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Scale-dependent rigidity of polymer-ornamented membranes
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Abstract. We study the fluctuation spectrum of fluid membranes carrying grafted polymers. Contrary
to usual descriptions, we find that the modifications induced by the polymers cannot be reduced to the
renormalization of the membrane bending rigidity. Instead we show that the ornamented membrane exhibits
a scale-dependent elastic modulus that we evaluate. In ornamented lamellar stacks, we further compute
the polymer contribution to the Caillé parameter characterizing the power law singularities of the Bragg
peaks.

PACS. 36.20.-r Macromolecules and polymer molecules – 87.16.Dg Membranes, bilayers, and vesicles –
82.35.Gh Polymers on surfaces; adhesion

The characterization of polymer-membrane interac-
tions is a fundamental issue of colloidal science. In cos-
metics, pharmaceutics or detergency, many formulations
are suspensions of self-assembled surfactant bilayers with
polymers added for performance, processing, condition-
ing or delivery [1]. Likewise, lipid bilayers form the walls
of living cells and liposomes, and host a great variety of
macromolecules for coating protection, ion exchange and
mechanical reinforcement [2]. In many instances, the poly-
mers are end-tethered to the soft interfaces. Grafting is
easily achieved experimentally by using polymer chains
that carry hydrophobic groups. Typical examples are pro-
vided by the so-called PEG-lipids, hydrophilic chains of
polyethylene glycol covalently linked to a double-tail phos-
pholipid molecule. Recent studies have shown that poly-
mers grafted to bilayers can induce gelation [3] or other
phase changes [4,5] in liquid lamellar phases. They sta-
bilize monodisperse vesicles [6], modify the properties of
giant vesicles [7] and influence the geometry of monolamel-
lar [8,9] and multilamellar [10] cylindrical vesicles. They
also lead to drastic changes in the structure and phase
behaviour of ternary amphiphilic systems [11].

As first explained by Canham and Helfrich, fluid mem-
branes are fluctuating objects [12]. In thermal equilib-
rium, the surface assumes all the possible shapes allowed
by the geometry with the associated Boltzmann proba-
bility P ∼ exp{−H0/(kBT )}. The Hamiltonian H0 is a
quadratic function of c1 and c2, the two principal curva-
tures at any given point of the surface,
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H0 =
∫

dS
{κ
2
(c1 + c2 − 2c0)2 + κ̄c1c2

}
. (1)

The spontaneous curvature c0 vanishes for symmetric bi-
layers. The Gaussian rigidity κ̄ plays an important role
in the determination of the topology of the system, and
the integral

∫
dS κ̄c1c2 does not depend on the particu-

lar shape of the membrane. The amplitude of the ther-
mal fluctuations is controlled by the bending rigidity κ,
that ranges from a few kBT to a few tens of kBT . Con-
versely, the analysis of the height correlations in a mem-
brane system allows for the determination of the consti-
tutive rigidity. Many techniques were specifically devel-
oped to extract κ by comparing experiments and theoret-
ical predictions for vesicles, lamellar stacks, bicontinuous
phases and other geometries. These methods have so far
been of limited application in polymer-membrane systems
because of the lack of prediction for the fluctuation spec-
trum of bilayers in the presence of polymers. In this paper,
we make a first step to bridge this gap by investigating the
role of grafted chains on the fluctuation spectrum of fluid
membranes. We first analyze the subtle interplay between
local monomer concentration and surface curvature. We
show that the chains induce additional height correlations
that can be interpreted as the result of effective, scale-
dependent elastic coefficients. For the specific case of an
ornamented lamellar phase of membranes, we also deter-
mine the Caillé parameter that characterizes the power
law singularities around the Bragg peaks.

In a mean-field description, ornamented membranes
are assumed to have new parameters κeff = κ + ∆κ and
κ̄eff = κ̄+∆κ̄ different from those of the bare membrane.
We consider N polymers grafted to each side of a mem-
brane of area S, the chains being free to diffuse along the
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membrane. The surface coverage σ = N/S is low enough
to avoid polymer-polymer interactions: σ < σ∗ 	 R−2

F ,
with RF the Flory radius of the chains. In this limit of
small density, the excess surface energy is proportional to
σ and one anticipates corrections of the order of ∆κ ∼
∆κ̄ ∼ kBT (σR2

F) in both good and theta solvent. The ef-
fect of solvent quality and polymer architecture resides in
the numerical prefactors of the variations. For Gaussian
chains tethered by one extremity, the calculations can be
carried out explicitly and one gets ∆κ =

