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Abstract. – We study theoretically the adhesion between two approaching surfaces, one con-
taining tethered ligands and the other receptors. Using the reaction-diffusion formalism, we
show that the range of adhesion �r is generally determined by a combination of tether dynamics,
ligand-receptor affinity and experimental speed of approach v. Contrary to previous studies, we
fully account for back reactions and are thus able to describe the crossover between irreversible
adhesion at large affinities or high speed v and reversible adhesion at small affinities or low
speed. We also briefly discuss the case of rupture and show that in the limit of irreversible adhe-
sion the rupture occurs always at a larger distance than �r determined for approaching surfaces.

Understanding the mechanisms at work in the adhesion of two surfaces is a fundamental
challenge in many fields [1–3]. Of obvious importance for the design of adhesives, glues and
other sticking substances [4–6], the control of adhesion is crucial in the living realm where the
communication, proliferation, differentiation and migration of cells is determined by the for-
mation of specific bonds between the cell walls [7–9]. Adhesion studies have gained a renewed
interest in biology and other soft matter since experiments related to polymer and surfactant
interfaces started to unveil some of the key factors at play in the adhesive process [10–14]:
bond structure and strength, spacer elasticity, loading rates. . . . It is surprising, however, that
the bulk of the research effort was devoted to the separation of two surfaces previously brought
together, particularly when one considers many practical situations where the structure of the
interface and the conditions under which adhesion proceeds determine the very possibility of
making the adhesive contact. In a recent series of experiments, Wong et al. [15,16] studied the
adhesive forces between two opposing surfaces carrying tethered ligand-receptor pairs with a
very strong affinity. They showed for the first time that the range of adhesion between the ap-
proaching surfaces is set, for such strong binders, by rare events associated with configurations
where the polymer tether is extended many times beyond its characteristic size. The adhesion
range between strongly binding, approaching surfaces is therefore dynamically controlled by
the speed of approach or, equivalently, by the time available to perform the experiments. This
contrasts with conditions at the other extreme of the affinity range, for weak enough binding
where thermodynamic equilibrium prevails, making irrelevant any reference to the kinetics of
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Fig. 1 – A typical experimental configuration for specific adhesion. The tether end moves in the
polymer potential U(�). The adhesion strength W is the measure of ligand-receptor affinity. The
surfaces approach each other at speed v.

the spacer or to the dynamical conditions of the experiments. In this letter, we reconcile such
opposite limits by studying the crossover from reversible to irreversible bridging, thus iden-
tifying the various roles played by the spacer, the ligand-receptor pair and the experimental
conditions in determining the nature of the adhesive approaching process.

Figure 1 shows a typical adhesion configuration for specific binding. Two opposing surfaces
at distance �, carrying binding groups, approach each other at speed v. In general, at least one
of the surfaces carries its binders tethered by flexible spacers. Experiments on model systems
employ polymers as the tethering molecules. Actual synthetic or natural surfaces might carry
less well-identified spacers, which will, notwithstanding, be characterized by some intrinsic
flexibility and mobility. The spacer determines therefore the potential landscape available for
the ligand in the absence of its receptor. For the usual cases where the spacer has the largest
molecular weight, it also dominates the dynamic conditions under which the ligand moves in
its landscape. The approaching surface will bring into play the third actor of this configura-
tion by making available to the ligand the binding well associated with the presence of the
receptors that it carries. For large spacers, this binding potential can also be represented as a
structureless sink into which the ligand can fall. Staged in such manner, the physical situation
at hand seems to fall into the classical set of problems concerned with the escape over a barrier
by a Brownian particle, first treated by Kramers [17]. However, the movement of the ligand
cannot be described by a simple diffusion in a potential. Indeed, the internal structure of the
tether results in a many-mode dynamics, which needs to be fully accounted for.

We describe the local binding events and the dynamics of the tether within the framework
of polymer reaction-diffusion theory. Contrary to previous work [16], we allow for back reac-
tions to occur. A tethered binder, after crossing the gap between the surfaces, can either stay
bound or be extracted from the ligand potential well by the pulling forces of the polymer.
The distribution function Ψ of the grafted polymer end-to-end vector R obeys the so-called
reaction-diffusion equation

LΨ(R, t) = −Q(R)Ψ(R, t) + P (R)
[
1−

∫
dV Ψ(R, t)

]
, (1)

where L is the formal diffusion operator describing the multimode dynamics of the end-to-
end vector, Q is a sink operator describing the on-rate of the binding events and P is a
source term accounting for the rate at which an unbinding event occurs. For irreversible
reactions one has P = 0. In this case, the fraction of tethered ends having reacted at time t,
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φ(t) = 1− ∫
dV Ψ(R, t) approaches unity for long times: φ(t → ∞) = 1.

