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Abstract

We study the structure and growth of a di"usion-limited aggregate (DLA) for which the
constitutive units remain mobile during the aggregation process. Contrary to DLA where far
from equilibrium conditions are the prevalent factor for growth, the structure of the aggregate is
here determined by a combination of annealed and quenched processes. The internal 3exibility
allows the aggregate to span the equilibrium con5gurational space, and such thermally driven
motion further modi5es the connectivity statistics of the growing branched structure.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Di"usion-limited aggregation (DLA) [1] and other related models [2,3] have become
paradigms for growth phenomena in far from equilibrium conditions [4]. In colloidal
suspensions and other systems well described by these models [5], the elementary
units that successively stick to form the aggregate remain thereafter at relative 5xed
positions, thus conferring an intrinsic rigidity to the structure: the statistical proper-
ties characterizing the disorder of the particle positions are quenched by the growth
process itself. This is an important limitation that precludes application of the con-
ventional di"usion-limited model to many aggregating systems, like the ones involving
rearrangement within the clusters [6], for which other models have been developed
[7–10], or systems of polymer chains in solution (see for example Ref. [11]), that con-
sist of elements of a 3uctuating nature. In this last case, for instance, the chains have
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typically a 5nite number of possible binding sites. When binding occurs, the bound
chain keeps a great mobility but has a reduced probability of further binding to other
chains. A realistic model for describing growth in this class of systems must include
information not only about the colliding events that lead to the irreversible build up of
the structure, but also about the equilibrium con5gurations that result from the Brow-
nian motion of the internally articulated constituents. Clearly, the statistical properties
characterizing the positional disorder are here a combination of quenched and annealed
processes but more crucially, the consecutive attachments of the incoming di"usive
particles will now be biased by the 3uctuations of the existing aggregate. In this paper
we report numerical results on a model for DLA where, at the opposite of conventional
DLA, the constituents remain freely articulated during and after the growing process.

2. Construction of a �uctuating DLA

We build a 3uctuating DLA (FDLA) from spherical monomers as sketched in Fig. 1.
The growth process starts from a seed particle of size r0 placed at the origin. Successive
identical particles are attached to the aggregate in the following way: a monomer
is released from a random point on a spherical shell that completely surrounds the
aggregate. This monomer is allowed to move randomly while some of the monomers
of the aggregate, chosen at random, are also allowed to move in random directions in
steps of size |�r|. If the distance between the released particle and any of the particles
of the aggregate happens to be less than r0 then the released particle sticks to that other
particle at the contact point and a new one is released. If the particle moves to a distance

Fig. 1. Schematic sketch of a 3uctuating DLA (FDLA) aggregate showing the constitutive units and the
nonlinear spring connecting them.
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too far away from the aggregate, this particle is “killed” and a new particle is released.
In order to accelerate the simulation we used step size control. 1 When the particle
was at a distance d to the cluster, a step of size �=max(d−5r0; 0:2r0) was used. This
value of the step size allows a rapid approach of the particle to the aggregate without
hindering large excursions. Once attached to each other, the monomers interact through
the conventional 5nitely extensible nonlinear elastic (FENE) potential [13], often used
in polymer simulations:

Vb(rij) =−k
2
(rsup − r0)2 ln

[
1−

(
rij − r0
rsup − r0

)2
]
; (1)

where k is the spring constant, and rij, r0, and rsup are the instantaneous length of bond
ij, the equilibrium bond length (or equivalently, the particle size), and the maximum
bond length, respectively. The interaction between monomers not directly connected
by a spring, is given by a hard sphere potential Vnb(rij) =∞ if rij6 r0; Vnb(rij) = 0
if rij ¿ r0, where rij is the instantaneous distance between particles i and j. These
potentials are used to accept or reject the movement of the internal monomers according
to a standard Metropolis algorithm [14]. For the results presented in this letter each of
the monomers of the aggregate moves on average once at each step of the incoming
particle. This means that the aggregate has relaxed to some extent when a new particle
adds to it. In order to ensure that a full grown aggregate relaxes towards its equilibrium
states, a non-biased Monte-carlo scheme is run at the end of the growth process. In
all simulations, the system is held at 5xed temperature T = 1=kB, where kB is the
Boltzman constant. The parameters used in the simulations for the FENE potential were:
k = 50, r0 = 1, and rsup = 1:2r0 to avoid bond crossing. The releasing sphere had size
rmax + rsup, where rmax is the farthest distance between the origin and the monomers of
the cluster, and the “killing” sphere had size 2rmax. The size of the steps of the internal
monomers was |�r|(�r�6 0:2r0; � = x; y; z). A typical snapshot of the aggregate is
shown in Fig. 2. The number of MC steps used to relax the aggregate was of the
order of 109.