(
1 + π

2

)
kBTσR

2
g

and ∆κ̄ = −2kBTσR2
g [13–16], with Rg = (Na2/6)1/2 the

radius of gyration of a Gaussian chain of N monomers
of size a. At the overlap concentration σ∗, the variations
are of the order of the thermal energy kBT . However, for
most practical situations, the chains can freely move along
the membrane surface: the degrees of freedom associated
with the end positions are annealed, as opposed to the
quenched results of references [13,16]. A thorough study
of the system reveals that averaging the free energy over
the anchor position is not equivalent to averaging the par-
tition function itself. As a consequence, the response to
bending is lowered if one correctly accounts for the ten-
dency of the chains to be at the top of the membrane
ondulation, leading to [17]

∆κ = kBTσR2
g , (2)

∆κ̄ = −2kBTσR2
g . (3)

The reduction of the effective modulus is due to the lin-
ear coupling between positions and spontaneous curvature
and actually follows the general argument first recognized
by Leibler [18], a consistency requirement for the low wave
vector limit of the results discussed in this paper.

These mean-field results miss however a crucial fea-
ture, namely that the polymer-membrane interactions
strongly depend on the length scale. We first consider
the partition function ZN of a single Gaussian chain
and construct a perturbative expansion in the limit of
small surface deformations around the flat plane. In the
absence of overhangs and inlets, the surface profile can
be described by a single-valued function h(r), where r
spans the reference plane. We expand ZN in a series
Z(0)

N + Z(1)
N + Z(2)

N + . . ., where Z(i)
N is of order hi and

Z(0)
N (z) ≈ z/(

√
πRg) denotes the partition function of a

chain tethered at a small distance z of a flat, impenetra-
ble wall. It has been shown recently that the first-order
term of the expansion is related to the pressure field ap-
plied by the grafted chain to the surface [19,20]. At a dis-
tance r =

√
x2 + y2 from the grafting point, this entropic

pressure decays with the scaling form p(r) ∼ kBTr
−3

(a r  Rg) in both good and theta solvents, and then
vanishes sharply beyond Rg [21].

We now evaluate the contribution of the tethered poly-
mers to the fluctuation spectrum of the membrane. If one
introduces the Fourier Transform (FT) of the height pro-
file h̃(q) =

∫
dre−iqrh(r), then the energy H0 of the pure

membrane reads

H0 =
1
2

∫
dq

(2π)2
h̃(q)h̃(−q) κq4 . (4)
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Fig. 1. Diagrammatic representation of the perturbative ex-
pansion of the Gaussian chain partition function at first order
(left) and second order (right).

Contrary to the previous mean-field results, we assert here
that the presence of the chains entails non-local contribu-
tions to the elastic description of the membrane. This can
be shown by extending the perturbative scheme up to sec-
ond order in h, a calculation that we perform analytically
for a Gaussian chain. In this case, the single-chain parti-
tion function obeys the Edwards equation [22]

(
∂

∂n
− a2

6
∇2

)
Zn(r, z) = 0 , (5)

where (r, z) is the position of the constrained extremity.
The linearity of equation (5) implies that each term of the
development obeys an Edwards equation. The solution of
the successive orders are coupled through the (Dirichlet)
boundary condition on the wall ZN (r, h(r)) = 0. The solu-
tion of equation (5) obeying the impenetrability condition
is then determined recursively, and is given to each order
by [23]

Z(i)
N (r, z) =

a2

6

∫ N

0

dn
∫

dr′
∂G

(0)
N−n

∂z′
(r, z; r′, 0)Z(i)

n (r′, 0) ,

(6)
where the Green function G(0)

N of equation (5) satisfies the
Dirichlet condition on the horizontal plane [21]. This so-
lution corresponds to a “loop expansion” of ZN : the term
of order i enumerates the conformations that encounter
the surface i times, as depicted in Figure 1. Finally, the
statistical weight ZN is averaged for all possible positions
of the anchoring point along the surface.

In general, the membrane carries a finite polymer con-
centration σ. We neglect, for the sake of simplicity, the
interactions between the chains, whose origin is twofold:
in addition to the usual steric repulsions, the mean de-
formation resulting from the polymer pressure gives rise
to attractive, deformation-sharing interactions [21]. How-
ever, the latter do not modify the fluctuation spectrum
of the membrane. Our results are thus exact in the low-
density limit σR2

g  1, where direct polymer interactions
can be neglected. Assuming N chains on each side of the
membrane, the total partition function of the system is
given by the path integral

Z =
1

(N !)2

∫
D[h]e−βH0

(
1
S

∫
drZN

)2N

=
1

(N !)2

∫
D[h]e−βHeff , (7)
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Fig. 2. Non-local polymer contribution to the fluctuation spec-
trum of a membrane. At the natural length scale Rg, the
function G(q) crosses over from a bending-like behaviour to
a tension-like behaviour.

where the factor 1/N ! reflects the fact that particles are
indistinguishable. The properties of the decorated surface
are described by the new Hamiltonian Heff = H0 +∆H,
with