In a reversible situation, P and Q are related quantities through
∫
dV [Q(R)Ψ(R,∞) −

P (R)φeq] = 0, where φeq ≡ φ(t → ∞) is the equilibrium amount of reacted ends. This is
fixed by the values of the polymer and binding potentials —see fig. 1— according to

φeq(�) =
eW−U(�)

1 + eW−U(�)
, (2)

where all energies are written in units of kBT . The definition of the range of adhesion �r

depends on the character [18] of the experimental set. For simplicity, we define �r as the
distance at which half of the chains have reacted, being however a trivial matter to adapt
the formalism to other definitions of �r. It then follows from our definition and eq. (2) that
the equilibrium range of adhesion �eq is given by the solution of U(�eq) = W (see fig. 2 for a
typical shape of φeq(�)). The characteristic length ∆eq over which this function changes from
zero to one is approximately given by ∆eq � √

2/U ′(�eq).
In the geometry considered here, we assume one of the surfaces to be homogeneously cov-

ered with binding sites. The adhesion well is thus only a function of z, the coordinate perpen-
dicular to the walls. Given the relative dimensions of the polymer and of the ligand-receptor
attraction range, we write the sink and source terms as Q(R) = qδ(z−�) and P (R) = pδ(z−�).
The one-dimensional nature of the sink and source implies also a one-dimensional structure for
the reaction-diffusion equation. Following de Gennes [19], we formally invert eq. (1) and obtain

ψ(z, t) = ψ0(z) +
∫ t

0

dt′G(z, �; t − t′)× [ − qψ(�, t′) + pφ(t′)
]
, (3)

where ψ(z, t) =
∫
dxdyΨ(R, t) and G is the dynamic propagator associated with the diffusion

operator through LG(z, z′; t−t′) = δ(t−t′)δ(z−z′). The function ψ0(z) is the one-dimensional
equilibrium distribution of the end-to-end vector in the absence of any reactions. The diffi-
culty of solving the reaction-diffusion equation is now transferred into the determination of
G, a quantity that can be obtained for a large class of linear problems. Equation (3) can be
solved by Laplace transform leading to

φ̂(s) = (φeq/s)/
(
1 + φeqsĥ(s)

)
, (4)

where the hat refers to Laplace-transformed functions φ̂(s) =
∫ ∞
0

dtφ(t) exp[−st], and the
function ĥ(s), containing all the relevant information about tether dynamics, is given by
1+ sĥ(s) = sĜ(�, �, s)/ψ0(�). We have taken the relevant limit of fast local reactions, q → ∞,
p → ∞, with qψ(�,∞) = pφeq, as required by the relation between P and Q previously stated.
In general, the time evolution of the fraction of reacted ends can only be obtained by per-
forming an evolved numerical Laplace inversion of eq. (4). However, for our purpose here it is
sufficient to extract its long-time behavior by calculating the smallest pole of φ̂(s). This leads
to an exponential variation,

φ(t) = φeq

(
1− exp[−t/φeqτir]

)
, (5)

where φeq is the time-independent function of eq. (2). The characteristic time τir [20] is given
by the smallest pole of φ̂(s) in the absence of back-reactions, i.e. when W → ∞ corresponding
to φeq = 1.

The result given in eq. (5) assumes the two walls to be at a fixed distance �. For the system
treated here, it is necessary to have the fraction of bound chains as a function of the distance
between the walls when these move relative to each other at a certain speed. In principle,
it is possible to exactly incorporate the moving walls in the reaction-diffusion equation (1):
this is however complicated, and to avoid this we assume that the systems of interest have
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Fig. 2 – Fraction of bound chains φ as a function of the distance between surfaces � (for N = 100 and
equilibrium size RF = 66 Å). Plot (a): fixed adhesion strength W = 10kBT for speeds (from right to
left) v = 1, 104, 105, 106, 107 and 5× 107 Å s−1. The two lower speeds are coincident, indicating that
for this chain and affinity, equilibrium conditions are reached for v < 104 Å s−1. Plot (b): fixed speed
v = 1 Å s−1 and affinity (from left to right) W = 5, 10, 15, 20, 25 and 30kBT . For W > 20 the curves
coincide, indicating that irreversible conditions are at work.

