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Abstract. – We study dense, disordered stacks of elastic macroscopic fibers. These stacks
often exhibit non-linear elasticity, due to the coupling between the applied stress and the
internal distribution of fiber contacts. We propose a theoretical model for the compression
modulus of such systems, and illustrate our method by studying the conical shapes frequently
observed at the extremities of ropes and other fiber structures.

Threadlike objects are the constituents of many natural and synthetic materials [1, 2]. At
the microscopic level, filaments such as actin, microtubules and other semi-flexible polymers
control not only the elastic and viscous properties of different biological architectures [3] but
also of polymer melts, surfactant solutions and gels [4]. These are collective properties that
can be understood from the individual characteristics of the filaments like the bending and
stretching elasticity or the friction coefficient [5]. At such small scales, thermal disorder plays a
key role that has been successfully described within the framework of statistical mechanics. For
instance, the reptation theory for polymer melts and solutions [4,6] or the description of rigid
gel elasticity [7] successfully account for the collective macroscopic behavior, based on a few,
microscopic parameters of the single polymers. Surprisingly, macroscopic threadlike systems
have been much less studied, in spite of their abundance in the natural and synthetic realms:
hair, wool, cotton and other natural fibers or Nylon strings, ropes and textiles or glass wool
belong to this class of systems [2]. Here also the elastic or friction constitutive parameters of
the individual objects are well known. For instance, bending and stretching moduli of human
hair, wool, Nylon and steel fibers can easily be found in the literature. But theories that predict
collective fiber properties such as the compressibility of a hair tress, or studies that explain
what forces play a role in a disentanglement action like combing or carding, are scarse [8,9]. In
this letter we argue that methods developed for fiber microscopic systems [10] are also useful
at the macroscopic level, and draw an analogy between the effect of thermal fluctuations and
the effect of the intrinsic disorder carried by the spontaneous shapes of the fibers.

(∗) E-mail: charitat@ics.u-strasbg.fr
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Fig. 1 – Dense fiber bundle. The function ζn(x) describes the shape of the n-th fiber with respect to
a reference average level.

We consider a two-dimensional fiber bundle as illustrated in fig. 1. Discussion in two di-
mensions allows for a simpler presentation of the methods, while retaining the main ingredients
of the problem. Extension to the three-dimensional case will be discussed later. The bundle is
composed of a large number N of elastic strands of length L, in a space of height d×N , where
d is the average distance between two fibers. The shape of the fiber is described by the func-
tion ζn(x) that measures height deviations from the line of average position at height d × n.
This description in the Monge parametrization is well adapted to the shapes of interest, with
a weak gradient dζn(x)/dx � 1. In the absence of interactions between fibers, each filament n
has a spontaneous shape, described by the function ζ0,n(x). It is the disorder associated with
the spontaneous shapes of the different fibers that leads to a non-trivial compression behavior
of the whole system. Under an external force, the spontaneous shape of the fiber ζ0,n(x) will
be transformed into the actual shape ζn(x). Within the elastic limit, the deformation of a
segment of length dx around the natural shape will cost an elastic energy dUb, proportional
to the bending modulus κ and to the curvature differences, dUb = κ/2(ζ ′′n(x) − ζ ′′0,n(x))

2 dx.
The bending modulus κ is a constitutive property of the fiber, that depends on the shape of
its section and on the Young modulus of the material [5]. For instance, for a cylindral filament
of radius a and Young modulus E one has κ = Ea4/4. The total bending energy of the N
filaments can then be written as

Ub =
κ

2

N∑
n=1

∫ L

0

dx
[
ζ ′′n(x)− ζ ′′0,n(x)

]2
. (1)

If one assumes that different fibers interact through a two-body potential V , then the total
interaction energy Uint can be written as

Uint =
N∑

n,m=1

∫ L

0

dx
∫ L

0

dx′V
[
ζm(x) +md− (

ζn(x′) + nd
)]
. (2)

In order to bring the structure of the interaction energy to a tractable level, we follow a sim-
ple mean-field approximation, similar to the Helfrich treatment of thermally activated fluid
membranes and fibers [11, 12]. We assume that forces between first neighbors dominate the
interaction energy, an exact assumption for excluded-volume potentials and a good approxima-
tion for other short-range forces such as those given by screened electrostatic potentials. Then
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the sum of the bending (1) and interaction (2) terms can be written as the effective energy:

Eeff =
κ

2

N∑
n=1

∫ L

0

dx
[
ζ ′′n(x)− ζ ′′0,n(x)

]2 + B

2

N∑
n=1

∫ L

0

dx
[
ζn+1(x)− ζn(x)

]2
. (3)

Because of the weak gradients involved, inter-fiber interactions take place only at the same
x coordinate. B is the strength of the mean-field quadratic potential, to be determined by
the self-consistent prescription B = d × ∂2〈e〉/∂d2, where 〈e〉 = 〈Eeff〉/(LNd) is the average
energy density. The equilibrium state of the fiber stack corresponds to the minimum of the
effective energy functional (3) with respect to the fiber configurations {ζn(x)}, given the
spontaneous shapes {ζ0,n(x)}, or more precisely, given the spontaneous curvatures {ζ ′′0,n(x)}.
The spontaneous curvatures are to be treated as the random functions responsible for disorder
in the system. Averages, denoted by 〈〉, will then be performed with the probability associated
with the spontaneous curvature distribution. Before carrying forward the outlined procedure,
it is of interest to review results for the thermal case, as this will help to build intuition for
the key quantities controlling the stack structure.

In thermal stacks or bundles of fibers, disorder is introduced by the random Brownian
motion of the fibers, which would otherwise be flat, i.e. {ζ0,n(x) = 0}. The shape of a single
fiber in solution is described by a persistent walk, a class of statistical walks where tangent
correlations vanish exponentially over a persistence length �p, related to the fiber rigidity
through �p = κ/(kBT ). A persistent walk primarily moves along the forward direction for a
short enough distance �, but it also performs side excursions of size D. From the equipartition
theorem one has �pD2/�3 � 1. In a stack, lateral excursions are limited by near neighbors
setting D = d. Typically, there is one interaction between fibers over a collision distance
�c � �

1/3
p d2/3. Since the energy density of the thermal stack 〈eT〉, is of the order of kBT per

collision area, 〈eT〉 � kBT/(d�c), one gets a compression modulus

BT � kBT

d3

(
d

�p

)1/3
= (kBT )4/3κ−1/3d−8/3, (4)

which holds for large enough rigidities, �p � d.
In macroscopic fiber stacks, the disorder is quenched and introduced by the spontaneous

disordered shapes ζ0,n(x). Let us consider a typical shape of amplitude ζ0 and wavelength
q−10 . Clearly, there are no interactions for distances larger than the shape amplitude, d � ζ0.
For smaller distances, the local gradients are of order of ζ0q0, leading to a collision length �c �
d/(ζ0q0). The energy density is thus given by 〈e〉 � κζ20q

4
0�c/(d�c) = κζ20q

4
0/d, independent of

�c. It follows that the compression modulus reads

B � κq40

(
ζ0
d

)2
. (5)

It is worthy at this stage to stress several striking differences and similarities between the
thermal and the macroscopic cases. First, contrary to thermal stacks, where the compress-
ibility is only governed by the persistence length �p and by the distance between fibers d, in
macroscopic fiber stacks the spatial scale associated with disorder inhomogeneities also plays
an important role. As a matter of fact, the scale for compressibility is set by the combina-
tion κq40 : stiffer fibers lead to harder macroscopic materials, quite opposite to thermal stacks
where increasing fiber stiffness reduces fluctuations and softens the stack. Also, while the
cost of confinement for thermally controlled fluctuations diverges as the confinement distance
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vanishes, only a finite amount of energy is required to completely flatten a macroscopic fiber.
But in both cases, the compression moduli increase with the degree of disorder, measured by
the temperature in the thermal system, and by the square amplitude of spontaneous shapes,
ζ20 for the quenched bundle. And finally, the power law dependence of the thermal modulus
is larger than the macroscopic one: quenched disorder appears to lead to more “robust” ma-
terials as these are less susceptible to variations in stack density. We now return to a more
detailed calculation of the compression modulus.

