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The role of polymer spacers in specific adhesion
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We study the role of flexible spacers in specific adhesion from the point of view of polymer
reaction—diffusion theory. By assuming that the interactions between complementary adhesion
moieties occur on a length scale much smaller than the size of the polymer spacer, we describe in
detail binding and rupture between two opposing surfaces. Predictions are given for the physical
properties of interest such as the time evolution of bond density and the ranges of attraction and
unbinding. We also discuss the dynamic crossover between reversible and irreversible bridging.
© 2004 American Institute of Physic§DOI: 10.1063/1.1651088

I. INTRODUCTION chain does not follow a simple diffusion trajectory, even at
o o ) short times?? contrary to the movement of a particle attached
Biotin and streptgwdl_n are stand_a_trd exam_ples of ligand—q 5 single spring. The modeling of a polymer chain by a
receptor pairs that give rise to specific adhesiéMeasure- single spring has been shown to wrongly predict many fea-
ments of binding free enerd{ have provided values in the tures of the kinetics of polymer reactiofs.
range 30—3¥gT, almost as large as 1 eV, the typical energy | this paper we describe the bridging kinetics of poly-
of covalent ponds. Although such strong |nteract|on§ onlymer spacers, by properly accounting for the many internal
rarely occur in nature, a broad spectrum of molefu&asrst dynamic modes of the chains within the framework of poly-
that provide for specmc,_ complementary interactions in _themer reaction—diffusiofRD) theory. A summary of some of
range 1-2GgT, see for instance Table I. Moreover, the in- ihe calculations and results reported here were announced in
teraction between the figand receptor pairs is typically shorg previous lette?” In the next section we revisit classical
ranged?® For the biotin—streptavidin case, for instance, onlyesuits of this formalism, and extend it to account for the
when the distance from the b|ot|n_ to the streptavidin S'te_'spossibility of reversible reactions, where both binding and
smaller than 1 nm can any adhesiveness be felt. In practicypinding can occur. The case of reactions occurring during
situations, the ligands and receptors promote adhesion begse giffusion of a particle tethered to a single spring is fully
tween two opposing surfaces to which they are attaéh%d. discussed for later reference. A number of new analytical
The specificity of these stickers, requiring a well-definedegyits are presented in this context. In Sec. Il we discuss
relat|ve_ positioning of the_mole(_:u_les for the interaction 10e kinetics of polymer spacers, and describe both the bind-
occur, implies a low effective affinity between the opposinging process of two surfaces moving towards each other and
surfaces if at least one of the moieties has not kept somg,q rupture of two surfaces being separated. Finally, in the

mobility. Flexible molecules that anchor the ligand or theconcjusions we discuss the experimental relevance of our
receptor to the surface, while providing for such mobility, are,eg1ts and speculate on possible new developments of our
called spacers. They play a central r8fé°in controlling the  formalism.

adhesion between two surfaces by tuning the binding range
and kinetics of ligand—receptor pairs.

Flexible and semi flexible polymers are good candidatesl. THE REACTION—DIFFUSION EQUATION
to mimic the behavior of natural spacers, and as such, they
are employed in experiments on model systéf& Early
work!®=2! on the role of spacers on specific adhesion ha
assumed that they can be modeled as single springs in
viscous environment, with one spring constlrand the as-

We consider a system of noninteracting mobile particles,
dhe ligands, and fixed reaction sites, the receptors. When a
'gand moves into the reaction range of the receptor, a revers-
ible or irreversible reaction takes place. The absence of in-

sociate relaxation time= ¢/k, with ¢ the viscous friction teractions between ligands implies that the joint spatial prob-

coefficient. Although this is a reasonable starting point, suct?Pility distribution of the ligands at timeis the product of
simplified representation of a linear molecule, with manySlngle ligand spatial probability distributionB(r,t). Under

configurational degrees of freedom, does not accurately deUch conditions, the knowledge df(r,t) is enough to de-
scribe the movement of the actual polymer spacers. It is weffC'iDe the system. The latter is governed by the reaction—
known, for instance, that the end monomer of a polymeld'ffUSIon equation

LP(r,t)=—Q(r,t)¥(r,t)+P(r,t 1—]dr\[’r,t}
dpresent address: BASF AG Polymer Physics, 67056 Ludwigshafen, Ger- (r.H Qruw(r.Y ( ){ ( )( )
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TABLE I. Binding free energy data for some ligand—receptor pairs. The freethe system. Obviously, the latter also means that receptors

energy of binding can be in some cases of the ordekgdf, making the are removed from the system. However, we assume in this
inclusion of reversibility in the reaction relevant for biological systems. Data

from Weber(Ref. 2. work that the qumber c_>f avqilable rece_ptors Iar.getly exceed

the number of ligands, in which case this effect is irrelevant.