∆H =
1
2

∫
dq

(2π)2
h̃(q)h̃(−q)G(q) . (8)

The algebra will be detailed elsewhere [17], and we now
discuss the results. Integrating out the degrees of freedom
of the grafted chains generates the additional contribution

G(q) =
2kBTσ
R2

g

{
e−q2R2

g − 1 + q2R2
g

}
. (9)

The correlation function G(q) is displayed in Figure 2. At
length scales larger than the polymer size qRg  1, one
can extract a correction to the bending rigidity that reads
∆κ = limq→0[q−4G(q)] = kBTσR

2
g. We retrieve in this

limit the mean-field correction (2), as expected. Interest-
ingly, the polymer-membrane interactions also induce a
tension-like term at short distances: G(q) 	 2kBTσq2 for
qRg � 1. The correlations between chain and membrane
conformations are stronger inside the polymer mushroom:
as a consequence, the fluctuations of the surface are
smoothed out at length scales smaller than the polymer
size. The coefficient of this effective surface tension corre-
sponds to the two-dimensional perfect gas pressure (recall
that both sides are ornamented with N chains). Note that
our results contrast with the usual interfacial behaviour,
where tension is dominant at large scales whereas bending
effects appear only at shorter scales. We should empha-
size that the results presented here do not depend on the
nature of the interface: they can be used to study a wide
class of surfaces, provided that grafting of macromolecules
is feasible.

We now apply our predictions to the lyotropic phase
Lα. This phase consists in a stack of regularly spaced
membranes, that form a quasi-crystalline structure in one
direction while retaining their fluid properties in the per-
pendicular plane. In pure water, the smectic order is gener-
ally stabilized by long-range electrostatic interactions. At

high salt concentration or for neutral surfactant molecules,
the stability of the phase arises from the entropic repul-
sions between fluctuating membranes: we will refer to this
system as to the Helfrich system. In a continuum elas-
tic theory, the multilayer membrane system is described
by the displacement field u(r) in the z-direction normal
to the layers. The standard theory of a pure Lα phase is
based on the smectic energy density [24]

F

V
=

1
2
B

(
∂u

∂z

)2

+
1
2
K

(∇2
⊥u

)2
, (10)

the subscript ⊥ referring to the coordinates along the
layers. K is the smectic curvature modulus and is di-
rectly related to the membrane bending rigidity through
the relation K = κ/d, with d the average layer spacing.
The smectic compressibility modulus B reflects the inter-
lamellar interactions, and is given in a Helfrich system by
B = 9π2(kBT )2/(64κd3).

The lyotropic phase is a good candidate to probe ex-
perimentally the fine modifications to the properties of the
pure phase induced by the addition of macromolecules [25,
26]. X-ray or neutron scattering experiments allow to mea-
sure the exponent η that characterizes the power law sin-
gularities around the Bragg peak: I(q) ∼ |q − q0|−1+η,
with q0 = 2π/d [27]. The “strength” of the smectic or-
der varies conversely to η. For pure membrane sytems,
the FT of the average heigth fluctuations is 〈|u(q)|2〉 =
V kBT/(Bq2z +Kq4⊥), which leads to the classical predic-
tion first derived by Caillé [28]:

η = q20
kBT

8π
√
KB

. (11)

Likewise, a decorated membrane has, according to
equation (9), a scale-dependent bending rigidity κ(q) =
κ(1 + αgD(q2R2

g)), where we define the dimensionless pa-
rameter α = kBT

κ σR2
g, and gD(x) = 2

x2 (e−x − 1 + x) is
the Debye function [29]. This is certainly the most funda-
mental step for forecasting the properties of membrane-
polymer complexes, but one should keep in mind that
some macromolecular interactions such as repulsion be-
tween different membranes of the lamellar stack cannot
be reduced only to the modification of the single mem-
brane parameters. Notwithstanding this point, the height
fluctuations are now given by

〈|u(q)|2〉pol =
V kBT

Bq2z +Kq
4
⊥

(
1 + αgD(q2⊥R

2
g)

)
	 〈|u(q)|2〉 −
α

V kBT(
Bq2z +Kq

4
⊥

)2Kq
4
⊥gD(q

2
⊥R

2
g) . (12)

at lowest order in α. It ensues that the q⊥ corrections
lead to the same power law divergence of the scattering
intensity with new exponent

