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Scattering from supramacromolecular structures
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We study theoretically the scattering imprint of a number of branched supramacromolecular architectures,
namely, polydisperse stars and dendrimeric, hyperbranched structures. We show that polydispersity and nature
of branching highly influence the intermediate wave vector region of the scattering structure factor, thus
providing insight into the morphology of different aggregates formed in polymer solutions.
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[. INTRODUCTION tained by spontaneous aggregation in solutions of polymers
carrying sticking groups, and by random branching during
Scattering by light, x rays or neutron radiation provides apolymerization growth. This leads to a great diversity in the
fundamental tool to investigate the shapes and statistical ngonnections and to a polydispersity in sizes of the constitu-
ture of large molecules in solutidri]. For objects of fixed tive elements. In order to clarify the role of each of these
shape, like spherical, ellipsoidal, or cylindrical colloids, thefactors in shaping the scattering functions, we explore a
scattering functions are known and can easily be compare@umber of structures obtained by variations of starlike poly-
to experimental data, thus allowing for a determination ofMers: stars with polydisperse arms, and dendrimeric poly-
shapes and relevant dimensions of the objects in a givef'€rS With different degrees of polydispersity.
experimental sample. For objects of a relatively simple ge- | "€ Paper is organized as follows. In Sec. Il we recall
ometry, but with a fluctuating nature, such as polymer chainSCMe basic general features of the scattering amplitude for
or semiflexible rods the scattering spectra contains not only€!l known, fixed-shape and fluctuating objects. Section Il
information about the average shape of the mass distributiofliSCUSSes the scattering function of Gaussian branched and
but carries also a signature of the conformational disordeflYPerbranched structures, and also discusses qualitatively the
determined by the nature of the thermodynamic fluctuationsEffects of excluded volume. Finally, in the conclusions we
For flexible polymers, for instance, one can determine fronfliSCUSS the different scattering signatures according to
the scattering data whether monomer-monomer excludefranching structure and statistical nature of the fluctuations.
volume interactions are relevant or not in a particular, given
solvent. Il. SCATTERING FROM SIMPLE POLYMER
Association of fixed-shape objects, such as the aggrega- ARCHITECTURES

tion of spherical colloids that lead to fractal DL(iffusion-

limited aggregationstructureq 2], brings also some degree The structure factor of an aggregate is given by

of disorder into the spatial distribution of the scattering ele- 1/ N
ments. Although the object as a whole does not fluctuate in S(q)=—{ > explig-(Ry—Rm)}), (1
time, the spatial distribution of the scattering elements is N\ ninta

statistically fixed by the aggregation process itself. DLA and
other related processes have been shown to lead to selthere N is the number of scattering units in the aggregate
similar aggregatek3], where the frozen position correlations (monomer$ R; is the position of théth scattering unit, the
g(r) between different elements at a distaneee described ensemble average is denoted(by - ), andq is the momen-
by a power lawg(r)~r~™. It is well known that the scat- tum transfer given byg=qs—q;. Hereg; and gs are the
tering data from these objects also carries the signature of théave vectors of the incident and scattered fields. For elastic
exponentm, thus providing some insight on the type of the scattering|qs|=|q;|=2m/\, where\ is the wavelength of
aggregation process ruling the solution behavior. the incident wave. Hence=|q| = (47/\)sin 6/2, with 6 the
When the aggregation process involves fluctuating obscattering angle.
jects, the scattering function carries information both on the An illustration of the form of the scattering amplitude for
connectivity between different scattering elements and on thevo objects of well defined shapes is shown in Fig. 1. In this
statistics of the fluctuations. In this paper we discuss thdigure, the spherically averaged scattering function of an in-
interplay between these two factors by studying a number ofinitely thin uniform rod of lengtH. is compared to that of an
branched polymer structures. Branched polymers are argwniform sphere of radiuR=L/2. For simplicity both curves
ably the larger class of systems of connected fluctuating elhave been normalized to 1 at the origin. The curve corre-
ements, systems that also include aggregates of soft gsponding to the rod shows a power law region with slope
beads, emulsion droplets, and others. In many polymer o+ 1 for large wave vecton, reflecting the unidimensional
polymerlike structures, control of the branching chemistrynature of the rod. Indeed, for a mass density distribution of
allows for a careful choice of the connectivity, like in den- the formg(r)~r~©~D) whereD is the fractal dimension of
drimers[4,5] or in star-branched polymef8,7], and to some the object, one expects the scattering behagia@)~q°.
extent in dendrimeric¢also called hyperbranchegolymers  For rods D=1, andS(q)~q~ L. This holds for spatial scales
[8-10]. Geometries with higher degree of disorder are ob+ <R, or reciprocal lengthgR,>1, whereR; is the radius
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10° [ However, the star shows a second power law region with
slope—4 before saturating at the plateau value. Notice that a
107 steepest curve is necessary to connect a plateau extending
102 further inq (the radius of gyration of the star is smaller than
= the radius of gyration of the linear polymeéo a coincidental
T o4 | high g region in which both, the polymer and the star, have
® the same local statistical structure. Quantitatively, the value
10+ | —4 is related to the average concentration profile. Indeed, it
i can be showii11] that, when scattering from an inhomoge-
10° neous region of average concentrati¢(r) dominates the
10° spectrum,S(q) is calculated from