It is convenient to perform the functional minimization of the effective energy (3) in the
space of the eigenfunctions {Φq} for the biharmonic operator, (∂4/∂x4 − q4)Φq(x) = 0. We
also choose boundary conditions ensuring that there are no forces nor torques on the strands
extremities: Φ(2)q (0) = Φ(2)q (L) = 0 and Φ(3)q (0) = Φ(3)q (L) = 0. The orthonormal set of
eigenfunctions can be written as

φq(x)=
cosh(αp)−cos(αp)
sinh(αp)−sin(αp)

[
sinh

(
αp

x

L

)
+sin

(
αp

x

L

)]
−

[
cosh

(
αp

x

L

)
+ cos

(
αp

x

L

)]
, (6)

where the numerical coefficients αp are determined from the relation cos (αp) cosh (αp) = 1.
The solutions obey approximately αp ≡ qL � (p + 1

2 )π with p ∈ N. We first develop the
shapes ζn(x) and ζ0,n(x) on the basis of the eigenfunctions (6),

ζn(x) =
1√NL

+∞∑
q= π

2L

π
d∑

Q=−π
d

ζqQφq(x)eiQnd, (7)

ζ0,n(x) =
1√NL

+∞∑
q= π

2L

π
d∑

Q=−π
d

ζ0,qQφq(x)eiQnd, (8)

where Q is a wave vector along the stack direction, then minimise with respect to the coeffi-
cients ζqQ and finally compute the average energy density:

〈e〉 = 1
2LNd

∑
q,Q

q4
〈
ζ0,qQ

2
〉
B(Q)

q4 + B(Q)
κ

, (9)

where B(Q) = 2B(1−cosQd). Equation (9) shows how the spatial inhomogeneities of sponta-
neous shapes determine the energy density of the stack: the harmonic, elastic nature of the en-
ergy penalty for shape distortion and interfiber interactions translates into the sole dependence
of the energy density on the values of the second moment of the shape disorder distribution,
weighted by the classical correlation kernel for bending elasticity. A practical consequence of
eq. (9) is that it allows to connect fiber geometric information, available from a simple statis-
tical analysis on fiber shapes, with collective properties such as the compression modulus B.
As an example, we now calculate the compression modulus for monomodal structures of un-
correlated fibers, for which the standard square deviation is written as 〈ζ0,qQ

2〉 = NLζ20δqq0 .
In the limit where N � 1, the dimensionless compression modulus B̃ = B/(κq40) obeys the
self-consistent differential equation

B̃ = d̃
∂2

∂d̃2

1

2d̃

[
1− (

1 + 4B̃
)−1/2]

, (10)

where ζ0 now sets the natural distance units, d̃ = d/ζ0. At short distances, the compression
modulus is high, and eq. (10) leads to the asymptotic form discussed in (5), B = κq40ζ

2
0/d

2.
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Fig. 2 – The full line is the compression modulus B of a fiber stack vs. interfiber distance d. Dashed
lines represent the asymptotic behaviours at short distances, B̃d̃2 � 1, for d̃ � 1 and at large distances
B̃ ∼ d̃ exp[−d̃], for d̃ � 1. Plots are for dimensionless quantities B̃ = B/(κq4

0) and d̃ = d/ζ0, with κ
the fiber rigidity, q0 and ζ0 the typical wave vector and amplitude of spontaneous shape disorder.

For distances larger than the natural amplitude for spontaneous shape disorder, ζ0, the
fibers do not interact significantly, and the compression modulus vanishes exponentially:
B = κq40(d/ζ0) exp[−d/ζ0]. A numerical solution of eq. (10) interpolating between these
two regimes is presented in fig. 2.

We now illustrate our results by studying the shape of the cones that appear at the end
of ropes and other fiber bundles. The cones are generated by the expansion of the fibers,
under the repulsive field that we discussed previously. The repulsive field experienced by
one fiber, U(d) = B(d)d2/2, can be roughly approximated by a step function of amplitude
κq40ζ0

2/2 and range ζ0. The average path of one fiber is a straight, horizontal line, as long as
it remains inside the constrained zone, as depicted in fig. 3. When it escapes confinement, the
fiber crosses an expanding zone where it still interacts with its neighbors. Under the repulsive
forces, the fiber bends until it escapes the repulsive potential, for interfiber distances larger
than the range of the potential ζ0. Bending of the fiber is caused by two localized forces
of amplitude f = κq40ζ