ηpol = η
(
1− kBT

2κ
σR2

g

)
. (13)
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The low-q part of G(q) (i.e., the correction to κ) actu-
ally provides the main contribution to the integrals lead-
ing to (13). Providing that the interlamellar distance is
not affected, the tethered chains stiffen the lamellar or-
der, that leads to a sharpening of the Bragg peak. A de-
crease of η with polymer concentration is indeed observed
in numerous experiments —see, for instance, [3,5]. How-
ever, the measured variation of η is much sharper than the
predicted linear behaviour at low coverage. As explained
above, the chains are also likely to induce non-trivial vari-
ations of the compressibility B. A simple explanation of
these modifications has been proposed by Castro-Roman
et al. [5]: a reduction in η would be due to the polymer
layer that effectively increases the membrane thickness.
Within this picture, however, it is still difficult to ex-
plain why the membrane thickness varies so sharply with
polymer coverage. Our study suggests that this could be
caused by a non-homogeneous chain distribution, arising
from the coupling between position and curvature. This
naturally leads to a higher density of polymers in curved
regions, which also correspond to the contact zones be-
tween the fluctuating bilayers. The concentration at which
η is significantly modified should then be as lower as the
coverage needed to roughly have one polymer by mem-
brane contact point, i.e. σ ∼ 1/d2. Since the size of the
polymer is smaller than the interlamellar distance, this
coverage is a factor R2

g/d
2  1 smaller than the overlap-

ping coverage. Note that the diffusion time of a polymer
chain over a distance d is a factor Rg/d smaller than the
Zimm time of a typical membrane fluctuation, there are
thus no kinetic reasons restricting the mobile grafted poly-
mers to be always at the intermembrane contact points.

In conclusion, we have developed a local description of
the fluctuation spectrum of fluid membranes ornamented
with grafted polymers. Contrary to current mean-field
predictions, we find that the effect of the grafted chains
cannot be reduced to an effective increase of the mem-
brane bending rigidity. Instead, we show that the elastic
coefficient is a scale-dependent quantity. On scales much
larger than the polymer size, the bending rigidity is in-
deed renormalized. This low-q correction is the dominant
contribution to the so-called Caillé exponent measured by
X-ray experiments in Lα phases. On scales smaller than
the polymer size, polymer-membrane interactions smooth
the fluctuations, leading to a tension-like contribution to
the correlation function. Our results were obtained for
Gaussian chains, a good representation for polymers in
θ solvents. It is not clear at this point whether or not
this description is robust with respect to the introduction
of monomer-monomer excluded-volume interactions. In
particular, the “tension” regime that develops at short
length scales might exhibit a different, non-trivial form.
Indeed, the Debye function gD is known to scale as
gD ∼ q−1/ν , with ν = 1/2 in theta solvent and ν 	 3/5
in good-solvent conditions. If the relation G ∝ q4gD still
holds for chains with excluded volume, one should then
expect G(q) to behave like G(q) ∼ q7/3 for large wave
vectors q. Work on this issue is currently under progress.

We gratefully thank E. Blokhuis, R. Bruinsma, A. Lau and P.
Sens for inspiring discussions. This work was supported by the
Chemistry Department of the CNRS, under AIP “Soutien aux
Jeunes Equipes”.

References

1. J.C. van de Pas, Colloids Surf. A 85, 221 (1994).
2. B. Alberts et al., Molecular Biology of the Cell (Garland

Publishing, New York, 1998).
3. H.E. Warriner et al., Science 271, 969 (1996); Biophys. J.

75, 272 (1999).
4. Y. Yang et al., Phys. Rev. Lett. 80, 2729 (1998).
5. F. Castro-Roman, G. Porte, C. Ligoure, Phys. Rev. Lett.

82, 109 (1999); F. Castro-Roman et al., Langmuir 17, 5045
(2001).

6. R. Joannic, L. Auvray, D.D. Lasic, Phys. Rev. Lett. 78,
3402 (1997).

7. E. Evans, W. Rawicz, Phys. Rev. Lett. 79, 2379 (1997).
8. H. Ringsdorf, J. Venzmer, F. Winnik, Angew. Chem., Int.

Ed. Engl. 30, 315 (1991).
9. M.E. Cates, Nature 351, 102 (1991).
10. V. Frette et al., Phys. Rev. Lett. 83, 2465 (1999).
11. H. Endo et al., Phys. Rev. Lett. 85, 102 (2000).
12. For a recent review, see U. Seifert, Adv. Phys. 46, 13

(1997).
13. C. Hiergeist, R. Lipowsky, J. Phys. II 6, 1465 (1996).
14. P.-G. de Gennes, Scaling Concepts in Polymers Physics

(Cornell University Press, Ithaca, NY, 1979).
15. S. Safran, Statistical Thermodynamics of Surfaces, Inter-

faces and Membranes (Addison-Wesley, Reading, Mass.,
1994).

16. C.M. Marques, J.-B. Fournier, Europhys. Lett. 35, 361
(1996).

17. T. Bickel, PhD thesis, Universitè de Strasbourg, Juin 2001.
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