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We study the role of flexible spacers in specific adhesion from the point of view of polymer
reaction–diffusion theory. By assuming that the interactions between complementary adhesion
moieties occur on a length scale much smaller than the size of the polymer spacer, we describe in
detail binding and rupture between two opposing surfaces. Predictions are given for the physical
properties of interest such as the time evolution of bond density and the ranges of attraction and
unbinding. We also discuss the dynamic crossover between reversible and irreversible bridging.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1651088#

I. INTRODUCTION

Biotin and streptavidin are standard examples of ligand–
receptor pairs that give rise to specific adhesion.1,2 Measure-
ments of binding free energy3,4 have provided values in the
range 30– 35kBT, almost as large as 1 eV, the typical energy
of covalent bonds. Although such strong interactions only
rarely occur in nature, a broad spectrum of molecules2 exist
that provide for specific, complementary interactions in the
range 1 – 20kBT, see for instance Table I. Moreover, the in-
teraction between the ligand receptor pairs is typically short
ranged.5,6 For the biotin–streptavidin case, for instance, only
when the distance from the biotin to the streptavidin site is
smaller than 1 nm can any adhesiveness be felt. In practical
situations, the ligands and receptors promote adhesion be-
tween two opposing surfaces to which they are attached.7–9

The specificity of these stickers, requiring a well-defined
relative positioning of the molecules for the interaction to
occur, implies a low effective affinity between the opposing
surfaces if at least one of the moieties has not kept some
mobility. Flexible molecules that anchor the ligand or the
receptor to the surface, while providing for such mobility, are
called spacers. They play a central role10–15in controlling the
adhesion between two surfaces by tuning the binding range
and kinetics of ligand–receptor pairs.

Flexible and semi flexible polymers are good candidates
to mimic the behavior of natural spacers, and as such, they
are employed in experiments on model systems.16–18 Early
work19–21 on the role of spacers on specific adhesion has
assumed that they can be modeled as single springs in a
viscous environment, with one spring constantk and the as-
sociate relaxation timet5z/k, with z the viscous friction
coefficient. Although this is a reasonable starting point, such
simplified representation of a linear molecule, with many
configurational degrees of freedom, does not accurately de-
scribe the movement of the actual polymer spacers. It is well
known, for instance, that the end monomer of a polymer

chain does not follow a simple diffusion trajectory, even at
short times,22 contrary to the movement of a particle attached
to a single spring. The modeling of a polymer chain by a
single spring has been shown to wrongly predict many fea-
tures of the kinetics of polymer reactions.23

In this paper we describe the bridging kinetics of poly-
mer spacers, by properly accounting for the many internal
dynamic modes of the chains within the framework of poly-
mer reaction–diffusion~RD! theory. A summary of some of
the calculations and results reported here were announced in
a previous letter.24 In the next section we revisit classical
results of this formalism, and extend it to account for the
possibility of reversible reactions, where both binding and
unbinding can occur. The case of reactions occurring during
the diffusion of a particle tethered to a single spring is fully
discussed for later reference. A number of new analytical
results are presented in this context. In Sec. III we discuss
the kinetics of polymer spacers, and describe both the bind-
ing process of two surfaces moving towards each other and
the rupture of two surfaces being separated. Finally, in the
conclusions we discuss the experimental relevance of our
results and speculate on possible new developments of our
formalism.

II. THE REACTION–DIFFUSION EQUATION

We consider a system of noninteracting mobile particles,
the ligands, and fixed reaction sites, the receptors. When a
ligand moves into the reaction range of the receptor, a revers-
ible or irreversible reaction takes place. The absence of in-
teractions between ligands implies that the joint spatial prob-
ability distribution of the ligands at timet is the product of
single ligand spatial probability distributionsC(r ,t). Under
such conditions, the knowledge ofC(r ,t) is enough to de-
scribe the system. The latter is governed by the reaction–
diffusion equation

LC~r ,t !52Q~r ,t !C~r ,t !1P~r ,t !F12E dr C~r ,t !G
~1!
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with L an operator. In the case of free diffusing ligands, for
instance,L is the diffusion operator

L5
]

]t
2D¹2, ~2!

whereD is the diffusion coefficient. In the presence of any
external potential acting on the ligands,L becomes a
Fokker–Planck~FP! operator, i.e.,LC50 is the FP equation
for the problem.25

The details of the reaction between receptors and ligands
are contained inQ. In particular,Q carries information about
the location of the reaction sites and capture radius. The
productQC gives the probability rate of reaction between
ligands and receptors. In other words, the first term on the
right-hand side~rhs! of Eq. ~1! decreases the spatial integral
of C whenever some ligand travels to within the reaction
radius of a receptor, which effectively removes ligands from

the system. Obviously, the latter also means that receptors
are removed from the system. However, we assume in this
work that the number of available receptors largely exceed
the number of ligands, in which case this effect is irrelevant.
The second term on the rhs of Eq.~1!, containingP, de-
scribes the process of reverse reaction, i.e., a rupture event in
a ligand–receptor complex previously formed. Such rupture
occurs through thermal activation, and it releases a ligand
back to the system thus increasing the value of the spatial
integral ofC.