Binding free The second term on the rhs of E(.), containingP, de-

Protein Ligand energy ksT) scribes the process of reverse reaction, i.e., a rupture event in
Streptavidin Biotin -32 a ligand—receptor complex previously formed. Such rupture
Anti-DNP-globulin DNP-lysine -14-—20 occurs through thermal activation, and it releases a ligand
Horse liver ADH NADH -15 back to the system thus increasing the value of the spatial
Yeast ADH Ethanol —4.2 integral of .

We will restrict here our treatment to homogeneous dis-
tributions of receptors on flat surfaces. In this case, anly
the dimension perpendicular to the surface is relevant, and
the system is one dimensional. The spatial probability distri-
bution ¢(z,t) is a function ofz and timet only, and Eq.(1)

d can be rewritten as

L= E—DVZ, 2

with £ an operator. In the case of free diffusing ligands, for
instance L is the diffusion operator

Lip(z,t)=—Q(z,t)h(z,t) + P(z,1) l—J' dz¥(zt)

whereD is the diffusion coefficient. In the presence of any

external potential acting on the ligand€, becomes a 3
Fokker—PIancKl;P) operator, i.e.L¥=0 is the FP equation where now/, is the corresponding one dimensional, diffu-
for the problent. sion or FP operator. Since E() is linear, one can formally

The details of the reaction between receptors and ligandsolve it using the Green'’s function meth&dThe propagator
are contained ilQ. In particular,Q carries information about G follows from the solution of the equation
the location of the reaction sites and capture radius. The , , , ,
product QW gives the probability rate of reaction between L,G(z.2 t=t)=é(z=2") 4(t=t") (4)
ligands and receptors. In other words, the first term on thavith the appropriate boundary conditions specific to the sys-
right-hand sidgrhs) of Eq. (1) decreases the spatial integral tem. Notice thaG is the conditional probability of finding a
of ¥ whenever some ligand travels to within the reactionligand at a positiorz’ at timet’ provided that it was at at
radius of a receptor, which effectively removes ligands fromtime t. Using Egs.(3) and (4), it follows that

¢(z,t)=¢o(z,t)+f;dt’J dz' G(z,z',t—t") —Q(z’,t’)¢(z’,t’)+P(z’,t’)[l—f dz’ zp(z”,t’)H, (5)

whereyy(z,t) is the solution of the diffusion or FP equation functions, but the exploration of those fine effects is beyond
in the absence of reaction, i.&;#(z,t)=0. The advantage the scope of the present work. A simple dimensional analysis
of this formal integral solution fors is that, for systems like of Eq. (1), using Eqs(6) and(7), reveals thag has dimen-
polymer chains, with many internal modes, it is easier tosions of a velocitylength/time, while p the dimensions of a
formulate explicitly the propagatds than writing down the frequency(inverse time. At a later stage, we will take the
problem in terms of the operatat; .2"-% limit p— and g—oe, while keeping the ratia/p finite.

The homogeneous distribution of receptors on a flat surThis limit roughly amounts to making both the forward and
face located at positiom=¢, and the short range reaction backward reactions infinitely fast, while keeping a finite re-
radius, are expressed by the following sink and source opaction radius.

eratorsQ andP: Plugging Eqgs(6) and(7) into Eqg. (5) leads to
Q(zt)=qd(z—¢) (6) w(z,t)=w0(z)+ftdt’ Gz lit—t")

and 0
P(Z,t)ng(z_g)_ (7) X[_qlﬂ(fit/)+p¢(t')], (8)

