fixed number of arms with annealed lengths. Notice
that such a bulk configuration can also arise at inter-
faces if ring association takes place close to an impen-
etrable wall. In this section, we first describe the
partition function of the usual three-dimensional star
and adapt such description for the annealed case; we
then extend our results to the case of a surface star.

The partition function Zp of a star25 with p equal
branches of contour length N is given by the critical
exponent γp, Zp ) Nγp-1. Because a two arm star is also
a linear chain, one must have γ1 ) γ2.

Let us now consider a star with two arms of length
n1 and n2 > n1, the partition function obeys the general
scaling form n1

γ2-1(n2/nl)x. In the limiting case nl ∼ 1,
the one arm partition function should be recovered,
hence x ) γ1 - 1. This is now generalized to an arbitrary
star.26

Figure 10. Lengths distribution function of a sliding chain
in a box for N ) 200 and the wall-to-wall distance D/a ) 80
(dash), D/a ) 15 (thin), and D/a ) 5 (thick).

Z ∼
exp(- 2π2na2

D2 )
xn(N - n)

(29)

P(n) ) 1

2πI0(π2Na2

D2 )
×

1

xn(N - n){exp(2π2(N2 - n)a2

D2 ) 0 < n < N
2

exp(2π2(n - N
2 )a2

D2 ) N
2

< n < N

(30)

P(n) ∼ a
D

1
xn

(31)

Z ) Z|
4(n,D

2)Z|
2(N - 2n,D)Z⊥(n,a)Z⊥(N - n,a) (25)

Z⊥(n,a) ) erf(x 3
2n) ∼ 1

xn
(26)

Z|(n,
D

2) )
4

π
∑
p)1

∞ 1

p
sin3(πp

2 ) exp(-
π2p2na2

6D2 ) (27)

Z|(n,D
2) ∼ exp(- π2na2

6D2 ) (28)
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For a star with polydispersed arms all of different
sizes, ranging from the smallest, nl, to the largest, np,
the partition function can be constructed step by step.
Let first all p arms have the size n1, the partition
function is n1

γp-1, let now all chains but one grow to the
next size n2, the partition function becomes n1

γp-1n2
γp-1-1/

n1
γp-1-1; in the next step, let all outer chains but one

grow to the next size n3 and so on. As a result:

Consider now a sliding aggregate comprising q chains.
Let us characterize each chain by the smallest of its two
arms, the largest being its complement to N, and let nl
be the smallest of these q arms, all by definition smaller
than N/2. The partition function of the sliding aggregate
reads:

The behavior of Z(q) depends on whether the integrals
are dominated by the upper or the lower boundary, the
lower boundary being a monomeric cut-off length. Let
p* be the value of the index such as γp* - γp*-1 > -1
and γp*+1 - γp* e -1.

(i) If there are few chains per aggregate (2q e p*), all
integrals are dominated by the upper boundary and
hence by symmetric configurations.

This corresponds to a 2q-arm star, the extra factor
stands for the choice of monomers located at the core.

(ii) In the opposite limit of many chains per aggregate
(q g p*), all integrals are dominated by the lower
boundary and hence by very dissymmetric chain con-
figurations.

This corresponds to a q-arm star.
(iii) In the intermediate regime (q < p* < 2q), there

are essentially 2q - p* dissymmetric chains and hence
p* - q symmetric ones. The aggregate is thus equivalent
to a p* star with an additional factor accounting for the
freedom of symmetric configurations.

Star exponents, γp, are known exactly in two dimen-
sions and for ideal chains (d > 4). Otherwise first-order
ε expansions (ε ) 4 - d) are available.25

These estimates allow for an exact determination of p*
in two dimensions; we get p* ) 5, the first-order ε
expansion happens to give the same value. Assuming
that the first-order ε expansions also give a fair estimate
of p* in three dimensions, we obtain p* ) 9. The
intermediate regime where only part of the chains are

dissymmetric hence extends over aggregation numbers
5 to 8. Like the flat brush limit, the Daoud and Cotton
limit (p . 1, γp ∝ pd/(d-1)) is dominated by dissymmetric
configurations (Figure 11).

Similar arguments can be developed for sliding sur-
face aggregates with a small core grafted on an impen-
etrable wall. The critical exponents, γp, have to be
replaced by the corresponding surface exponents γp

s in
eqs 32-36. The following estimates of the surface
exponents can be used:25

The first-order ε expansion gives the estimate p*s ) 3
in two dimensions and p*s ) 5 in three dimensions. The
former is to be compared with the exact value p*s ) 2
in two dimensions. The first-order ε expansion is likely
to slightly overestimate p*s also in three dimensions. If
one would use the Daoud and Cotton27-like approxima-
tion, γp

s/γ2p ) 1/2, which is exact for infinite p, one
would get p*s ) p*/2. As expected, excluded volume
correlations are stronger at the surface and favor
dissymmetric configurations. In three dimensions, the
intermediate regime is narrow and covers aggregation
numbers 3 and 4 on the basis of the above estimates.