We will restrict here our treatment to homogeneous dis-
tributions of receptors on flat surfaces. In this case, onlyz,
the dimension perpendicular to the surface is relevant, and
the system is one dimensional. The spatial probability distri-
bution c(z,t) is a function ofz and timet only, and Eq.~1!
can be rewritten as

L1c~z,t !52Q~z,t !c~z,t !1P~z,t !F12E dzC~z,t !G ,
~3!

where nowL1 is the corresponding one dimensional, diffu-
sion or FP operator. Since Eq.~3! is linear, one can formally
solve it using the Green’s function method.26 The propagator
G follows from the solution of the equation

L1G~z,z8,t2t8!5d~z2z8!d~ t2t8! ~4!

with the appropriate boundary conditions specific to the sys-
tem. Notice thatG is the conditional probability of finding a
ligand at a positionz8 at time t8 provided that it was atz at
time t. Using Eqs.~3! and ~4!, it follows that

c~z,t !5c0~z,t !1E
0

t

dt8E dz8 G~z,z8,t2t8!F2Q~z8,t8!c~z8,t8!1P~z8,t8!F12E dz9 c~z9,t8!G G , ~5!

wherec0(z,t) is the solution of the diffusion or FP equation
in the absence of reaction, i.e.,L1c0(z,t)50. The advantage
of this formal integral solution forc is that, for systems like
polymer chains, with many internal modes, it is easier to
formulate explicitly the propagatorG than writing down the
problem in terms of the operatorL1 .27,28

The homogeneous distribution of receptors on a flat sur-
face located at positionz5,, and the short range reaction
radius, are expressed by the following sink and source op-
eratorsQ andP:

Q~z,t !5qd~z2, ! ~6!

and

P~z,t !5pd~z2, !. ~7!

The delta function is well adapted to describe a structureless
reaction sink, a good approximation for typical ligand–
receptor interaction ranges that are short in comparison to the
spatial variation of the external potential imposed upon the
ligand. More complex potentials can also be accounted for
by this formalism, for instance by combining several delta

functions, but the exploration of those fine effects is beyond
the scope of the present work. A simple dimensional analysis
of Eq. ~1!, using Eqs.~6! and ~7!, reveals thatq has dimen-
sions of a velocity~length/time!, while p the dimensions of a
frequency~inverse time!. At a later stage, we will take the
limit p→` and q→`, while keeping the ratioq/p finite.
This limit roughly amounts to making both the forward and
backward reactions infinitely fast, while keeping a finite re-
action radius.

Plugging Eqs.~6! and ~7! into Eq. ~5! leads to

c~z,t !5c0~z!1E
0

t

dt8 G~z,,;t2t8!

3@2qc~,,t8!1pf~ t8!#, ~8!

where

f~ t !512E dzc~z,t !. ~9!

This quantity, f(t), represents the fraction of reacted
ligands, and as such, it is of central importance for our de-

TABLE I. Binding free energy data for some ligand–receptor pairs. The free
energy of binding can be in some cases of the order ofkBT, making the
inclusion of reversibility in the reaction relevant for biological systems. Data
from Weber~Ref. 2!.

Protein Ligand
Binding free
energy (kBT)

Streptavidin Biotin 232
Anti-DNP-globulin DNP-lysine 214–220
Horse liver ADH NADH 215
Yeast ADH Ethanol 24.2
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scription. Since the integral overt8 in Eq. ~8! is a convolu-
tion, it is convenient to introduce the Laplace transform

f̂ ~s![E
0

`

dt f~ t !exp$2st% ~10!

and write the reaction–diffusion equation as

ĉ~z,s!5
c0~z!

s
1Ĝ~z,,,s!~2qĉ~,,s!1pf̂~s!!. ~11!

Integrating Eq.~11! in z and using Eq.~9! yields

sf̂~s!5qĉ~,,s!2pf̂~s!. ~12!

