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Rheology of Giant Vesicles: A Micropipette Study
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We develop a micropipette rheometer to study the effect of oscillatory shear flow on the spontaneous
fluctuations of phospholipid bilayers. Our results on giant vesicles show that oscillatory shear flow leads
to a suppression of membrane fluctuations. They also imply that the Helfrich equation is modified in the
presence of the flow. This equation, a fundamental constitutive relation between the amount of area
stored in the fluctuations and the membrane tension, must be supplemented under oscillatory shear by a
flow excess function that we determine.
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FIG. 1 (color online). A typical experimental configuration
for a micropipette rheometer. The vesicle of initial diameter
2R0 is held close to the bottom surface by the suction of the
micropipette. The membrane is sucked into the micropipette
acquiring the geometry of a cylinder capped by a hemisphere.
The distance from the micropipette tip to the hemisphere top is
L, and the internal diameter is 2r. The top surface moves
of radius R0, acquires also a cylindrical component of perpendicular to the micropipette axis.
Fluid bilayers are prevalent in many natural and indus-
trial colloidal suspensions [1]. Self-assembled from phos-
pholipids and other surfactant solutions, they build in the
biological realm the walls of liposomes and cells [2]. In
cosmetics, pharmaceutics, or detergency, formulations of
membrane solutions not only allow for the transport and
release control of other chemical constituents such as
drugs and scents but also help to control solution stability
and flow properties [3,4]. The behavior of fluid bilayers in
quiescent solutions is now well understood. Following
seminal work by Helfrich [5] who first recognized the
importance of the membrane bending elasticity, extensive
theoretical and experimental studies contributed to the
writing of one of the finest chapters in modern statistical
physics of soft condensed matter [6]. Surprisingly, much
less is known about the physics of single bilayers under
flow, in spite of the ubiquitous presence of flow fields
when membrane systems are formulated, conditioned,
transported, and employed. In this Letter we report for
the first time a measure of the flow effect on the Helfrich
equation, the fundamental constitutive relation of fluid
bilayers. This relation states that, although bilayers self-
assemble from solution and should as such be tensionless
objects, thermal fluctuations require some of the available
membrane surface, thus reducing the projected area and
generating tension. The Helfrich equation, connecting the
relative excess area and the membrane tension, reads in
the absence of flow
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where A is the actual area, Aa the apparent, projected area
[5,7], kc a membrane material parameter describing the
bending elasticity, � the actual tension on the membrane
and �0 some fixed, reference value for the tension [8]. A
micropipette apparatus first developed by Evans [9] ex-
ploits this relation for giant vesicles, large enough
(10–100 
m) to be studied in the optical range. In this
geometry, sketched in Fig. 1, a cylindrical pipette of
internal radius r holds the vesicle with some pressure
difference �P. The vesicle, originally in a spherical shape
0031-9007=04=92(10)=108103(4)$22.50 
length L� r and a hemispherical cap of radius r. These
geometric quantities and the Laplace law [10] allow a
simple test of Eq. (1). One usually plots the relative excess
area difference � � �Aa � Aa0�=A

a
0 as a function of the

measured tension �, where Aa0 is the optically measured
surface at some initial value of the tension and Aa is the
optically measured surface for consecutive tension values
�. The linearity of the ��; log�� plot confirms the validity
of the Helfrich relation and provides an operational
method for extracting the value of the bending modulus
kc from the plot slope, as will be shown below.

We study the effect of flow on the Helfrich Eq. (1) by
developing a micropipette rheometer (MpR), sketched in
Fig. 1. The vesicle is held by a micropipette under a
pressure difference �P, above a flat, fixed surface. A
second flat surface, of lateral dimensions much larger
than the vesicle, is held parallel to the bottom surface,
at a distance e. Lateral movement of this surface with
amplitude � and frequency f creates an oscillatory flow
field in the gap characterized by some shear rate _��. We
will show below that the vesicle behavior under the flow
stress can be well described by a modified Helfrich
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relation of the form
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In the following, we discuss the structure of the flow
excess function F� _��;�� after describing the main aspects
of the micropipette rheometer and the associated experi-
mental conditions.