1 10 100

1| (= sinqgr
= S(q)~Nf r2dr q? (1)
FIG. 1. Sketch of the scattering intensity for a uniform rod of 0
lengthL and massvl (dashed lingand a uniform sphere of radius Fqr 3 Gaussian star polymer, the average concentration pro-
R= I__/2 and the same massolid ling). A straight line with slope  fjje is given by¢(r):3P/(27Ta2r)erfC(r/2Rg), wherer is
—4 Is also shown. the distance from the center of the staris the monomer
size, and erfX) is the complementary error functidd2].
of gyration of the objectRi=(1/2V?)3,; ;(Ri—R;)2 For  Equation(2) thus leads to
rods,R§=L2/12. At small wave vectorgRy<1, S(q) rolls
off into a plateauGuinier region. Deviations from the pla-
teau value give a measure of the radius of gyration of the
object. In this regiorﬁ(q)~l—q2RS/3. The structure factor
of the sphere also shows a Guinier zone that rolls off fromNote that this form crosses over correctly from the plateau
the plateau at a smaller wave veciprindicating that the region S(g)~P XN at q~Rg‘l to the highg-region S(q)
radius of gyration of this sphere is larger than the radius of-q~2 at q~P¥2R; .
gyration of the rod. For larger values qf the sphere struc- Even in the absence of an exact form for the radial con-
ture factor oscillates, the separation between the peak postentration profile, a general argument can be mdd® in
tions being also a measure of the size of the sphere. Therder to extract the value of the intermediate slope. For a star
decaying envelope has a slop&4, typical of objects with  with P arms, the average concentration inside an infinitesi-
sharp interfaces. mal spherical shell of volume#r?dr and radius, centered
As an example of the scattering function of fluctuatingon the star, is given by
objects, we consider the structure factor of a linear Gaussian
polymer with PX N monomers and of an uniform star Bf B(r)=PdN(r)/(4mr?dr), 4
arms of N monomers each ongsee Fig. 2 and also Eg.
(A10)]. For the linear polymer, the largebehavior follows a

2

@

S P 1<qR,<P2 3
(q) NG qRy - 3

with dN(r) is the average number of monomers per arm in
the shell. For a Gaussian afN(r)=3r?/a? and one easily

power law with a slope-2, a manifestation of the fractal S .
dimension of a Gaussian chaid=2. The same behavior is "€covers the exact result for the concentration in the scaling
' egimer<R,. The Daoud and Cotton argume@), com-

seen at large wave vectors for the star scatterin functiorL_ ) . .
g g ined with Eq.(2) also allows to compute the intermediate

regime of the scattering factor of a star in a good solvent,
where excluded volume interactions are important. In this
case, the star can be described as a semidilute solution, with
a local, position dependent screening lengfth) . Pictorially,

this is represented by arms made of a succession of blobs of
increasing size£(r). The arms are stretched and within a
distancer from the center one find®(r)=(r/a)>3P %3
monomers, the size of the star in a good solvent b&gg

E =N3¥5P15, |t follows that the average concentration varies

1 radially as ¢(r)~P?% ~%? and the intermediate regime is

1 described by

10° |
107 L

10° [

S{q) (arb. units)