Evaluating Eq.~11! at z5, leads to a self-consistent relation
betweenc(,,t) andf(t). Plugging the latter result into Eq.
~12! and taking the limit of fast reactions (p→`, q→` and
k[q/p finite! one finally obtains, after some algebra,

f̂~s!5
1

s

kc0~, !

11ksĜ~,,,,s!
. ~13!

In the limit s→0 ~which corresponds tot→`), the dy-
namic propagator reduces to the equilibrium probability dis-
tribution in the absence of reaction, i.e.,Ĝ(,,,,s)
→c0(,)/s as s→0, and Eq. ~13! reduces to feq

5kc0(,)/(11kc0(,)), wherefeq is the equilibrium frac-
tion of reacted ligands. Using this, one can rewrite Eq.~13!
as

f̂~s!5
feq

s

1

11feqsh~s!
, ~14!

where

h~s!5
Ĝ~,,,,s!

c0~, !
2

1

s
. ~15!

Notice thatsh(s) vanishes in the limits50. The information
about the dynamics of the system is contained in the propa-
gatorĜ(,,,,s).

In order to obtain the time variation of the reacted frac-
tion of ligands,f(t), one has to perform the Laplace inver-
sion of f̂(s). Although the inversion does not always lead to
an analytical function, and one might need to resort to nu-
merical Laplace inversion, it is in general straightforward to
extract the long time behavior off(t). This follows from the
analysis of the poles23,29 of Eq. ~14!, which solve the equa-
tion

11feqs* h~s* !50. ~16!

The longest decay time inf(t) is given by the pole that is
closest to the origin. Around this pole, the inverse Laplace
transform leads to

f~ t !5feq~12exp@2t/t re# ! ~17!

with characteristic timet re51/us* u.
One can relatet re to the characteristic timet ir of a sys-

tem where the reaction is irreversible (k@1). This has the
advantage of identifying what are the respective roles of the
local bond formation and bond rupture on the final, diffusion

dependent reaction process. In order to obtaint ir , the time
required to irreversibly bind the ligand–receptor pairs, one
first solves the following equation:

11s** h~s** !50, ~18!

which is the analogous of Eq.~16!, but with feq51, and
search once again for the poles** that is closest to zero. In
the limit of large characteristic time scales, when the ligands
have to climb a potential barrier larger thankBT to meet the
receptors,s** is almost zero and one can show that, to lead-
ing order,h(0).1/us** u5t ir . From Eq.~16!, it follows that
h(0).1/(fequs* u) and consequently

t re5
1

us* u
5h~0!feq5t irfeq. ~19!

Notice that the argument above depends on the condition that
the reaction timest ir andt re are clearly larger than any char-
acteristic microscopic time. For clarity, one finally rewrites
Eq. ~17! as

f~ t !5feq~12exp@2t/~feqt ir!# !. ~20!

This shows that the long time behaviors of irreversible and
reversible binding are similar, up to a normalization factor of
time and ligand fraction. The normalization factor is trivially
the equilibrium value of the ligand fraction in the presence of
the receptors. Before turning to applications, we connect this
equilibrium valuefeq to the characteristics of the ligand–
receptor bond. As depicted in Fig. 3,U(,) is the difference
between the minimum of the potential where the ligand is
confined and the value of the potential at the receptor site.
The ligand has to overcome an energy barrierU(,) in order
to reach the receptor. The depth of the binding potential at
the receptor is given byW ~notice that we setkBT51). In
this simplified model, the largerW is, the stronger is the
binding between the ligand and the receptor. Provided that
the potentialU(z) is convex and that the ligand and the
receptor are much smaller than the characteristic length scale
of variation ofU, one can ignore the details of the confining
potential in order to obtain an equilibrium value of bound
ligands. Under such conditions, the system behaves approxi-
mately like a two state model, where one state has zero po-
tential energy~ligands outside! and the other a potential en-
ergyU(,)2W ~ligands inside!. One can easily show that the
fraction of bound ligands is related toU(,) andW through

feq~, !5
eW2U~, !

11eW2U~, !
. ~21!

The importance and usefulness of this relation is that it sepa-
rates the effects of the tether potential, which is solely related
to the position of the receptors and the equilibrium binding
strength.

A. The cyclization reaction of a single spring

We first study the academic problem of a collection of
noninteracting ligands attached to single springs of spring
constantk, in a viscous medium with a friction coefficientz
and in contact with a thermal bath. The receptor is located at
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the originz5,50 @i.e.,U(,)50], and the potential depth is
given byW. This is a simplified one-dimensional version of
the classical polymer cyclization problem.