Giant vesicles were prepared by the electrofor-
mation method [11]. The 1,2-Dioleoyl-sn-glycero-3-
phosphocholine (DOPC) phospholipids were purchased
from Avanti and used without further purification. A
chloroform solution of DOPC at 0:2 mgml�1 was then
spread on a ITO covered glass and dried under vacuum for
10 h. A second identical glass plate was used to cover an
incubation chamber delimited by a ring of Sigillum wax
(Vitrex, Copenhagen, Denmark) and filled with a 0.1 M
solution of sucrose. An ac voltage of 5 V and 10 Hz was
applied across the 1 mm chamber gap for about 3 h. The
vesicles were then transferred into the observation cham-
ber filled with a glucose solution of 0.102 M. The slight
density difference between the inner and outer solutions
drive the vesicles to the neighborhood of the bottom plate
where they can easily be handled and observed. The
concentrations of glucose and sucrose osmotically match
the inner and outer solutions, and avoid swelling or de-
swelling of the vesicles. Images are obtained by a Nikon
inverted microscope Eclipse TE200, with a charge-
coupled device Hamamatsu C5405 camera. A micro-
pipette driven by a xyz shaft of 1 
m precision is brought
into contact with a chosen vesicle, and then a pressure
difference is applied through a hydraulic system [12]. The
measurement by a liquid-liquid pressure transducer
(DP103-08, Validyne, SEI3D, USA) allows for a pressure
precision of 10�2 Pa.

In the absence of flow, the MpR reproduces classical
results from a micropipette apparatus. Micropipettes are
prepared with an internal radius close to 5 
m. Pressure
increments of at least �P � 0:03 Pa are applied to the
vesicle, leading to a corresponding increase of the total
length L of the vesicle drawn into the micropipette.
Because the total volume enclosed by the vesicle re-
mains constant throughout our experiments, the value
of the relative excess area difference is given by � �
�R2

L � rL=4�=R2
0 � 1, where R0 is the radius of the free

vesicle, RL is the outer radius of the vesicle given by vol-
ume conservation R3

L � R3
0 � r3=4� 3r2L=4, and other

quantities have been defined above. Similarly, the value of
the tension is given by � � �P=2� r=�1� r=RL�. As
expected, in the absence of flow, there is a linear relation-
ship between the logarithm of the tension and the relative
excess area difference �. We performed similar experi-
ments for a series of 15 different vesicles, obtaining an
average value for the bending modulus kc � 22	 3kBT,
close to values reported in the literature [13]. In practice,
the Helfrich relation is obeyed only in a finite range of the
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tension, corresponding typically in our experiments to �
values in the range �0; 0:03�. Above a certain value, most
of the excess surface has been consumed, and one starts to
stretch the actual membrane, deviating from the fluctua-
tion logarithmic region of the ���� curve. All the experi-
ments described below were performed in the fluctuation
regime.

As explained above, the MpR was designed to measure
flow field effects on the vesicle behavior. The flow is
imposed by the movement of the upper plate, parallel to
the lower surface and perpendicular to the micropipette
axis — see Fig. 1. The upper plate is a rectangular glass
slide of dimensions 5� 5� 0:17 mm3, driven by a piezo-
electric actuator PiezoJena PX400, coupled to a function
generator Agilent 33120-A. Typical experiments are per-
formed by imposing an oscillatory motion of the form
��t� � �0 sin�2�ft�, with amplitudes �0 and frequencies f
in the ranges 0:7< �0 < 5 
m and 0:1< f < 10 Hz.
Also, the distance e between the upper and the bottom
plates, fixed during an experiment, is typically in the
range 0:5< e< 2 mm. Note that in the absence of a
vesicle, a pure shear flow is generated far from the plate
borders, with a flow velocity profile vx � _���t�y, where the
coordinate system �x; y; z� has its z axis parallel to the
micropipette axis, and x is in the bottom plate. Such flow
is characterized by a single quantity, the shear rate _���t�
that is a combination of amplitude, frequency, and gap
thickness, _���t� � _�� cos�2�ft�, with _�� � 2�f�0=e [14].
Under typical conditions, shear rates span the range
10�4 < _�� < 10�1 Hz.

The MpR can be operated in several different modes
that we now describe. In the fixed pressure mode, an
initial suction pressure is applied to the vesicle in the
absence of flow and then kept constant under flow. The
suction pressure is low, typically of the order of 0.03 to 0.1
Pa, well within the fluctuation regime. Under an oscilla-
tory flow, the length L of the vesicle section inside the
micropipette increases. A modification of the flow con-
ditions imposed by a new chosen amplitude or frequency
is followed by relaxation in a few seconds towards a new
L value. Such modifications are reversible; an amplitude
or frequency cycle allows one to recover consistent, path
independent L values. As shown in Fig. 2(a), the relative
excess area difference � increases linearly with the shear
amplitude �0 when the shear frequency f is kept constant,
and with f at fixed �0. The linear dependence holds as far
as the associated � values stay within the fluctuation
regime. We investigated the behavior of many different
vesicles, choosing for this particular set of experiments
0:75< �0 < 5 
m, 0:1< f < 10 Hz, e � 1 mm, and e �
2 mm. Anticipating a key role for the shear rate, we dis-
play in Fig. 2(b) the values of the slope � � @�=@ _�� for
all the performed experiments. We stress at this point that
each experiment is performed with a different vesicle,
and the dispersion of slope values reflects thus a disper-
sion in some constitutive parameter of the vesicle. We
return later to this issue.
108103-2
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FIG. 2. (a) Results for the increase of the relative excess area
difference in the presence of an oscillatory shear gradient of
amplitude _��. (b) Distribution of the slope values � � @�=@ _��
for different experiments. (4) fixed amplitude, (�) fixed
frequency, (�) fixed amplitude, movement along the micro-
pipette axis.
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FIG. 3. (a) Results for suction experiments at fixed shear rate:
(�) _�� � 0 s�1, (�) _�� � 2:4� 10�3 s�1, and (�) _�� � 3:3�
10�3 s�1. (b) Effective bending modulus as a function of shear
rate _��. kc� _�� � 0� � 22kBT.