2
0/2 and opposite signs, applied by the two closest neighbors. After

escaping the expanding interaction zone, the fiber follows a straight line, at an angle that
depends on its distance from the center of the bundle. If one enumerates the fibers in the
stack from n = 1 in the center to n = N/2 for the external fiber, the following set of equations

Fig. 3 – Cones are formed at the unconstrained ends of ropes and other bundles of fibers, as shown
on the left for a Nylon rope. On the right, the calculated shape in two dimensions. Here, only the
average fiber path is represented for simplicity. The fibers only interact mutually in the expansion
zone, to the left of the curved line, and follow a straight path otherwise. The size of the expansion
zone and the angle of the cone are independent of fiber rigidity, they are fully determined by the
geometric properties of fiber disorder.
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Fig. 4 – Cross-section of a three-dimensional bundle in the high-density limit where each fiber is
confined in a cage defined by its first nearest neighbors.

recursively determine the position [�n, yn] where a fiber escapes its neighbors potential:

(�n−1 − �n)
(
3�2n−1 − (�n−1 − �n)2

)
=

6κ
f

(
yn−1 − (n− 1)d

)
, (11)

(�n−1 − �n)�2n =
2κ
f

(
yn − nd− (ζ0 − d)

)
, (12)

where �n is measured from the border of the confinement zone and yn from the center of the
stack. The distance d is the interfiber separation in the confinement zone. Equations (12) and
the boundary conditions y1 = ζ0 and �3N/2 = (yN/2 − dN/2)3κ/f determine the shape to the
boundary yn(�n), also shown in fig. 3. The extension of the expansion zone, �1, depends on
the number of fibers and on the compression rate α = (ζ0−d)/ζ0, but not on the fiber rigidity:
�1 ∼ ζ0N 2/3α1/3(q0ζ0)−4/3. Similarly, the geometric shape of the cone, given by the slope of
the last fiber θN/2, does not depend on the fiber rigidity, it is only fixed by the geometric
quantities associated with the fiber disorder, θN/2 ∼ α2/3(q0ζ0)−4/3.

For high enough fiber density, the compression modulus of a three-dimensional bundle
can be computed in a manner similar to the two-dimensional case. Indeed, if the density
is so high as to provide a cage environment for each of the fibers, as depicted in fig. 4, the
forces between fibers are controlled by excluded-volume interactions between near-neighbors.
In this case, we define a two-dimensional fiber density in the bundle σ = Nπa2/A, where A
is the area of the bundle section. For a perfectly ordered hexagonal array, one would have
σ = 2π

√
3/3a2r−2, where r is the distance between fiber centers. The maximum close-packing

density is σmax � 0.91. The relevant fluctuating distance d = r − 2a is now a function of the
fiber density σ. In the hexagonal case, the cage would hold up to distances d = 2a or densities
as small as σc = π

√
3/24 � 0.23. In this regime, the compression modulus is expected to vary

as B3D ∼ κq40ζ
2
0r

−3. As explained above, for the non-thermal case, only a finite energy is
required to completely flatten a fiber. Thus, the confinement energy density is here bound to
a maximum value 〈e3D〉 ∼ κq40ζ

2
0a

−2, contrary to the three-dimensional thermal situation [10],
where the energy density diverges as ∼ d8/3. For densities smaller than σc, the situation is
unclear, even for the thermal case. Large lateral excursions of the fiber are now possible [13],
and there is not yet, to our knowledge, a clear criterium to determine the maximum allowed
size of the excursions. We hope to address this question in future work.

As a summary, we have shown that stacks of macroscopic disordered fibers behave as a
compressible material, the compression modulus being proportional to fiber rigidity, opposite
to microscopic fiber stacks where it decreases with fiber rigidity. We have also shown how the
compression modulus depends on stack density and on the geometric quantities characterizing
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spontaneous shape disorder. Our results allow to predict collective properties from the indi-
vidual fiber characteristics and provide a new tool to interpret experiments in fiber systems.
As an example of this, we studied terminal bundle cones, showing that this class of shapes
follows a universal behavior that depends only on the fiber geometric features. Extension
of our results to three dimensions is straightforward in the limit of large fiber density. The
weak-density limit poses an interesting challenge for fiber and polymer systems, both in the
thermal and quenched cases.
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