By solving the Langevin equation, one can show that for
this system the dynamic propagator is given by22

G~z,z8,t2t8!5
1

A2pl2~12 j 2!
expH 2

~z2z8 j !2

2l2~12 j 2!
J ,

~22!

wherez andz8 are the positions of the ligand, respectively, at
times t and t8 ~with t8,t), l51/k1/2 is the characteristic
length scale associated with the quadratic potential, in units
where kBT51, and j 5exp(2(t2t8)/t). The characteristic
microscopic timet is given byt5z/k. The dynamic propa-
gator can be equivalently formulated as a conditional prob-
ability for the ligand: given its positionz8 at timet8, it gives
the probability of finding the ligand at positionz at time t.
For completeness, we quickly discuss the two dynamic limits
contained in the propagator.

For times much smaller than the characteristic time of
relaxation (t2t8!t), j .12(t2t8)/t and the dynamic
propagator reduces to

G5exp$2~z2z8!2/4Dt%/A4pDt, ~23!

whereD51/z is the diffusion constant. As expected at short
times, the propagator is that of a free diffusing ligand that
does not feel the presence of the confining potentialU(z)
5kz2/2.

For times much larger than the relaxation time (t2t8
@t), where j .0 one has

G5exp$2z2/2l2%/A2pl2. ~24!

The dynamic propagator has reduced to the Boltzmann dis-
tribution: after a long time, the system reaches thermal equi-
librium and the probability of finding the ligand at a certain
position becomes independent of the initial condition.

In order to obtainf(t), the probability of finding the
ligand reacted at timet, one needs to determine the function
h(s) @cf. Eq.~15!#, whereG is now given by Eq.~22! andc0

by Eq. ~24!. One can show that

h~s!5
1

s FApG~11st/2!

G~1/21st/2!
21G ~25!

with G(x) the usual gamma function.29 This in turn, when
plugged into Eq.~14!, leads to

f̂~s!5
feq

s

1

12feq1feqApG~11st/2!/G~1/21st/2!
.

~26!

In the case of irreversible reactions, the potential well depth
W is infinite andfeq51 @see Eq.~21!#, andf(s) reduces to

f̂~s!5
1

s

G~1/21st/2!

ApG~11st/2!
. ~27!

One can show that the latter is the Laplace transform of the
function

f~ t !512
2

p
arcsin~exp~2t/t!!. ~28!

This provides an interesting case where an exact Laplace
inversion can be performed. Figure 1 showsf(t) as in Eq.
~28! and the corresponding long time behavior as given by
Eq. ~17!. Notice that in this particular case, the characteristic
reaction timet ir is the same as the microscopic timet. Fig-
ure 1 also showsf(t) obtained through numerical Laplace
inversion30 of Eq. ~26! for different values offeqÞ1, as well
as the corresponding long time behavior given by Eq.~17!.
As expected, the long time behavior agrees with the exact
results att/t@1.

Another informative quantity to compute, is the single
ligand spacial distributionc(z,t). In order to obtain it, one
can use the fact that Eq.~12! is the Laplace transform of

df~ t !

dt
5qc~,,t !2pf~ t ! ~29!

@with f~0!50#. One can then rewrite the reaction–diffusion
Eq. ~8! as

c~z,t !5c0~z!2E
0

t

dt8 G~z,,;t2t8!
df~ t !

dt
. ~30!

For the irreversible case, one has the analytical form off(t),
and naturally its derivative. After some algebra one can show
that

c~z,t !5
1

A2pl2 H exp~2z2/2l2!2
2

p E
j

1

d j8
exp~2z2/2~12~ j / j 8!2!!

A~12 j 82!~12~ j / j 8!2!
J , ~31!

FIG. 1. Time dependence of the fraction of bound ligandsf, for feq51,
0.8, 0.5, and 0.2. The full lines correspond to the exact inverse Laplace
transform of Eq.~26!, obtained analytically forfeq51 @cf. Eq. ~28!#, and
numerically for the other values offeq. The dashed lines are the long time
behavior from Eq.~17! with the characteristic times following from Eq.
~16!: t re /t51 for feq51, t re /t.0.94 for feq50.9, t re /t.0.70 for feq

50.5 andt re /t.0.56 forfeq50.2.
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where j 5exp(2t/t). The time evolution ofc(z,t) is shown
in Fig. 2. As expected, the reaction first concerns those
ligands which were close to the receptors. As some of the
ligands are removed from the distribution, others diffuse into
the reaction zone and are consumed as well. As time goes to
infinity, no ligands are left outside the well, and the distribu-
tion function vanishes.