P H Y S I C A L R E V I E W L E T T E R S week ending
12 MARCH 2004VOLUME 92, NUMBER 10
A second mode of operation for the micropipette rhe-
ometer allows for performing the usual suction experi-
ment under dynamic conditions. For each experiment, the
vesicle is grabbed by the micropipette in the presence of
the flow, and then the suction increased as previously de-
scribed for quiescent conditions. We display in Fig. 3(a)
two suction experiments performed with amplitude �0 �
0:45 
m, at a fixed distance e � 1000	 5 
m from the
bottom plate, with frequencies corresponding to shear
rates _�� � 2:4� 10�3 Hz and _�� � 3:3� 10�3 Hz. An ex-
periment in quiescent conditions is also shown for com-
parison. As the figure shows, in the presence of flow, the
pressure displacement curve still follows a logarithmic
law but with a different slope that is shear rate dependent.
One can thus, for each shear rate, determine an apparent
curvature modulus kc� _���.We performed a series of experi-
ments in the shear rate range 7� 10�4 to 4� 10�2 Hz.
Values for the effective modulus kc� _��� are shown in
Fig. 3(b) where each point is an average over 5–13 differ-
ent vesicles. The experimental values are well described
by a function of the form

kc� _��� �
kc�0�

1� �0 _��
(3)

as shown by the linearity of the curve, when we plot
kc�0�=kc� _��� as a function of _��, with kc�0� � 22kBT. The
best fit gives �0 � 143 s. The linear dependence of the
relative excess area difference � with the shear rate,
shown in Fig. 2(a), the existence of an apparent modulus,
and its functional from Eq. (3) imply a flow contribution
to the Helfrich relation (2) of the form

F� _��;�� � �0 _��
kBT
8�kc

ln

�
�1

�

�
(4)
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with �1 a reference tension value that does not play any
role in the suction experiments at fixed shear rate. This
expression, which accurately represents our data, has
never been, to our knowledge, theoretically suggested or
discussed.

Our results demonstrate that the effect of oscillatory
shear flow is to reduce membrane fluctuations. This is
schematically shown in Fig. 4. In the absence of flow,
there is a linear relationship, displayed in the figure as a
dashed line, between the relative excess area (A� Aa�=Aa

and the logarithm of the tension, log���. Note that
the fluctuation regime holds only for �
�0, and that
the extrapolation point � � �0 where fluctuations com-
pletely unfold is nonphysical — see, for instance,
Refs. [5,8]. The flow excess function F� _��;�� adds a nega-
tive contribution to the relative excess area, thus reducing
the amount of membrane area stored in the fluctua-
tions. The slope of this contribution, depicted by the
dot-dashed line in the figure, is proportional to shear
rate. It holds for �� �1. An experiment performed at
fixed shear rate will follow the full line in the picture that
represents the sum of both contributions. On the other
hand, at fixed tension, one moves downwards in the
diagram along a vertical line, also reducing the amount
of stored area as the shear rate increases. The reference
tensions �0 and �1 do not play any role in a suction
experiment that measures only relative excess area dif-
ferences. On the contrary, the reference tension �1 plays a
role in the fixed tension experiments, determining the rate
at which the shear rate unfolds the fluctuations � �
@�=@ _�� � �0 log�~��=�1�, where ~�� is the fixed applied
tension. The dispersion of the slopes � shown in Fig. 2
is therefore the expression of the dispersion in �1, which
spans the range 10�10<�1<10�5 Nm�1, with most of
the values close to �1 � 10�7 Nm�1. The physical ori-
gin of �0 is well understood [8]. It is formally related to
108103-3
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FIG. 4. Helfrich constitutive equation under oscillatory shear
flow. Dashed line: linear relation between the relative excess
area and the logarithm of the tension without flow. Dotted-
dashed line: flow contribution, with a slope proportional to
shear rate. Full line: new Helfrich relation, also the trajectory
of an experiment at fixed shear rate. Vertical arrow depicts the
diagram trajectory for an experiment at fixed tension.
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the upper cutoff of the fluctuation spectrum, and thus
represents the number of fluctuating modes stored in the
vesicle. A dispersion of the values of �0 reflects thus
variations of the preparation conditions. We argue that
�1 must be related to the smallest characteristic tension of
the membrane, associated with the lower cutoff of the
fluctuation spectrum. The dispersion of �1 values reflects
also inhomogeneities in vesicle formation.