This discussion embodies the special case p ) 1 of a
single chain described in the ideal case earlier. Let again
n be the length of the shorter branch, following eq 32,
with surface exponents, we can write the partition
function

where the exact relation γ2
s ) γl - 1 between critical

exponents has been used. Equation 3 is recovered, up
to the unimportant normalization factor if ideal expo-
nents are inserted. At first order in ε, γl - γ1

s ) 1/2 +
o(ε2), a quadratic interpolation between d ) 2 and d )
4 gives the estimate γl - γ1

s ) 1/2 - 0.027; the weak
divergence of Z(n) at n ) 0 is only slightly stronger than
in the ideal case. Sliding grafts on small colloids or
sliding starlike micelles illustrate thus the interesting
adaptability of sliding grafted chains. If there are only
a few chains per colloid or micelle, they adopt symmetric
configurations and hence all branches participate in the

Figure 11. Number of arms, p, of a sliding bulk star as a
function of the number of sliding chains, q. For a sliding
surface star, only the crossover values are changed.

Zp ) n1
γp-γp-1n2

γp-1-γp-2 ... np-1
0 np

γ1-1 (32)

Z(q) ) ∫cut

N/2
dnqnq

γq+1-γq(N -

nq)
γq-γq-1 ... ∫cut

n2 dn1n1
γ2q-γ2q-1(N - n1)

γ1-1 (33)

Z(q) ∝ NqNγ2q-1 (34)

Z(q) ∝ Nγq-1 (35)

Z(q) ∝ Np*-qNγp*-1 (36)

γp - 1 ) (4 + 9p(3 - p))/64 d ) 2 (exact)

γp - 1 ) 0 d > 4 (exact)

γp - 1 ) ε

16
p(3 - p) + o(ε2) d ) 4 - ε

(37)

γp
s - 1 ) p(15 - 18p)/64 d ) 2 (exact)

γp
s - 1 ) -p/2 d > 4 (exact)

γp
s - 1 ) -p/2 + ε

16
p(3 - p) + o(ε2) d ) 4 - ε

(38)

Z(n) ) (N - n)γ1
S-lnγ1-γ1

S-l n < N (39)
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corona. If there are many chains per colloid or micelle,
they adopt highly dissymmetric configurations and only
half of the branches participate in the corona. Interest-
ingly, there is an intermediate regime where a fixed
number, p*, of branches participates in the corona. This
suggests that in this regime fluctuations in the number
of grafts, or aggregation number, could be somehow
washed out. Following our estimate based on critical
exponents, aggregates comprising from five to eight
chains would present nine longer branches participating
in the corona.

6. Conclusion
Topological grafts as the ones provided by grafted

cyclodextrin-PEO complexes allow for a new class of
materials, where the connection between the different
elements composing the material is defined by simple
topological rules.

One of the most important new features of the SGP
layers that we considered here is that the sliding chains
can adapt to external conditions. In the mushroom
regime, where chains are only sparsely grafted to the
surface, the two arms adopt mainly symmetric confor-
mations. We exactly showed this for ideal chains and
checked that it remains true for chains with excluded
volume statistics. In the latter case, excluded volume
correlations only slightly increase the probability of
dissymmetric configurations. In these SGP systems,
external forces selectively applied to one end can easily
favor dissymmetric configurations. In densely grafted
layers, in contrast, the chains adopt very asymmetric
configurations to accommodate the strong interchain
excluded volume interactions. This is merely because
the free energy density of a layer of equal chains
increases linearly with chain length but super linearly
with grafting density. Qualitatively, a typical graft
comprises a long branch and a short one filling one
correlation volume (blob) at the surface. As the density
decreases and the mushroom regime is approached, the
two branches become typically comparable in size, and
the size distribution is no longer bimodal. We showed
also that a comparable behavior can be obtained for SGP
layers grafted onto curved surfaces, with perhaps more
adaptability due to the extra available space around the
surface. In particular, this leads to an intermediate
grafting density regime where symmetric and asym-
metric chain configurations coexist.

We believe that SGP layers represent a completely
new type of interfacial polymer structures and, as such,
open many new possibilities that we have barely
considered here. For instance, we expect the steric forces
between SGP layers to be qualitatively different from
the usual steric repulsion between grafted polymer

layers. We hope to address this and other related
questions in future extensions of our work.
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