B. Receptor away from the origin:
The Kramers problem

We now consider the model usually employed to model
tethered ligand–receptor interactions, with the ligand at-
tached to a single spring of constantk and the receptor on
the opposing surface atz5,Þ0. In this case, the function
h(s) for the quadratic potential is given by

h~s!5E
0

`

dt exp~2st!Fexp~~,/l!2 j /~11 j !!

A12 j 2
21G ,

~32!

where againj 5exp(2t/t). The solution of Eq.~18! using the
h(s) above leads to the relevantt ir . If the receptor is in a
position such thatU(,) ~cf. Fig. 3! is larger thankBT, one

can show that

t ir

t
5

1

us** u
.

A2pl

,
exp~~,/l!2/2!. ~33!

The reaction time is here an exponential function of the po-
sition of the receptor, the classical Kramers result for the first
passage problem,31 of a ligand escaping over the barrier of a
quadratic potential into an infinitely deep and steep adhesion
well.

III. SPECIFIC ADHESION PROMOTED
BY LIGAND–RECEPTOR PAIRS

A. Specific binding of approaching surfaces

There has been recently an increasing interest in the ad-
hesion between surfaces through interacting ligand-pair
receptors.16–18Although a large amount of theoretical work
has been devoted to the problem of rupture between such
surfaces, surprisingly not much has been done on the prob-
lem of spacer-mediated specific adhesion between two ap-
proaching surfaces. The tools presented in the preceding sec-
tion are ideal to describe theoretically such systems. Recent
experiments16,17on such systems yielded some intriguing re-
sults. Figure 3 sketches an idealized surface force apparatus
~SFA! experiment: functionalized polymers, which contain at
one end a chemically bound ligand molecule~e.g., biotin!,
are attached to a plane; the surface coverage by polymers is
low, i.e., the polymers hardly interact with each other. In an
opposing plane, the receptors~e.g., streptavidin! are homo-
geneously distributed. The number of available receptors is
much larger than the number of ligands. In the language of
the preceding section, the ligand moves in a potential, which
is created by the polymer and, when in contact with a recep-
tor, reacts reversibly to form a complex. The depth of the
ligand–receptor potentialW can be taken from experimental
data~cf. Table I!. In the SFA experiments, the two surfaces
approach each other roughly at a constant speedv, of the
order of 1 Å s, and the force exerted by one surface on the
other is measured. When the slope of the force, i.e., when the
derivative of the force with respect to distance between sur-
faces, becomes larger than the spring constant of the SFA
apparatus, the system becomes unstable and the two surfaces
jump into contact.

The knowledge of the fraction of bound ligands, or
equivalently bridging chains, at a certain time allows the
calculation of the force between the surfaces. Since the poly-
mers are assumed to not interact with each other, simply
summing the forces exerted by each of the bound polymer
leads to a force law that can be directly compared to experi-
ments. For this reason, the reaction–diffusion formalism is
useful in this context, but one still needs to have a reasonable
description for the dynamic propagator of the polymer at-
tached to a wall. This is an unresolved question in polymer
science:32 for describing the experimental system some ap-
proximation tot ir needs to be done. If for instance the poly-
mer could be described by a single harmonic spring, the
ligand would then diffuse in a simple harmonic potential,
leading in the limit of large,, the distance between the sur-
faces, to the irreversible reaction time given in Eq.~33!. This

FIG. 2. The time variation of the probability distribution of a ligand diffus-
ing in quadratic potential. Att50 the ligand is in thermal equilibrium@with
c(z/l);exp@2z2/(2l2)#], and an infinite well is put at the origin. As time
goes on, the probability of finding the ligand outside the well~i.e., the
integral ofc! decreases. The snapshots ofc are taken att50.999t ~prob-
ability almost 1 of finding the ligand outside the well!, 0.99, 0.9t, 0.8t, and
0.1t ~probability almost 0 of finding the ligand outside the well!. The arrow
indicates the time evolution of the successive curves.