Our results show that the flow perturbs significantly
the fluctuations for shear rates _�� larger than a typical
shear rate _��0 � ��1

0 , with �0 of the order of a hundred
seconds. This is much larger than the longest relaxation
time for vesicle shape fluctuations [15], which is given by
the bending time �K �  R3

0=kc � 0:8 s for a vesicle of
radius R0 � 20 
m. Our results under small amplitude
oscillatory flow are quite distinct from the cases of sta-
tionary shear flow, where distortion of the vesicle shape
has been observed [16] for _���K � 1, and where previous
theoretical work [17] has predicted an increase of the
fluctuations, with the resulting surface excess being es-
sentially stored in the lower, ellipsoidlike deformation
mode. Indeed, within the parameter range corresponding
to our working conditions, the flow does not induce any
optically discernible deformation of the vesicle but leads
to a very significant reduction of fluctuations. Also, our
findings are consistent with a linear dependence on shear
rate of the relative excess area, different from the qua-
dratic predictions for steady shear flow [17]. In related
membrane systems such as smectic lyotropics and sponge
phases, suppression of fluctuations has been experimen-
tally reported [18] and theoretically discussed within the
framework of phase transitions, as recently reviewed by
Marlow and Olmsted [19,20]. For ordered stacks, these
effects depend on experimental conditions such as the
orientation with respect to the flow or flow gradient
directions, or the details of the coupling between hydro-
dynamic flow and membrane deformation, but share a
common feature: fluctuations with average lifetimes
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larger than the typical shear rate are convected by the
flow and effectively suppressed from the fluctuation spec-
trum. These predictions lead to characteristic times larger
than �K by several powers of kc=�kBT�, and closer to our
results. A micropipette rheometer, first designed to in-
spect the behavior of vesicles under flow, thus appears
also as a useful tool to bring new insight to long-standing
dynamical issues in statistical physics of soft materials.

This work was supported by the CNRS Chemistry
Department under the ‘‘Jeunes Equipes’’ AIP. We thank
P. Bassereau and R. Dimova for helpful discussions.
*Present address: Polymer Materials and Engineering
Faculty of Applied Sciences, Delft University of Tech-
nology (TU Delft), Julianalaan 136, 2628 BL Delft, The
Netherlands.

[1] R. Lipowsky and E. Sackmann, Structure and Dynamics
of Membranes (Elsevier, Amsterdam, The Netherlands,
1995), Vols. 1A and 1B.

[2] B. Alberts et al., Molecular Biology of the Cell (Garland,
New York, 1994).

[3] D. Lasic, Nature (London) 355, 279 (1992).
[4] J. van de Pas et al., Colloids Surf. A 85, 221 (1994).
[5] W. Helfrich, Z. Naturforsch. 28c, 693 (1973).
[6] S. Safran, Statistical Thermodynamics of Surfaces,

Interfaces and Membranes (Addison-Wesley, Reading,
MA, 1994).

[7] J.-B. Fournier, A. Ajdari, and L. Peliti, Phys. Rev. Lett.
86, 4970 (2001).

[8] U. Seifert, Adv. Phys. 46, 13 (1997).
[9] E. Evans and D. Needham, J. Phys. Chem. 91, 4219

(1987).
[10] J. Hulin, L. Petit, and C. Mitescu, Physical Hydro-

dynamics (Oxford University Press, Oxford, 2001).
[11] M. Angelowa and D. Imitrow, Mol. Cryst. Liq. Cryst.

152, 89 (1987).
[12] J.-B. Manneville, P. Bassereau, S. Ramaswamy, and

J. Prost, Phys. Rev. E 64, 021908 (2001).
[13] W. Rawicz et al., Biophys. J. 79, 328 (2000).
[14] We also took into account standard finite frequency

deviations in oscillatory flow, _�� always referring to the
effective shear rate at the bottom surface.

[15] F. Brochard and J. Lennon, J. Phys. (Paris) 36, 1035
(1975).

[16] K. de Haas et al., Phys. Rev. E 56, 7132 (1997).
[17] U. Seifert, Eur. Phys. J. B 8, 405 (1999).
[18] J. Yamamoto and H. Tanaka, Phys. Rev. Lett. 74, 932

(1995).
[19] S. Marlow and P. Olmsted, Phys. Rev. E 66, 061706

(2002).
[20] A close inspection of the new constitutive relation re-

veals that our experimental results cannot be explained
by simply introducing a modified, shear rate power law
expression for the surface tension. Thus, at this point we
were not able to make a working connection with results
from Ref. [19] or from elsewhere in the literature.
108103-4