10° L

101 :5 * II”“IIJ * II“.“I-S * I.I””IZ E— 1 * I.““-0
10° 10 10 10° 10 10 P1/3

a S(a)~ NGO’ 1<qRyu<P?". ®

FIG. 2. Scattering intensity for a linear Gaussian polymep bif
monomergsolid line) and a Gaussian star Bf=10° arms each one  FOr higher wave vectorsgRg,>P?® the function S(q)
of N=10° monomergdashed ling A straight line with slope-4 is  crosses over to a slope5/3 indicative of the local excluded
also shown. volume statistics of the arn44].
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(a) Polydisperse Star (b) Dendrimeric Structure 1

Guinier Zone

FIG. 3. Schematic representation @ Polydisperse stars and N N fp?
(b) Dendrimeric structures formed by connecting linear polymers. L

FIG. 4. Diagram showing the different scaling regimes of the
scattering function for: polydisperse stars i@ solvent

The objective of this section is to show how the internal[ g=—1/(m—1), y=m/(m—1), e=vy, p=-1/2, ¢=0, and
branched structure of the aggregate modifies the form of the=2(2—1/m)], polydisperse stars in athermal solvent
structure factor. In order to do this, we consider two different{ 3= —4/(6m—5), y=1/3(6m—1)/(6m—5), e=2y, n=—23/5,
types of aggregate$q) polydisperse stars, ar{}) dendrim- o= —1/5, and s=10/3(1—2/(6m—1))], dendrimeric structures in
eric structuregsee Fig. 3. 0 sobent[B=1/(2m+1), y=2m/(2m+1), e=vy, n=—1/2, ¢

The method of calculation for the structure factor of ag-=0, and s=2(2+1/m)], and dendrimeric structures in athermal
gregatega) and(b) starts by considering an arbitrary aggre- sovent  [=1/(2m+1),  y=(1/3)2m/(2m+1), €=2y,
gate whose scattering function is known. If a new arm is7=—3/5, o=—1/5, and s=10/31+2/(6m+1))].
added to the structure, the scattering function that accounts ) ) )
for the new arm can be calculated in terms of the knownvave vector _ar_ld the high wave vector regions still present
scattering function plus corrections due to the correlationdh® usual Guinier roll off from a plateau and a2 slope,”
between the monomers of the new arm with themselves anigSpectively. The signature of the star polydispersity is car-
with all the monomers of the previous aggregate. A more”_ed by the shape of the. mtermed_late scattering region. Con-
detailed discussion of the procedure is given in Appendix ASider the case of arm-size polydispersity. Here, we take the

where the structure factor of a dendrimer of two generation§tar t0 be made o different stars, each of them with equal
is computed in terms of the structure factor of a monodis @M NumbelP but an arm-size distributioN; . For the form

perse star. i ~2™ wherem=0, i runs from 1 toG andN .y iS

IIl. BRANCHED STRUCTURES

N;i=Nmay
the number of monomers of the largest arms, the radius of
A. Polydisperse stars gyration of each arm i®,=constxi Ma, and the average

' concentration can be written §%5]
Consider a star-branched polymer madégfarms ofN;

monomers,P, arms of N, monomers and so ofsee Fig.

B(r)=2 ¢i(r)= > erfo(r/2Ry)

3(a)]. The structure factor of this aggregate is 2malr 4
— 1 § NpNg U 1+m
S(q)=5—— 2 PoPq X% (exp(—xp)—1) 3p (2x conspMr e TR,
P:N; = - , (7
2 PN 27ma® N (r @
1 EG‘, Né wherel is the gamma functiofi (a) = [5dx>@~ texp{—x}. If
X (exp(—%g) ~ 1)+ 5 = Pq; the exponenin is very large, only theP largest arms con-
P.N: q tribute to the concentration profile which is very similar to a
| I
i=1 monodisperse star. As the distribution width increases, the

X[2(eXp( —Xq) = 14 Xq) — (eXp( —Xq) — 1)2].
(6)

Here, G is the number of different lengths,=q?a®N/6.

smaller arms start to significantly contribute to the profile. In
this case, several different regimes can be identified, as
shown in Fig. 4. By inserting the continuous limit of Eg)

in Eg. (2) we find an intermediate regime that scales as
S(q)~q 2@~ for m=1/2. This means that for the poly-