FIG. 3. Idealization of the SFA experiments. A functionalized polymer~con-
taining a ligand in one of its ends! attached to a surface creates the potential
felt by the ligand. A second surface is homogeneously covered by receptors.
The two surfaces approach each other at speedv.
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is however a poor approximation. A more realistic descrip-
tion can be obtained through the Rouse model, which ac-
counts for all the internal modes of the end-attached chain
but not for the presence of the neighboring impenetrable
wall. In this case, the propagator still has the Gaussian form,
Eq. ~22!, but the relaxation functionj (t) is now a sum of
many modes.23 One can show in this case that17

t ir~, !5
tRp7/2

8U~, !3/2
exp$U~, !%, ~34!

while the Zimm model, which includes hydrodynamic
interactions,22 gives

t ir~, !5
tZ1.43

U~, !
exp$U~, !%, ~35!

within the preaveraging approximation.22 tR andtZ are, re-
spectively, the Rouse and the Zimm times. In this work we
will use t ir from the Zimm model, which is more appropriate
for dilute polymer solutions. Note also that the reaction time
obtained from the Rouse model is a factorU faster than the
time obtained from a single spring. This reflects the compact
space exploration27 of the movement of the chain end. The
Zimm result is still faster by a factorU1/2 than the spring
result, but slower by a factorU1/2 than the Rouse result.

Using the Rouse or the Zimm model allows for a proper
treatment of the multimode nature of the chain motion, to
within the limits of the assumed model. However, any of
these models refer intrinsically to Gaussian chain models,
which do not lead to the proper landscape of the extension
energyU(,). In order to improve our predictions, we had
recourse of Monte Carlo simulations to produce a more re-
alistic stretching potentialU(,). Simulations for a pearl-
bead model of a chain between two walls were performed
and the resulting force-distance and energy-distance profiles
obtained. These results, published elsewhere,17 will be used
here. Notice that these simulations reveal that the large ex-
tension limit (,/aN.0.7) for the stretching energy follows a
law similar to that of the freely jointed chain~FJC! model,
albeit with a different prefactor:

U~, !.2N logF2.15S 12
,

aND G , ~36!

whereN is the number of Kuhn units anda the Kuhn length.

Finally, we still have to modify the results obtained in
Sec. II in order to accommodate for the fact that the surfaces
actually move with respect to one another. With Eq.~17! one
is able to calculate the variation of the fraction of chains that
bridge between two such immobile surfaces as a function of
time. Naturally, it is more useful to calculate the fraction of
bridging chains as a function of the distance, between two
moving surfaces. From this one can easily calculate the force
as a function of the distance, and one can also easily extract
the range of interaction, r .

One can easily go from one description to the other in
the case where the surfaces move in respect to each other
with a velocity v much smaller thanv* 5RF /tZ , where
RF5N3/5a is the Flory radius of the polymer andtZ

5hRF
3/kBT is the Zimm time~which is the characteristic

microscopic time in this problem, whereh is the solvent
viscosity!. For relatively short chains~with the number of
Kuhn units of the order 100! this velocity corresponds to
;109 Å/s, which is much larger than the usual experimental
values forv. In this limit, one can apply the chain rule to
df(t)/dt and obtain

df~ t !

dt
52v~, !

df~, !

d,
, ~37!

wherev(,)5d,(t)/dt, which assumes a unique and invert-
ible relation between the distance between the surfaces and
time, viz. ,(t). The left-hand side~lhs! of Eq. ~37! is given
by the time derivative of Eq.~20!, which can be rewritten as

df~ t !

dt
5

feq~,~ t !!2f~,~ t !!

feq~,~ t !!t ir
. ~38!

Note thatfeq depends on the distance, between the
surfaces through its dependence onU(,), as in Eq.~21!.
One can now eliminate the time variable from the problem,
and obtain the differential equation

df̄~, !

d,
2

f̄~, !

v~, !feq~, !t ir
5

dfeq~, !

d,
, ~39!

where , is, as wished, the free parameter andf̄[feq(,)
2f(,) is the function we would like to know. The boundary
condition for Eq.~39! is that at,→`, f̄(,→`) vanishes,
since both the fraction of bound chainsf and the equilibrium
valuefeq vanish in this limit. Solving the differential equa-
tion finally leads to

f~, !5E
,

`

d,9S 2
dfeq~,9!

d,9 D S 12expH 2E
,

,9 d,8

v~,8!feq~,8!t ir~,8!J D ~40!

which gives the fraction of bound chains as a function of the
distance, between them as the two surfaces approach at a
speedv(,) assumed much smaller than the microscopic
speedv* . When the latter assumption is not true, for high
speeds of approach, the problem has to be reformulated at
the level of the reaction–diffusion Eq.~8! to take into ac-
count the relative movement of the surfaces.