The delta function is well adapted to describe a structurelesvsvhere

reaction sink, a good approximation for typical ligand—

receptor interaction ranges that are short in comparison to the d)(t):l—f dzy(zt). 9
spatial variation of the external potential imposed upon the

ligand. More complex potentials can also be accounted fomhis quantity, ¢(t), represents the fraction of reacted
by this formalism, for instance by combining several deltaligands, and as such, it is of central importance for our de-
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scription. Since the integral ovef in Eq. (8) is a convolu-  dependent reaction process. In order to obtgin the time
tion, it is convenient to introduce the Laplace transform  required to irreversibly bind the ligand—receptor pairs, one
first solves the following equation:

fs)=| dtf(tyexp—st 10
(s) fo (Dexp—sy (10 1+8** h(s™ ) =0, (18
and write the reaction—diffusion equation as which is the analogous of Ed16), but with ¢.=1, and
search once again for the pad&* that is closest to zero. In
y %@ - y y he limit of large ch les, when the
W(z,5)= +G(z,€,5)(—qi(€,5)+pe(s)). (11  thelimit of large characteristic time scales, when the igands
S have to climb a potential barrier larger thigT to meet the
receptorss** is almost zero and one can show that, to lead-
ing order,h(0)=1/|s** | = 7;,. From Eq.(16), it follows that

Integrating Eq.(11) in z and using Eq(9) yields

SB(s)=q(€,5)— pe(s). (120 h(0)=1/(eqs*|) and consequently
Evaluating Eq(11) atz= ¢ leads to a self-consistent relation 1
betweeny(€,t) and ¢(t). Plugging the latter result into Eq. Tre:@: h(0) deq= Tirbeq- (19
(12) and taking the limit of fast reactionp{>~, q— and
k=q/p finite) one finally obtains, after some algebra, Notice that the argument above depends on the condition that
the reaction times;, and 7, are clearly larger than any char-
f{)(s)z E Kipo(£) (13) acteristic microscopic time. For clarity, one finally rewrites
S 1+ksG{,€,s) Eq.(17) as
In the limit s—0 (which corresponds to— ), the dy- D(1) = ded 1 —exd —t/(begric) 1) (20

namic propagator reduces to the equilibrium probability dis-_ _ ) _ )
tribution in the absence of reaction, i.eG(¢,(,s) This shows that the long time behaviors of irreversible and

—yo(€)/s as s—0, and Eq. (13 reduces 10 geq rgversible_binding are similar, up to a nqrmalizatio_n fa_ct_or of
= Kiio(€)/(1+Kifo(€)), Where deq is the equilibrium frac- time and ligand fraction. The normalization factor is trivially

tion of reacted ligands. Using this, one can rewrite B@) the equilibrium value of thg ligand frgctiqn in the presence o_f
as the receptors. Before turning to applications, we connect this

equilibrium value ¢ to the characteristics of the ligand—
- beq 1 receptor bond. As depicted in Fig. B(¢) is the difference
P(s)= ?quh(s) (14 petween the minimum of the potential where the ligand is
confined and the value of the potential at the receptor site.
where The ligand has to overcome an energy bard¢r) in order
é(g ts 1 to reach the receptor. The depth of the binding potential at
h(s)= ———— =, (15  the receptor is given bW (notice that we sekgT=1). In
po(€) S this simplified model, the largew is, the stronger is the
Notice thatsh(s) vanishes in the limis=0. The information ~ Pinding between the ligand and the receptor. Provided that

about the dynamics of the system is contained in the propdhe Potentialu(z) is convex and that the ligand and the
gatoré(€ 0.9). receptor are much smaller than the characteristic length scale

In order to obtain the time variation of the reacted frac-Of variatio_n ofU, one can i_gnore the_(_zlet_ails of the confining
tion of ligands,(t), one has to perform the Laplace inver- potential in order to obtain an equilibrium value of bound

sion of $(s). Although the inversion does not always lead tollgands. Under such conditions, the system behaves approxi-

an analytical function, and one might need to resort to nu_mately like a two state model, where one state has zero po-

. . R . tential energy(ligands outsideand the other a potential en-
merical Laplace inversion, it is in general straightforward to ~ ? L .
extract the long time behavior @f(t). This follows from the ]?rrg);iUr(f)f bW (rilg?indiéjnszd% Cl)r:edc:;\dzl {(;aasnr?/dsvr\]/ci\;]vrthaththe
analysis of the pol@&2° of Eq. (14), which solve the equa- ' action 0f bound ligands s refate (€) a oug

tion eW-U(0)

L+ o™ h(s*)=0. a9 D= (20

The longest decay time ifb(t) is given by the pole that is  The importance and usefulness of this relation is that it sepa-
closest to the origin. Around this pole, the inverse Laplacgies the effects of the tether potential, which is solely related
transform leads to to the position of the receptors and the equilibrium binding

d(1) = ded 1—exfd —t/7]) 17y  strength.