Note that this expression can be decomposed, as for thdispersity considered here, the exponent varies from 0 when
monodisperse star, in a contribution from the average conm=1/2 to —4 whenm— . Interestingly, a second interme-
centration of the star plus contributions from the fluctuationsdiate regime develops due to the finite distribution of the arm
However, as we will see below, the general shape of th@olydispersity. When the size of arms has a finite small cut-
scattering curve now exhibits a richer behavior. The lowoff at N,;,=Ng, the polydisperse star consist of two parts:
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10" Ty argument can also be applied to determine the scattering re-
; gimes. Letp(r) be the number of arms at distancom the
center. Then, the local correlation length is set &)
=rp(r)~ 2 and the concentration ié(r)=p(r)%% 43 In
the infinitesimal shell of volumedV=4=r2dr, there are
thendn=p(r) " 3*r?dr monomers in one arm. By knowing
the polydispersity of the chaing(n) one can compute the
functionp(r) and extract the concentration. If we choose, as
for the precedent Gaussian examp=N,d 2", and a
constant arm number of each lengt=P, we get in the
b \ continuous limit p(n)=P(n/Npma0 ~ ¥2", leading to p(r)
10 T T T e e ~ 1Y) Correspondingly, the concentration scales as
(r)~r~* with the exponentr=5[2+5/(6m—1)] and the
scattering from that intermediate region scales S{s)
FIG. 5. A comparison of the scattering intensity as a function of~q S, with exponents=%[1—2/(6m—1)]. In the limit
the scattering vector in a log-log scale for polydisperse stars of thevhere m is very large one recovers the usual intermediate
same mass i solvent. The parameters for the polydispersed starssjope s=10/3. Asm decreases we reduce the intermediate
areG=100, P;=10%, andN;~10% ~>™ with m=1 (solid ling, m  slope, as for the Gaussian case. The transition point between
=2 (dashed ling andm—= (dotted ling. This last case corre- the Guinier zone and this region occurs ata 5/3
sponds to a uniform star oPg=10* arms. Straight lines with “1/(NmaxP1/3- As in the Gaussian case, we find a second
slopes—4, —3, and—2 are also shown. intermediate region that scales 8&1)~q % The transi-

the outer polydisperse shell and a central starlike core Thition point between the two intermediate regions occurs at
polydisp : a)*®~1/(N,i,,PY3). Finally, the transition between the

second intermediate regime therefore appears at length scalie cond intermediate region and the fluctuating regime occurs
smaller than the length of the smaller arms and follows the

4 : at (qa)%°~PY3INpad Nmax/ Nmin) ¥€™~ 1. These results
usual q sc_a!lng. At low wave vectors] the spectrum are shown in Fig. 4. One can see that the region where fluc-
shows a Guinier plateau. The transition point between th

Guinier zone and the first intermediate region occurs auatll%?;_1)/ggr_nsl)§1at_a§(6m_5?ppears only It Nimax
(g Rg)2~1 as can be verified by inserting the exact form Oft>hP b ¢ Nimin g'\llf the_ exponen|m>5/t|3\|and
Eqg. (7) in Eq. (2) and exploring the smalfj limit of the € number Of MONOMErsNimay IS Very 1arge, Nmax

s - p2/3(6m—1)/(6m-5) ; ; —10/3 ;i i
resulting expression. The radius of gyration of the pondis->Nm'”P q , the reglont\lmtth stlr:)peq . dc;sap. ted
perse star is Rgz[ff;dr () /LS 5dr r2a(n)] pears and one crosses over directly to the region dominate

B . 75/3 g .
— 3R ;i *M)/[Z,i 2™, whereR,~aN2 is the gyration by fIuctuat|on§/3vl|th(2i|]9%€/cgsm_é)The transition point the_n
. occurs at ¢a) P INmax- Again, by choos
rad'L.JS .Of the largest arm. For large valzuesm)_tme Fecovers ing the value ofm betweerr and 5/6, it is possible to obtain
the limit of the monqdlsperse stﬁﬁngl. Wr|tten in terms scattering functions with intermediate slopes ranging from
of the monomer sizen, the transition point between the

O S . ) the monodisperse star value ef10/3 to —5/3 slope. For
Guinier zone and the first intermediate regime OCCUIS &f,) 65 ofm between 5/6 and 1/2, the scattering function
(qa)2~1/Npax, WhereNp.,=N; is the number of mono- '

e . always crosses from the regi ~q~t0RAL-2(6m=1)) 1
mers of the largest arms. The transition point between th% reéime S(q)~q 103 inde%ﬁ%)ntly of the number of
two intermediate regions occurs afj&)?~ 1/N i, Where