a speed of approach v which is small in comparison to the microscopic characteristic speed
associated with the tethers (e.g., the ratio between the radius of gyration and the Rouse or
Zimm time). In this case, the time variation of the bound fraction φ can be converted into a
space-dependent function by identifying dφ/dt = −v(�)dφ/d� and using dφ/dt = (φeq−φ)/τir,
which follows from eq. (5). Solving the equation for φeq − φ (with the boundary condition
φ = 0 as � → ∞) leads, after some algebra, to

φ(�) =
∫ ∞

�

d�′′
(
− dφeq(�′′)

d�′′

)
×

(
1− exp

[
−

∫ �′′

�

d�′

v(�′)φeq(�′)τir(�′)

])
. (6)

Equation (6) is our main result. It shows that the amount of chains bound under dynamic
approach conditions is a combination of two factors, associated with the first and second terms
of the integrand: the first is a reflection of thermodynamic equilibrium, while the second is
controlled by dynamics through the combined effects of chain kinetics and speed of surface
approach. In the limit of vanishing speed one naturally recovers from eq. (6) the equilibrium
result φ(�) = φeq(�). On the other hand, by formally taking the limit of infinite adhesion
strength W , one recovers the irreversible result of ref. [16]. Equation (6) is a general result
based only on the knowledge of the dynamic propagator G describing the movement of the
reacting end. We now explicitly compute the bound chain fraction and the range of adhesion
for the specific case where the tethers are polymer chains in a good solvent.

A theoretical evaluation of the potential energy associated with the extended position of
the end-to-end vector needs to simultaneously account for the finite extensibility of the chain,
for the excluded volume between monomers and for the impenetrability of the two confining
walls. We met these conditions by performing Monte Carlo numerical simulations of a grafted
pearl-bead polymer chain [16]. By keeping one surface fixed and allowing the other to move
under a perpendicular force f , a force-distance curve can be extracted from the simulations,
and the energy-distance curves obtained by integration. The curves diverge, as they should, at
complete extension of the chains � = Na, where N is the index of polymerization and a = 3.5 Å
is the monomer size. For very large relative extensions, �/Na ≥ 0.8, the forces are coincident
with the analytical predictions of the freely hinged model for a polymer chain [16,21]. Moreover
the point of zero force is at some finite distance from the wall due to entropic reasons. We
used the values for the stretching energy from these numerical simulations when calculating
τir in eq. (6) to predict the range of adhesion for different speeds of approach v, adhesion
strengths W and chain lengths N . Note that this optimizes a combination of static and
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Fig. 3 – The behavior of the adhesion range. Plot (a): �r as a function of the adhesive strength
W (for N = 100). For low enough speed of approach v and affinity W , the range is determined by
the equilibrium condition U(�eq) = W (dashed curve). For high v and large W , �r saturates and
becomes only a function of v. The inset to (a) shows the crossover line from reversible to irreversible
adhesion (given by the point where �eq equals the plateau value of �r at a certain v). Plot (b): �r for
polymers with different indices of polymerization N (a = 3.5 Å and W = 25kBT ). The dashed curve
is the equilibrium solution (equivalent to v = 0), and the full curves correspond, from right to left, to
v = 0.1, 1, 10 and 104 Å/s. The dot-dashed curves correspond to the total extension of the polymer
and the equilibrium end-positions.

dynamic results from two different chain models: the exponential weight related to chain
stretching is accurately accounted for by a finite extensibility model, and the multimode local
dynamics close to the top of the potential barrier fully described by a polymer dynamic model
accounting for hydrodynamic interactions.

Figure 2 shows the fraction of bound chains for a chain of one hundred monomers, N = 100,
both for a given adhesion strength W at various speeds of approach and at constant speed
for various values of the adhesion strength W . The Zimm time is τZ = ηR3

F/kBT , with
η = 10−3 Pa s, the solvent viscosity, and RF = N3/5a the Flory radius of the chain. This gives
τZ � 10−8 s for a chain of 45 monomers and we therefore use for a chain of N monomers the
value τZ = (N/45)9/5 · 10−8 s. The characteristic speed v� which emerges from our analysis
corresponds to traveling one polymer distance in the Zimm time, thus roughly at 109 Å s−1.
Note that typical experimental conditions in a SFA apparatus, for instance, correspond rather
to 1 Å s−1. As can be seen from fig. 2a, an experiment performed at a small enough speed,
v/v� 
 1, allows to reach the equilibrium value of φ, while increasing speeds reduce the range
by a substantial amount. In this latter situation the chains do not have the time to reach
across the gap into their equilibrium range position before the surfaces move into a smaller
distance. For the case shown in the figure, with N = 100 and W = 10kBT , speeds superior
to 5 × 103 Å s−1 result in a significant reduction of the adhesion range from its equilibrium
value at �eq = 160 Å. Given a typical experimental speed of 1 Å s−1, fig. 2b shows when the
adhesion strength value W is high enough for the adhesion range to be independent of the
actual W value, a situation we refer to as irreversible adhesion.