with characteristic timer,;= 1//s*|. A. The cyclization reaction of a single spring

One can relate to the characteristic time; of a sys- We first study the academic problem of a collection of
tem where the reaction is irreversiblest1). This has the noninteracting ligands attached to single springs of spring
advantage of identifying what are the respective roles of theonstantx, in a viscous medium with a friction coefficiett
local bond formation and bond rupture on the final, diffusionand in contact with a thermal bath. The receptor is located at
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the originz=¢=0 [i.e.,U(£)=0], and the potential depth is
given byW. This is a simplified one-dimensional version of
the classical polymer cyclization problem.

By solving the Langevin equation, one can show that for
this system the dynamic propagator is giveriby

1 (z—2'})?
G(z,Z t—t')= ———=exp — —— 1,
V2mA3(1—j?) 2\%(1—j?)
(22 0 2 4 6 8
wherezandz’ are the positions of the ligand, respectively, at the

timest andt’ (with t'<t), A=1/k"? is the characteristic FiG. 1. Time dependence of the fraction of bound ligagggor ¢e,=1,
length scale associated with the quadratic potential, in unit8.8, 0.5, and 0.2. The full lines correspond to the exact inverse Laplace
where kgT=1, and j=exp(—(t—t')/7). The characteristic transfqrm of Eq.(26), obtained analytically foz{;eq:l_ [cf. Eq. (28)], anc_l
microscopic tmer s given by7—(lx. The dynamic propa- _[Umefaly for he hervaliesd The dsted ines e e o e
gator can be equivalently formulated as a conditional probrig): r,,/7=1 for ¢eg=1, 7,e/7=0.94 for dei=0.9, 7,6/ 7=0.70 for eq
ability for the ligand: given its positior’ at timet’, it gives  =0.5 andre/7=0.56 for ¢e=0.2.

the probability of finding the ligand at positianat timet.

For completeness, we quickly discuss the two dynamic limits

contained in the propagator.

For times much smaller than the characteristic time of ~ 1 I'(1/2+s7/2) 9
relaxation (—t'<7), j=1—(t—t')/7 and the dynamic S s \/;F(1+37-/2)' (27)
propagator reduces to

One can show that the latter is the Laplace transform of the

G=exp{—(z—2')%/4Dt}/\4wDt, (23)  function
whereD =1/{ is the diffusion constant. As expected at short 2
times, the propagator is that of a free diffusing ligand that  ¢(t)=1— —arcsifexp(—t/7)). (28
does not feel the presence of the confining potentiét) 4
= KkZ7%/2. This provides an interesting case where an exact Laplace
For times much larger than the relaxation tinte-¢’  inversion can be performed. Figure 1 shog&) as in Eq.
>7), wherej=0 one has (28) and the corresponding long time behavior as given by
G=exp(— 2223/ W (24) Eqg. (17). Notice that in this particular case, the characteristic

reaction timer;, is the same as the microscopic timeFig-
The dynamic propagator has reduced to the Boltzmann dissre 1 also showsp(t) obtained through numerical Laplace
tribution: after a long time, the system reaches thermal equinversiori® of Eq. (26) for different values Olpeq# 1, as well
librium and the probability of finding the ligand at a certain as the corresponding long time behavior given by @dq).
position becomes independent of the initial condition. As expected, the long time behavior agrees with the exact

In order to obtaing(t), the probability of finding the results att/7>1.

ligand reacted at timg one needs to determine the function Another informative quantity to compute, is the single
h(s) [cf. Eq.(19], whereG is now given by Eq(22) andy,  ligand spacial distribution(z,t). In order to obtain it, one

by Eg. (24). One can show that can use the fact that E¢12) is the Laplace transform of
1[al(1+s7/2) de(t)
S I ——=qy({,t)—po(t 29
hS) =S| Tizrsi) (25) qr Ay —p(t) (29
with T'(x) the usual gamma functidii. This in turn, when [with ¢(0)=0]. One can then rewrite the reaction—diffusion
plugged into Eq(14), leads to Eqg. (8) as
~ 1 L, de(t)
(9= L0 . w<z,t>:wo<z)—f dt’ G(z,6;t—t) — 5 (30
S 1— gt beqV Tl (1+57/2)/T(1/2+ 57/2) 0
(26)