. monomersN,,ax-
Npmin=Ng is the number of monomers of the shortest arms. max

Finally, the transition between the second intermediate re-
gion and the region where fluctuations dominate occurs at
(9@)%~P/Npa{Nmax/Nmin) ™. One can see that the region ~ These structures are formed by starting from a uniform
where fluctuations dominates appears only M. star ofP;=P arms ofN; monomers each one, and branch-
>pm(m-DN_UM=1) if the exponentim is larger than one ing each arm twice so that in the second generation there are
and the number of monomend,,,, is very large,N,.x P2=2P; arms of lengthN,. We then branch each of the
>NpinP™(™ 1) the region with slope~* disappears and newest arms twice so that in the third generation there are
one crosses over directly to the region dominated by fluctuaPs=2P,=2?P; arms of lengthN3. We repeat this process
tions with slopeq~2. The transition point then occurs at up to any desired number of generati¢ase Fig. 8)]. This
(qa)?~P™(M=1/N,. .. (see Fig. 4 For values ofnbetween means that the number of arms in each generatioR;is
1 and 1/2, the scattering function always crosses from the=2'~*P. As in the case of the polydisperse stars, for a large
regime S(q)~q 2@~YM to a regimeS(q)~q~* indepen- number of arms and generations, asymptotic shapes can be
dently of the number of monomels;, ... Examples of some reached for particular types of polydispersity distributions.
of these cases are presented in Figs& note Ref.15)). In Let us consider the case of a dendrimer®fgenerations
the limit m=1/2 the scattering function does not exhibit awith arm-size  polydispersity ~of the form A
developed scaling but rolls over gently from the Guinier pla-=22"0" YA}, where \j=3]_;N; is the sum of mono-
teau to the large wave vector limit of slope2. mers per arm from generation 1 up to generatiorBy

For a polydisperse star in a good solvent a Daoud-Cottochoosingm=1/2, we assure that the first generation always

10" [
10° |

107

S(g) (arb. units)

10° |

10° £

qa

B. Dendrimeric Structures
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S{q) (arb. units)
S(g) (arb. units)

FIG. 6. A comparison of the scattering intensity as a function of 15 7 A comparison of the scattering intensity as a function of

the scattering vector in a log-log scale for dendrimers with the same, o gcattering vector in a log-log scale for a dendrimeric structure of

mass_.izThe_ parameters l_Jse,d wee= 10, P=201 and N different number of generation§;. The parameters for the den-
~10% 2™ with m=1/2 (solid ling), m=1 (dashed ling and m drimer areN: = 100. P= 20
I 1 .

—oo (dotted ling. This last case corresponds to a uniform star of

Ps=20x 2° arms. Straight lines with slopes8, —6, and—4 are

also shown. ~ U(PY3N 2 (Nimax! Nmin) “ Y8, As in the Gaussian case,
we find another intermediate region that scalesSg)

has the smallest number of monomers per arm. By usingq‘lo’s. The transition point between the two intermediate
arguments similar to those for the polydisperse star, we findiegions occurs atga)>*~1/(P**Ni,). Finally, the transi-

for the Gaussian dendrimer, an average concentrafion tion between the second intermediate region and the
~r~ (1M “that gives rise to an intermediate scaling regimefluctuating regime occurs at q6)>"?
S(q)~q 2@ M [16]. Again, if mis very large, only the ~PYI N adNmax/ Nmin)~ Y2". These results are shown in
last generation contributes to the scattering, which is similaFig. 4. The region where fluctuations dominates appears only
to the monodisperse star wifg arms. Asm decreases, the if Nq,> N MM Dp2mEEmD] 4 A~ s very large,
first generations start to contribute significantly, modifying A/, 5, A i P ™™+ 1 the region with slope 19" dis-

the slope of the scattering curves that reaches the steepegipears and one crosses over directly to the region
value of —8 whenm=1/2. The transition point between the dominated by fluctuations with slopg > The transition
Guinier zone and this region occurs aqz_a02~1/NmaX, point then  occurs at a)53~p@m-1/(6m+s),
where MV ax=Ng . Also, there is a second intermediate 1€ N ol Ninax! Nipir) 2™~ D/12m(6m+5)] “Again, by choosing the