The respective importance of the speed of approach v and of the adhesive strength W is
summarized in fig. 3a, where the adhesion range �r (given, as previously mentioned, by the
position where φ(�) = 1/2) of a polymeric tether with N = 100 is plotted as a function of the
adhesive strength W for various speeds of approach. As explained before and now explicitly
displayed in the figure, large enough values of W lead to a W -independent but v-dependent
value of �r. It also becomes evident that in this latter regime �r depends weakly on the
speed of approach, a fact that is reflected in the crossover line which divides the limits of
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Fig. 4 – Range of adhesion as a function of the speed v for two surfaces approaching (full lines)
and moving away from (dashed lines) each other (for W = 10 and W = 15kBT ). In equilibrium, �r
does not distinguish the direction of v. Away from equilibrium, the range of adhesion for surfaces
approaching each other is always smaller than for surfaces moving away from each other due to the
hysteresis exhibited by φ(�) (shown at the inset for v = 5 × 105 and W = 10).

equilibrium from irreversible adhesion (inset to fig. 3a). Finally, the index of polymerization
of the polymer tethers and the strength of the ligand-receptor couples can be experimentally
varied in an independent way, thus tuning the range of adhesion. We plot in fig. 3b the
interaction range for a variety of chain lengths and fixed adhesion strength W = 25kBT , at
various approaching speeds. As expected, lower speeds and longer chains have larger adhesion
range. Note also the concavity of the curves showing that longer chains bridge at smaller
relative extensions than the shorter ones.

We now briefly study the onset of rupture when two bound surfaces are moved away from
each other. Although this situation has been extensively studied in the past [10–14], it is of
interest to see, on the one hand, how the formalism developed here applies to this case and, on
the other hand, what differences and similarities emerge from a comparison between adhesion
and rupture. One can derive the distance-dependent fraction of bound chains in the same
fashion as eq. (6), except that now dφ/dt = v(�)dφ/d� and φ = 1 as � → 0.

As one would suspect, away from equilibrium (i.e., at high enough v) the behavior of φ(l)
strongly depends on whether the two surfaces approach or move away from each other. When
approaching at high enough speeds, as previously discussed, the tethered ligands do not have
the time to bind the receptors in their equilibrium range position before the surfaces move into
a smaller distance. This leads to a reduction of the range of interaction in comparison to the
equilibrium value �eq. On the other hand, when the two surfaces move apart at high enough
speeds, the bound ligand-receptor pairs do not have the time to unbind at the equilibrium
range, leading to an increase of the range of adhesion in comparison to the equilibrium value.
In other words, at high enough v, φ(�) exhibits a hysteresis (cf. inset to fig. 4), leading to
different values of �r if the surfaces are approaching or moving away from each other. This
is explicitly shown in fig. 4, where the range of adhesion is plotted as a function of v (for
W = 10 and W = 15) for both cases discussed above. Note that this effect has been seen
experimentally [15,16]. A more detailed account of the rupture within this framework will be
given in a later publication.

In summary, we have shown that the adhesion between surfaces carrying tethered bind-
ing groups is controlled by a combination of the tether kinetics, the binding affinity and the
speed at which the two surfaces approach (or move away from) each other. We identified and
quantified the respective role of each of these factors within a new development in polymer
reaction-diffusion theory that fully accounts for the possibility of back-reactions. The formal-
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ism has the potential for many further developments, accounting, for instance, for in-plane
heterogeneities in the distribution of binding sites or for solvent flow effects. Also, modifica-
tion of the reaction scheme might be needed in some cases, as, for instance, to account for the
competition of many chains trying to attach to a small number of sites. As more and more
chains bridge, the amount of sites available for binding is reduced, implying a second-order
reaction mechanism. Furthermore, it is important to stress that, although the formalism was
devised within the context of tether ligand-receptor adhesion, it has applications in other sys-
tems like transient networks or polymer surfactant mixtures. The knowledge of the bridging
probability, for instance, allows to compute in these systems rheological quantities such as the
viscoelatic moduli G′(w) and G′′(w).
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