For the irreversible case, one has the analytical form(@j,
In the case of irreversible reactions, the potential well depttand naturally its derivative. After some algebra one can show
Wi s infinite and¢eq=1 [see Eq(21)], and ¢(s) reduces to  that

1 ) L exp(— 2121 (1]")?)
)= — 2222 — = | dj’
NeU="50 {exp( Z1an) wfj S a-aind

: (31)
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0.4 can show that
Ti 1 V2N
03 T =X (EN)12). (33
T st 4
P o2 o . .
The reaction time is here an exponential function of the po-
0.1 sition of the receptor, the classical Kramers result for the first
passage problerit,of a ligand escaping over the barrier of a
0 quadratic potential into an infinitely deep and steep adhesion
-4 -2 0 2 4
well.
z/\

FIG. 2. The time variation of the probability distribution of a ligand diffus- |||. SPECIFIC ADHESION PROMOTED

ing in quadratic potential. At=0 the ligand is in thermal equilibriufwith BY LIGAND—RECEPTOR PAIRS
W(zIN)~exd—2Z/(2\9)]], and an infinite well is put at the origin. As time

goes on, the probability of finding the ligand outside the wik., the  A. Specific binding of approaching surfaces
integral of ) decreases. The snapshotsyoére taken at=0.999 (prob-

ability almost 1 of finding the ligand outside the wel.99, 0.9, 0.8r, and There has been recently an increasing interest in the ad-
0.17 (probability almost 0 of finding the ligand outside the weThe arow  hesion between surfaces through interacting ligand-pair
indicates the time evolution of the successive curves. receptorsl.e_lBAlthough a Iarge amount of theoretical work

has been devoted to the problem of rupture between such
o . . . surfaces, surprisingly not much has been done on the prob-
yxhr—gej _2e),(Aps( ;/T).eIPe%tlThie:/eoa:zE!g: ?ﬁrps(tz'élrlli;r?]oswgms lem of spacer-mediated specific adhesion between two ap-
:. anlgé .h'ch );[:e clos:e o the relce tlors As some of th%roaching surfaces. The tools presented in the preceding sec-
I:gands ;\:elremvgved from the distributti))n o'thers diffuse intoIon are ideal to describe theoretically such systems. Recent
9 ’ experiment¥}” on such systems yielded some intriguing re-

the reaction zone and are consumed as well. As time goes Is% : . "
Do . . 2 Its. Figure 3 sketches an idealized surface force apparatus
infinity, no ligands are left outside the well, and the distribu- 9 PP

tion function vanishes (SFA) experiment_: functionalize_d polymers, which c_on_tain at

' one end a chemically bound ligand molecieg., biotin,
are attached to a plane; the surface coverage by polymers is
B. Receptor away from the origin: low, i.e., the polymers hardly interact with each other. In an
The Kramers problem opposing plane, the receptofs.g., streptavidinare homo-

We now consider the model usually employed to mode@eneously distributed. The number of available receptors is
tethered ligand—receptor interactions, with the ligand at/much larger than the number of ligands. In the language of
tached to a single spring of constantand the receptor on f[he preceding section, the ligand moves in a pote_ntlal, which
the opposing surface at=¢#0. In this case, the function IS created by the polymer and, when in contact with a recep-

h(s) for the quadratic potential is given by tor, reacts reversibly to form a complex. The depfch of the
ligand—receptor potentidV can be taken from experimental
exp((€/N)?j/(1+])) data(cf. Table ). In the SFA experiments, the two surfaces

h(s)= f:dtexq—st)

\/ﬁz ' approach each other roughly at a constant speedf the

(32)  orderof 1 A's, and the force exerted by one surface on the
other is measured. When the slope of the force, i.e., when the
derivative of the force with respect to distance between sur-
faces, becomes larger than the spring constant of the SFA
apparatus, the system becomes unstable and the two surfaces
jump into contact.