gion which scales a$(q)~q *. The transition point be- yajie ofm betweerre and 1/2, it is possible to obtain scat-
tween these two intermediate regions occurs q&){ tering functions with intermediate slopes ranging from the
~1UNpin, WhereNpy,=N; (see Fig. 4 Finally, the transi-  monodisperse star value ef10/3 to—5 slope.
tion between the second intermediate region and the fluctu- The results for the scaling regimes and the transitions be-
ating regime occurs atq@)’~P/NpaNmax Nmin) "™ tween these regimes for both, polydisperse stars and hyper-
The region where fluctuations dominates appears only ihranched structures are summarized in Appendix B.
N as>PZMWEMFUALEND  The regime withS(q)~q~* In Fig. 7 we plot the structure factor for Gaussian den-
disappears WhetVpa—NpminBP?™ ™1 In this case the drimers with arms of equal size for all the generations. In this
transition point between the region wiss(q)~q 2" ca5e a non-scaling regime is present between the Guinier
and the fluctuating regime occurs at qa&)?>  zone and the higly region. This region shows a hump that
~P™ M DN adl Nmaxd Nnin) V2™ 1. Note that for large  reflects the fact that as we increase the number of genera-
NMnax @nd by tuningm betweence and 1/2, it is possible to tions, the outer core of the aggregate becomes very dense
obtain scattering functions with intermediate slopes ranginghus dominating the structure of the spectrum which re-
from the monodisperse star value-o# to —8 slope. In Fig.  sembles the one for a spherical shell. We see in Fig. 7 that
6 we show examples of some of these cases. the size of the hump increases as we increase the number of
Applying a Daoud-Cotton argument to the case of dengenerations in qualitative agreement with the experimental
drimers in good solvent we determine the correspondingesults of Ref[17]. Note that while growth of dendrimers to
scaling regimes. In this casp(r)~r>©m*1)_ Correspond- a high number of generations is usually hindered by steric
ingly, the concentration scales @gr)~r ¢, with a=3%[2 reasons, a polydisperse dendrimer can grow indefinitely if
—5/(6m+1)] and the scattering from that intermediate re-the polydispersity is correctly tuned.
gion scales ass(q)~q~ S, with s=[1+2/(6m+1)]. In From the scattering curves of branched structures in
the limit wherem is very large one recovers the usual inter- which there is ag region where fluctuations dominate, we
mediate slopes=10/3. Asm decreases we reduce the inter- note that there is always an intermediateegion with a
mediate slope, as for the Gaussian case. The transition poisteeper slope than the corresponding one for a linear poly-
between the Guinier zone and this region occursgat)Y®  mer. This can be understood by using a simple graphical
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argument. Consider a linear Gaussian polymer of madts
structure factor consist of a power law region with slope
—2 and a Guinier zone for low wave vectqr Now, let us
consider any branched Gaussian polymer. Its structure facto
coincides, in slope and absolute value, with the one for the
linear Gaussian polymer at short-wave lengths. This reflects
the fact that the internal structure of the polymer is the same
in both cases. If the branched polymer has the same mas
than the linear one, both spectra must coincide in the plateat
Guinier zone. However, since the radius of gyration of any
branched polymer is always smaller than the corresponding
one for the linear polymer, the Guinier zone must extend to a
larger wave vector value, as shown for example in Fig. 2.

Therefore. the onl ible w. fr ina from one reaion FIG. 8. Representation of a dendrimer wkh=4 arms, ands
eretore, the only possibie way of Crossing from one regior._ , generations. The solid circle represents the location of mono-

to the other is by an intermediate region with an ayerag‘?‘nerm and the open circles represent the locations of monomers
slope larger than the slope at short-wave lengths. This ar9apresentatives of the different families.

ment is also valid in good solvent conditions where the

Gaussian model is not valid and monomer-monomer interacN2 monomers. Then, each arm of the newest generation is

tions play an important role. branched again in two arms and so on. The structure factor of
the structure made @ generations is related to the structure

—

IV. CONCLUSIONS factor of the structure made d&—1 generations by the
In this paper we have shown how different branched po|y_equat|on

mers give rise to different structure factors. This information G-1

can be used to probe the morphology of supramacromolecu- E PiN;

lar aggregates. We have shown how the slope in the interme- _ =1

. ; ) ) X . = _ +
diateq region can be tailored according to the polydispersity Se(d)="3 Se-1(@)+ Seorr (), (AL)
in the length of the constitutive linear chains of the branched 21 PiN;
=

aggregates. In particular, for polydisperse stars we found
scaling regimes with slopes ranging from2 to —4 in @
solvent conditions and between5/3 and—10/3 for ather-

mal solvent. In the case of dendrimeric structures, scaIing)f the structure made df generations and theorrections

regimes ranging from-4 to —8 in # solvent and between Seon( ;