With Eq. ~40! one is finally in a position where a system
as the one depicted in Fig. 3 can be theoretically analyzed.
Figure 4 shows the fraction of bound chains for a chain of
100 monomers,N5100 ~with monomer sizea53.5 Å, and
RF566 Å), both for a given adhesion strengthW at various
speeds of approach and at constant speed for various values
of the adhesion strengthW. As previously mentioned, the
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potentialU(,) created by the polymer, present both in the
expression forfeq andt ir , was obtained elsewhere through

MC simulations.17 As it can be seen from Fig. 4~a!, an ex-
periment performed at a small enough speedv allows the
system to reach the equilibrium value off, while increasing
speeds reduce the interaction range by a substantial amount.
In this latter situation the chains do not have the time to
reach across the gap into their equilibrium range position
before the surfaces move into a smaller distance. For the case
shown in the figure, withN5100 andW510kBT, speeds
superior to 53103 Å s21 result in a significant reduction of
the adhesion range from its equilibrium value at,eq

5160 Å. Given a typical experimental speed of 1 Å s21, Fig.
4~b! shows when the adhesion strength valueW is high
enough for the adhesion range to be independent of the ac-
tual W value, a situation we refer to as irreversible adhesion.

The importance of the speed of approachv and of the
adhesive strengthW is summarized in Fig. 5. For simplicity,
we define the range of adhesion the distance, r between the
surfaces at which half of the chain bridge, i.e.,f(, r)51/2.
There is nothing fundamental about this definition, and de-
pending on the particular experimental setup, this definition
has to be modified. The adhesion range, r of a polymeric
tether withN5100 is shown in Fig. 5~a! as a function of the
speed of approachv, for fixed values of adhesive strengthW,
while in Fig. 5~b! , r is shown as a function of the binding
strengthW ~for fixed values ofv). At large enough values of
v or W, the range becomes independent of the binding
strength but becomes~weakly! dependent on the speed of
approach, a fact that is reflected in the crossover line which

divides the limits of equilibrium from irreversible adhesion,
as depicted in Fig. 6.

Finally, the index of polymerization of the polymer teth-
ers and the strength of the ligand–receptor couples can be
experimentally varied in an independent way, thus tuning the
range of adhesion. We plot in Fig. 7 the interaction range for
a variety of chain lengths and fixed adhesion strengthW
525kBT, at various approaching speeds. As expected, lower
speeds and longer chains have larger adhesion range. Note
also the concavity of the curves showing that longer chains
bridge at smaller relative extensions than the shorter ones.

B. Rupture of specifically bounded surfaces

The formalism shown above can be equally applied to
the case where two bound surfaces are moved away from
each other~i.e., rupture!. The chain rule in Eq.~37! now
reads

FIG. 4. Fraction of bound chainsf as a function of the distance between
surfaces, ~for N5100 and equilibrium sizeRF566 Å). Plot ~a!, fixed ad-
hesion strengthW510kBT for speeds~from right to left! v51, 104, 105,
106, 107, and 53107 Å s21. The two lower speeds are coincident, indicat-
ing that for this chain and affinity, equilibrium conditions are reached for
v,104 Å s21. Plot ~b!, fixed speedv51 Å s21 and affinity ~from left to
right! W55, 10, 15, 20, 25, and 30kBT. For W.20 the curves coincide,
indicating that irreversible conditions are at work.

FIG. 5. The behavior of the adhesion range as a function of the speed of
approachv ~top! and binding strengthW ~bottom!. Plot ~a!, , r as a function
of the speed of approachv for fixed values of the strengthW. At low enough
speed of approachv the range is determined by the equilibrium condition
U(,eq)5W. Plot ~b!, , r as a function of the adhesive strengthW ~for N
5100). At small enough binding strength, the equilibrium range of interac-
tion ,eq is again recovered~dashed curve!. Notice that in both graphs the
nonequilibrium behavior sets in at high speedv and at high binding strength
W.

FIG. 6. The crossover line from reversible to irreversible adhesion~given by
the point where,eq equals the plateau value of, r at a givenv).
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df~ t !

dt
5v~, !

df~, !

d,
. ~41!

Using the latter and similar manipulations that followed Eq.
~37!, one arrives at~now with boundary conditionf51 as
,→0!

f~, !511E
0

,

d,9S dfeq~,9!

d,9 D
3S 12expH 2E

,9

, d,8

v~,8!feq~,8!t ir~,8!J D . ~42!

Away from equilibrium, i.e., at high enough speedv, the
behavior off( l ) strongly depends on whether the two sur-
faces approach or move away from each other. As depicted
in Fig. 8, when the two surfaces move apart from each other
at high enough speeds, the bounded ligand–receptor pairs do
not have the time to unbind at the equilibrium range, leading
to an effective increase of the range of adhesion in compari-
son to the equilibrium value. This is exactly the opposite
effect as in the case where the surfaces approach each other:
at high enoughv, f~,! exhibits an hysteresis~cf. inset to
Fig. 9!, leading to different values of, r if the surfaces are
approaching or moving away from each other~at the same
speedv). This is explicitly shown in Fig. 9, where the range

of adhesion is plotted as a function ofv ~for W510 andW
515) for both approaching and receding surfaces.