The knowledge of the fraction of bound ligands, or
equivalently bridging chains, at a certain time allows the
calculation of the force between the surfaces. Since the poly-
mers are assumed to not interact with each other, simply
summing the forces exerted by each of the bound polymer
leads to a force law that can be directly compared to experi-
ments. For this reason, the reaction—diffusion formalism is
useful in this context, but one still needs to have a reasonable
description for the dynamic propagator of the polymer at-
tached to a wall. This is an unresolved question in polymer
science® for describing the experimental system some ap-
proximation tor; needs to be done. If for instance the poly-

o _ S mer could be described by a single harmonic spring, the
fI_G_. 3. Idgallzatllon ofthe‘SFAexpenments.Afunctlonahzed polyfeen- _ligand would then diffuse in a simple harmonic potential,
aining a ligand in one of its engattached to a surface creates the potential

felt by the ligand. A second surface is homogeneously covered by receptoré€ading in th(‘_:‘ limit Of largef, the d?Stanqe be_tween thelsur'
The two surfaces approach each other at speed faces, to the irreversible reaction time given in E28). This

where agairj = exp(—t/7). The solution of Eq(18) using the
h(s) above leads to the relevanmf . If the receptor is in a
position such that(¢) (cf. Fig. 3 is larger tharkgT, one
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is however a poor approximation. A more realistic descrip-  Finally, we still have to modify the results obtained in
tion can be obtained through the Rouse model, which acSec. Il in order to accommodate for the fact that the surfaces
counts for all the internal modes of the end-attached chaimactually move with respect to one another. With Ey) one

but not for the presence of the neighboring impenetrablés able to calculate the variation of the fraction of chains that
wall. In this case, the propagator still has the Gaussian formbridge between two such immobile surfaces as a function of
Eq. (22), but the relaxation function(t) is now a sum of time. Naturally, it is more useful to calculate the fraction of

many mode$® One can show in this case that bridging chains as a function of the distant®etween two
1 moving surfaces. From this one can easily calculate the force
TR i ; ;
7 (0)= 3/2exp{U(€)}, (34) as a funct|on_of the (_jlstance, and one can also easily extract
8U(¥) the range of interactiofd, .

One can easily go from one description to the other in
the case where the surfaces move in respect to each other
with a velocity v much smaller thanv* =Rg/7,, where

7,1.43 Rr=N3%5%a is the Flory radius of the polymer and,
7ir(£) = Wexp{U({’)}, (39— ,R¥/kgT is the Zimm time(which is the characteristic

- ) o microscopic time in this problem, wherg is the solvent
within the preaveraging approximatiéh.rg and , are, re- viscosity. For relatively short chaingwith the number of
spectively, the Rouse and the Zimm times. In this work Wekuhn units of the order 1Q0this velocity corresponds to

will use 7, from the Zimm model, which is more appropriate ~10° AJs, which is much larger than the usual experimental
for dilute polymer solutions. Note also that the reaction timevalues fory. In this limit, one can apply the chain rule to
obtained from the Rouse model is a factbfaster than the de(t)/dt and obtain

time obtained from a single spring. This reflects the compact

while the Zimm model, which includes hydrodynamic
interactions? gives

space exploratic?ﬁ of the movement of the chain end. The de(t) S deo(€) 37)
Zimm result is still faster by a factod? than the spring dt de
result, but slower by a factdd 2 than the Rouse resuilt. whereu (€) =d¢(t)/dt, which assumes a unique and invert-

Using the Rouse or the Zimm model allows for a properipje relation between the distance between the surfaces and
treatment of the multimode nature of the chain motion, tojjme, viz. €(t). The left-hand sidélhs) of Eq. (37) is given

within the limits of the assumed model. However, any ofpy the time derivative of E¢20), which can be rewritten as
these models refer intrinsically to Gaussian chain models,

which do not lead to the proper landscape of the extension de(®) = ¢eq(€(t))_¢(€(t))_ (38)
energyU(€). In order to improve our predictions, we had dt bed (1)) 7ir

recourse of Monte Carlo simulations to produce a more re-  Note that ¢, depends on the distande between the
alistic stretching potential(€¢). Simulations for a pearl- surfaces through its dependence di¢), as in Eq.(21).
bead model of a chain between two walls were performedne can now eliminate the time variable from the problem,
and the resulting force-distance and enerﬁz-distance profilesnd obtain the differential equation

obtained. These results, published elsewhérill be used - -

here. Notice that these simulations reveal that the large ex- d¢(€)_ ¢(0) = dd)eq((?)' (39
tension limit ((/aN>0.7) for the stretching energy follows a d¢ v (€) ped ) 7ir d¢ .

law similar to that of the freely jointed chaiJO model,  where ¢ is, as wished, the free parameter afiek o ()
albeit with a different prefactor: — ¢(£) is the function we would like to know. The boundary

¢ condition for Eq.(39) is that atf—o, ¢(£—o0) vanishes,
SYPRA

, (36 since both the fraction of bound chaigsand the equilibrium
whereN is the number of Kuhn units aralthe Kuhn length.  tion finally leads to