3. Results

We extracted pair correlation functions for the aggregates by the usual histogram
method [15]. From a randomly chosen monomer, the distances r to all other monomers
are calculated and the histogram N (r; �) of the distance distribution is obtained by
counting the number of distances in the interval (r; r + �). The histogram is further
averaged for all the monomers of the aggregate and for a number of di"erent runs.
The pair correlation function was then obtained as g(r) = N (r; r + �)=(4�r2�) and
5tted to the stretched exponential form g(r) = Ardf−3exp{−(r=�)a}, where df is the
fractal dimension and � a decaying length associated with the size of the aggregate
[16]. The exponent a is larger than unity and A is related to the total mass. A typical

1 This kind of accelerating procedures has been well stabilised and used in similar DLA-type aggregates
by some other workers, see for example Ref. [12].
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Fig. 2. Typical con5guration of a FDLA aggregate of N = 2000 monomers.

5t is shown in the inset of Fig. 3. In this 5gure, the variation of df as a function of
the total mass N of the aggregate is shown for N = 1000, 2000 and 3000. The fractal
dimension was obtained from pair-correlation functions thermodynamically averaged for
5ve di"erent aggregates. It represents therefore a mixture of quenched and annealed
averages, related respectively to the di"erent connectivities of the aggregates and to
the statistical thermodynamic conformations brought about by the Brownian motion.
Although aggregates larger than N = 3000 can be built in a reasonable computation
time, the growth process with internal mobility leads to an aggregate that must still
further relax in the bath—compare open to solid squares in Fig. 3. It is such time
consuming after-growth relaxation process that puts an upper bound to the sizes we
considered in this study.
The fractal dimension of the aggregate grows with the total particle number, as shown

in Fig. 3. This is a familiar feature of DLA growth, as also shown in the 5gure, where
the fractal dimensions of regular DLA is shown for comparison. 2 The pair-correlation
functions were obtained in this case by averaging only over the quenched, topological
disorder associated with the di"erent connectivities of 5ve di"erent aggregates. For
these, a reasonable asymptotic value is reached for N¿ 3000. For the FDLA values,
the data does not show yet at N = 3000 a tendency to saturate indicating a probable
asymptotic value at df¿ 2:53. Although one should bear in mind the relatively large
error bars (Mdf=df ∼ 5%) present in the determination of the fractal dimensions, our

2 The value 2.45 for regular DLA is in reasonable agreement with the current value of 2.49. See
Ref. [17].



C.I. Mendoza, C.M. Marques / Physica A 335 (2004) 305–313 309

Fig. 3. Fractal dimension df as a function of the mass of the DLA aggregates. Circles refer to aggregates
generated by the usual DLA algorithm, while the squares refer to the FDLA explained in the text. Open
symbols refer to non-relaxed structures while solid symbols correspond to structures having relaxed 109

Monte-Carlo steps. The inset shows a typical pair-correlation function and the stretched exponential 5t from
which the fractal dimension is extracted.

data show that the e"ect of the allowed internal mobility is to generate aggregates
with higher fractal dimension than the ones generated by conventional DLA. Further
con5rmation that compacter objects are formed by this growth method can be seen
from the Fourier transform of the pair correlation function, the so-called structure
factor de5ned by

S(q) =
1
N

〈
N∑

n;m=1

exp {iq · (rn − rm)}
〉
; (2)

where N is the number of scattering units in the aggregate, ri is the position of the
ith scattering unit, q is the wavevector and the quenched and annealed averages are
denoted by 〈· · ·〉. Fig. 4 shows the structure factors of objects with N = 2000. They
exhibit the characteristic shape of DLA structure factors, also similar to the scattering
functions of star-like polymers and dendrimers and other computer-generated aggregates
[18]. An initial low wavevector plateau is followed by a hump that crosses at higher
wavevectors into a linear region of slope close to −1:8. The extension of the plateau
is a measure of the size of the object, more precisely of its radius of gyration [19],
S(q → 0) ∼ 1 − q2R2G=3 with R2G = 1=N 〈∑N

n;m=1(rn − rm)2〉. From this measure the

fractal dimension can also be extracted N ∼ RdfG . Graphically this implies that the
fractal dimension can be obtained by the slope of the envelope of the humps of a series
of structure factor curves of di"erent masses. It is clear from Fig. 4 that the radius
of gyration of a FDLA structure is smaller than the corresponding DLA quantity. The
total mass of the FDLA structure is thus distributed over a smaller region, consistent
with a denser object of higher fractal dimension. The local structure of the monomer
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Fig. 4. Scattering functions for aggregates built from DLA (dashed line) and FDLA (full line) growth
processes. The dotted line corresponds to a conventional DLA structure relaxed after the growth process has
taken place. All the aggregates have 2000 monomers.

correlations determines the high wavevector region of the scattering curves. Here, a
self similar structure of dimension ∼ 1:8 gives rise to the linear region of the curves
shown in Fig. 4. Note also that this local structure is known to have a similar fractal
dimension as that of di"usion-limited cluster aggregates (DLCA) [16].