Finally, we calculate the dynamic strength between the
two surfaces during the rupture process. Although these re-
sults are already known in the literature~see, for instance,
Refs. 12 and 15!, it is of interest to check the results that the
reaction–diffusion formalism yield. At a certain distance,,
the force exerted by each chain is given byf (,)
52dU(,)/d,. For the planar geometry considered in Fig.
3, it follows that the total statistical~average! force exerted
by one surface on the other is given byF(,)5 f (,)f(,). As
it is shown in Fig. 10, this force increases in range, as pre-
viously discussed, but also in magnitude. The force shows a
nonmonotonic behavior, and its maximum value is usually
associated to the critical force necessary to pull apart the two
surfaces. At low speeds the critical force has been shown15 to
scale linearly withv, a behavior that we also obtain, as Fig.
11 shows. The formalism used here is thus consistent with
previous results, but we argue that it has a wider range of
application and it is liable to several developments account-
ing for instance for heterogeneous distributions of receptors
or solvent flow.

FIG. 7. Range of adhesion, r for polymers with different indices of poly-
merizationN (a53.5 Å andW525kBT). The dashed curve is the equilib-
rium solution ~equivalent tov50), and the full curves correspond, from
right to left, to v50.1, 1, 10, and 104 Å/s. The dotted–dashed curves cor-
respond to the total extension of the polymer and the equilibrium end posi-
tions.

FIG. 8. Fraction of bound chainsf as a function of the distance between
surfaces, ~for N5100 and equilibrium sizeRF566 Å) and fixed adhesion
strengthW510kBT for speeds~from right to left! v51, 104 ~indistinguish-
able from the former!, 105 and 106 Å/s. Notice that the evolution of the
curves occurs in the opposite order as in the case of approaching surfaces.

FIG. 10. Force~dynamic strength! between two surfaces during rupture. The
various curves represent velocitiesv between the surfaces varying, from
bottom to top, between 1 Å/s and 107 Å/s. The tethers haveN5100 units
(RF566 Å) and the binding strength isW510kBT. Away from the equi-
librium values, the force increases in magnitude and in range with the ve-
locity. The monomer size is given bya53.5 Å.

FIG. 9. Range of adhesion as a function of the speedv for two surfaces
approaching~full lines! and moving away~dashed lines! from each other
~for W510 andW515kBT). In equilibrium, , r does not distinguish the
direction of v. Away from equilibrium, the range of adhesion for surfaces
approaching each other is alwayssmaller than for surfaces moving away
from each other due to the hysteresis exhibited byf~,! ~shown as the inset
for v553105 andW510).
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IV. CONCLUSIONS

In summary, we presented the reaction–diffusion~RD!
formalism and applied it to systems where ligands diffusing
through a medium can react both reversibly and irreversibly
to a receptor. We analyzed in detail the case where the sys-
tem consists of a ligand in a quadratic potential with a recep-
tor at the origin, both for irreversible as well as for reversible
reactions. For the former case, we obtained analytical results
for the probability of finding the ligand unreacted, and nu-
merically the time evolution of its spatial probability distri-
bution. We also obtained analytically the long time behavior
of the probability of finding the ligand unreacted, and found
perfect agreement with numerical results for both irreversible
and reversible reactions. We also applied the RD formalism
to the case where the ligand moves in a quadratic potential
but the receptor is away form the origin, and recovered the
classical result first obtained by Kramers. Finally, we used
the long time behavior obtained with the RD formalism to
determine the properties of specific adhesion between two
planar surfaces, both in the cases where these move towards
each other~binding! and when these move away from each
other ~rupture!.

The results obtained here for two approaching surfaces
are in agreement with experimental results,17 while the re-
sults obtained for the rupture are consistent with previously
obtained theoretical results. This formalism is the natural
candidate to treat this class of problems, where diffusion and
reaction between particles occur. It is also possible to include
hydrodynamic flow in the formalism,33 which can be used,
for instance, in the theoretical study of specific adhesion be-
tween leukocites and the endothelial lining in blood vessels.
Although the formalism was proposed within the context of
tethered ligands–receptor adhesion, one can apply it to study

the problem of friction between surfaces to which polymers
are attached34 as well as to transient polymer networks and
polymer surfactant mixtures.
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