U(£)=—Nlog

value ¢4 vanish in this limit. Solving the differential equa-

(7, _dd)eq(€") B (e de¢’
o= o T)(l GX% J v<€'>¢eq<e'>nr<e'>]) 49

which gives the fraction of bound chains as a function of the  With Eq. (40) one is finally in a position where a system
distancef between them as the two surfaces approach at as the one depicted in Fig. 3 can be theoretically analyzed.
speedv(¢) assumed much smaller than the microscopicFigure 4 shows the fraction of bound chains for a chain of
speedv*. When the latter assumption is not true, for high 100 monomersN= 100 (with monomer sizea=3.5A, and
speeds of approach, the problem has to be reformulated &-=66A), both for a given adhesion strengfhat various

the level of the reaction—diffusion E@8) to take into ac- speeds of approach and at constant speed for various values
count the relative movement of the surfaces. of the adhesion strengtW. As previously mentioned, the
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5(/3\) FIG. 5. The behavior of the adhesion range as a function of the speed of
approachy (top) and binding strengthV (bottom. Plot(a), €, as a function
FIG. 4. Fraction of bound chaing as a function of the distance between of the speed of approachfor fixed values of the strengt. At low enough
surfaces? (for N=100 and equilibrium siz&:=66 A). Plot(a), fixed ad-  speed of approach the range is determined by the equilibrium condition
hesion strengttW=10kgT for speeds(from right to lefy v=1, 1, 10, U (e =W. Plot (b), ¢, as a function of the adhesive strength(for N
10°, 10, and 5<10" As™*. The two lower speeds are coincident, indicat- —100). At small enough binding strength, the equilibrium range of interac-
ing that for this chain and affinity, equilibrium conditions are reached for tjgn €oqis again recovereddashed curve Notice that in both graphs the

v<10'As™*. Plot (b), fixed speecv=1As™* and affinity (from left to  nonequilibrium behavior sets in at high speednd at high binding strength
right) W=5, 10, 15, 20, 25, and 3gT. For W>20 the curves coincide, .

indicating that irreversible conditions are at work.

divides the limits of equilibrium from irreversible adhesion,
potential U(¢) created by the polymer, present both in theas depicted in Fig. 6.
expression forpe, and 7, was obtained elsewhere through Finally, the index of polymerization of the polymer teth-
MC simulations’ As it can be seen from Fig.(), an ex- €S and the strength of the ligand—receptor couples can be
periment performed at a small enough speedllows the experimentally varied in an independent way, thus tuning the
system to reach the equilibrium value ¢f while increasing  ange of adhe5|o_n. We plot in Flg._ 7 the interaction range for
speeds reduce the interaction range by a substantial amouft.variety of chain lengths and fixed adhesion strerigth
In this latter situation the chains do not have the time to— 25KsT, atvarious approaching speeds. As expected, lower
reach across the gap into their equilibrium range positiorsP€eds and longer chains have larger adhesion range. Note
before the surfaces move into a smaller distance. For the cadéS0 the concavity of the curves showing that longer chains
shown in the figure, withiN=100 andW=10kgT, speeds bridge at smaller relative extensions than the shorter ones.
superior to 5<10° As™! result in a significant reduction of -
the adhesion range from its equilibrium value &g, B- Rupture of specifically bounded surfaces

=160A. Given a typical experimental speed of 1.73{73F_i9- The formalism shown above can be equally applied to
4(b) shows when the adhesion strength valieis high  the case where two bound surfaces are moved away from

enough for the adhesion range to be independent of the agach other(i.e., rupturg. The chain rule in Eq(37) now
tual W value, a situation we refer to as irreversible adhesionyegds