4. Discussion

Two e"ects might be at the origin of the increased compactness of the FDLA struc-
ture. One, related to its internal 3exibility, can be better understood by considering
5rst a directed growth process. Without internal mobility, that would lead to a rod-like
object, with fractal dimension df=1. Bringing mobility to this object would obviously
transform it into a self-avoiding walk (SAW), with fractal dimension df � 1:7, much
larger than the original one. The SAW fractal dimension is the result of a compro-
mise between excluded volume interactions that resist compaction, and conformational
entropy that resists stretching [20]. If a linear growth process would prepare a quenched
distribution of chains statistically stretched with respect to the SAW equilibrium dis-
tribution, the further introduction of internal degrees of freedom would anneal the
distribution, leading to an increase of the fractal dimension. In order to see if this
mechanism is at work for DLA structures, we 5rst prepared conventional DLA aggre-
gates of N=1000, 2000 and 3000, then allowed them to thermodynamically relax under
109 Monte-Carlo steps. Comparing the open and solid circles in Fig. 3 one sees that
relaxation leads systematically to an increase of the fractal dimension. This means that
the conventional DLA growth process does prepare quenched but statistically stretched



C.I. Mendoza, C.M. Marques / Physica A 335 (2004) 305–313 311

Fig. 5. Distance of a given monomer to the seed monomer, as a function of the chemical distance between
them: open circles correspond to DLA aggregates while solid circles refer to branches in FDLA aggregates.
The slope of the curve is a measure of chain stretching. Results are for N = 2000.

structures. Further con5rmation of this e"ect is provided in Fig. 5 where the average
distance r of a given monomer to the position of the seed monomer is shown as a
function of the chemical distance n between them. The chemical distance n is de5ned
as the number of elements connecting these two points. The slope of this curve is
related to chain stretching along that chemical path [21]. As the 5gure shows, ther-
mal relaxation is followed by a levelling of the curve close to the extremities of that
particular branch, whereas the internal monomers retain their original stretching. This
is a known steric e"ect also present in polymer brushes [22] or star polymers [23].
Close to the center, where the monomer density is higher, excluded volume interactions
stretch branches outwards from their central attachment point. On the contrary, there is
no force acting on the free ends of the branches. Chain stretching decreases therefore
from its maximum at the center to a vanishing value at the free end. It appears however
that such mechanism is not suPcient to explain alone the observed compaction under
FDLA growth, because, as shown in Fig. 3, the thermal relaxation of the conventional
DLA stops short of the higher values obtained for FDLA.
A second e"ect that is likely to be at work compacting the 5nal FDLA object, is

related to its branch structure. Indeed, an incoming particle has a higher probability
to stick 5rst to an outer branch of the aggregate, than to penetrate deep, close to
the seed monomer [1]. An useful indicator of the branch structure is provided by
the average number of monomers at a chemical distance n from the seed monomer.
A monodisperse star, for instance, would have an uniform distribution with an upper
cut-o" corresponding to the arm length. A conventional DLA aggregate has a bell
distribution. For the DLA aggregate of 2000 particles shown in Fig. 6 the maximum
of the distribution corresponds to monomers separated from the seed by approximately
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Fig. 6. Distribution of the number of monomers b(n) at a given chemical distance n to the seed particle
for aggregates of N = 2000. Dashed line corresponds to DLA whereas the solid line corresponds to FDLA.
Here 〈· · ·〉 means average over 5ve di"erent con5gurations.

28 other monomers. The FDLA distribution shows that branches are shorter on average,
the maximum being at approximately 20 monomers. The higher fractal dimension of
FDLA is thus not only due to its internal 3exibility but also to a di"erent branching
structure of the aggregate. Interestingly, the amount of free ends is quite constant
during the growth process of both DLA and FDLA aggregates, at about 31%. This
indicates that out of three new incoming monomers one contributes to a new branch
being created, and the other two stick to existing free ends. This in turn implies that
the more compact branch structure of FDLA is due to a deeper penetration of the
incoming monomers.

5. Conclusions

As a summary, we have shown that di"usion limited aggregation with soft parti-
cles that allow the internal mobility of the growing aggregate leads to more compact
structures of higher fractal dimension. The increase compactness of the structure is
due both to the internal relaxation of the growth structure but also to an increased
compactness of its connectivity tree. We hope to extend in the near future our studies
to larger aggregates: it remains yet to be shown if a well-de5ned fractal dimension can
be asymptotically reached.
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