The importance of the speed of approackand of the
adhesive strengtWV is summarized in Fig. 5. For simplicity,

we define the range of adhesion the distaficbetween the 10

surfaces at which half of the chain bridge, i.é(f,)=1/2. Irreversibie
There is nothing fundamental about this definition, and de- 10°

pending on the particular experimental setup, this definition V(A/S)

has to be modified. The adhesion rangeof a polymeric e

tether withN=100 is shown in Fig. &) as a function of the Equilibrium

speed of approaah, for fixed values of adhesive streng¥

while in Fig. 5b) ¢, is shown as a function of the binding 1 570 17 1 6 18 30
strengthW (for fixed values ofv). At large enough values of W (kBT)

v or W, the range becomes independent of the binding

strength but becomeé_weaklw dependent on the speed O_f FIG. 6. The crossover line from reversible to irreversible adhegjiren by
approach, a fact that is reflected in the crossover line whiclhe point wheref o, equals the plateau value 6f at a givenw).
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FIG. 7. Range of adhesiofy for polymers with different indices of poly-
merizationN (a=3.5 A andW=25kgT). The dashed curve is the equilib-
rium solution (equivalent tov =0), and the full curves correspond, from
right to left, tov=0.1, 1, 10, and 10A/s. The dotted—dashed curves cor-
respond to the total extension of the polymer and the equilibrium end posi
tions.

dg(t)  de(l)

da Y de

Using the latter and similar manipulations that followed Eq.
(37), one arrives atnow with boundary conditionp=1 as

{—0)
de/l )
de¢’

4
1“"“”[‘Lffvw')mq(e'mw')])' “2

Away from equilibrium, i.e., at high enough speed the
behavior of¢(l) strongly depends on whether the two sur-

(41)

¢(€):1+ fofdg//<w

X

faces approach or move away from each other. As depicte
in Fig. 8, when the two surfaces move apart from each other
at high enough speeds, the bounded ligand—receptor pairs d
not have the time to unbind at the equilibrium range, Ieading5
to an effective increase of the range of adhesion in compari-
son to the equilibrium value. This is exactly the opposite
effect as in the case where the surfaces approach each oth

at high enoughv, ¢(€) exhibits an hysteresi&f. inset to
Fig. 9), leading to different values of, if the surfaces are
approaching or moving away from each otliat the same
speedv). This is explicitly shown in Fig. 9, where the range

200 o
(R

250

FIG. 8. Fraction of bound chaing as a function of the distance between
surfacest (for N=100 and equilibrium siz&-=66 A) and fixed adhesion
strengthw=10kgT for speedgfrom right to lefy v =1, 1¢ (indistinguish-
able from the former 10° and 16 A/s. Notice that the evolution of the

A. Moreira and C. Marques

4 5 6
10 10 10

3
10
v (A/s)

10°

FIG. 9. Range of adhesion as a function of the speddr two surfaces

igpproaching(full lines) and moving away(dashed linesfrom each other

(for W=10 andW=15kgT). In equilibrium, £, does not distinguish the
direction ofv. Away from equilibrium, the range of adhesion for surfaces
approaching each other is alwagmaller than for surfaces moving away
from each other due to the hysteresis exhibitedff) (shown as the inset
for v=5x10° andW=10).

of adhesion is plotted as a function of(for W=10 andW
=15) for both approaching and receding surfaces.

Finally, we calculate the dynamic strength between the
two surfaces during the rupture process. Although these re-
sults are already known in the literatufgee, for instance,
Refs. 12 and 1f it is of interest to check the results that the
reaction—diffusion formalism yield. At a certain distanée
the force exerted by each chain is given Hy¢)
—dU(€)/d¢. For the planar geometry considered in Fig.
3, it follows that the total statisticdlverage force exerted
by one surface on the other is givenB{)=f(£) p(£). As
ia is shown in Fig. 10, this force increases in range, as pre-
lously discussed, but also in magnitude. The force shows a
nonmonotonic behavior, and its maximum value is usually

o _ . "

associated to the critical force necessary to pull apart the two
urfaces. At low speeds the critical force has been shbion
scale linearly withv, a behavior that we also obtain, as Fig.
11 shows. The formalism used here is thus consistent with
er, . . :

previous results, but we argue that it has a wider range of
application and it is liable to several developments account-
ing for instance for heterogeneous distributions of receptors

or solvent flow.

V

04
0.3

fo
aKg 02

0.1

FIG. 10. Forcgdynamic strengthbetween two surfaces during rupture. The
various curves represent velocitiesbetween the surfaces varying, from
bottom to top, between 1 A/s and 1&/s. The tethers havBl=100 units
(Re=66 A) and the binding strength &/=10kgT. Away from the equi-
librium values, the force increases in magnitude and in range with the ve-

curves occurs in the opposite order as in the case of approaching surfacescity. The monomer size is given ly=3.5A.
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2 the problem of friction between surfaces to which polymers
10 i
are attachet as well as to transient polymer networks and
polymer surfactant mixtures.
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