- B . . <orr(0), are due to the correlations between the arms grown
19/3 and-—5 fpr athermal ggnd|t|qns, although ncher bg— in the Gth generation with themselves and the rest of the

havior was obtained for specific choices of the polydispersity, ms. Assuming thaB_1(q) is known, the problem consist

parameters. We have shown using simple arguments th calculate these corrections. Then, applying the procedure

whene\_/er there is a region where fluctuations dominate th? cursively, the structure factor of any structure made of an
scattering response, then the structure factor of branche bitrary number of generations can be calculated

structures always present an intermediqteegime with at Now we proceed with the calculation of tleerrections

least a small region where the slope in a log-log plot is Iargqn order to show the general idea, we are going to treat the
than the corresponding slope of the linear polymer. This ’

means that these aggregates are not strictly self-similar ov simple case of a dendrimer wiB=2 generationssee Fig,
the entire range of length scales’| <Ry . Results presented %5 Any monomerm that belongs to the last generatioB (

S e T =2) interacts with all other monomers of the structure. These
in this paper can be qualitatively used as a guiding tool for,

. . . interactions can be classified according to the relative loca-
exploring the branching morphology of aggregates accordin

to the type of regimes presented in the scattering intensitgon’ In the structure, of the second monomewith respect

curves. They also provide qualitative information from the¥0 to monomem. This is shown in Fig. 8 where we classify

analvsis of the values of the slopes of the intermedate the position of the second monomer in 5 different families.
regir¥1es P @€ The monomers of family 1 belongs to the same generation

and to the same arm of monommar Family 2 comprises all
the monomers of the same generation af but that belong
to a different arm whenever this arm has a common origin
with the arm wherenm s located. Family 3 consists of mono-
In this appendix we outline the procedure to obtain themersn of the same generation oh and whose respective
structure factor for the branched structures described in thiarms originate in different arms of the previous generation.
paper by considering a specific example. Suppose a branch&dr family 4 one monomer, say, belongs to generatio®
polymer that grows following a given rule like the one and the othekn) belongs to generatio®—1, and the arm
shown in Fig. 8b). In this figure, we show a polymer that wherem is located originates in the arm whemas located.
grows from a star oP, arms each one made df; mono-  Finally, family 5 consists of monomersof different genera-
mers. Each arm is then branched in two other arms made aion than that of monomeamn, and the monomem cannot be

whereP; andN; are the number of arms and monomers in
the ith generation, respectivel (q) is the structure factor

APPENDIX A: METHOD OF CALCULATION
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reached by going through the arm wheris located. All the  where
monomers that participate in the corrections belong to one of
these families. Contributions to the structure factor from a

given family f are calculated from the expression Sy(q)= (Py Xj)Nl(exp{—xl}— 1)
f 1 f '
Scorr(q) = N_T % f dRdenGm,n(Rn va) 2N,
’ + —(exp{ =Xy} —1+Xq), (A10)
xexp(ig: (Ry=Rm)}, (A2) X

is the structure factor of a star 8 arms andN; monomers
where Nt is the total number of monomers, the sum runs[18]. This expression contains two terms. The first term of
over monomem andn with at least one of them belonging the right-hand side expresses cross correlations between the
to the latest generationG=2), and Gﬁ,m(Rn ,Rm) is the  different arms of the star. The second term refers to the nor-
Green function of thé family given by mal Debye function for a linear polymer df; monomers, as
found by taking the appropriate limR;=1. Note that the
general procedure explained above can be easily generalized
Glm (R, Ri) =G(Ry,Ryy:m—n), (A3) to calqulate the stru<_:tur_e faqtors of general branched struc-
tures like those studied in this paper.

2 .
G2 n(Rn,Rm) =G(Ry,Rpy;m+n), (A4)
APPENDIX B: SUMMARY FOR THE SCALING REGIMES

3 _ .
Ghnn(Rn Rm)=G(Rn,Rm;m+n+2Ny), (AS) In this appendix we summarize the results for the scaling

regimes of the branched and hyperbranched structures stud-
ied in this work and write them using a simpler notati¢a,
(b), (c), and(d) show the results for Gaussian polydisperse
stars, self-avoiding walkSAW) polydisperse stars, Gaussian
dendrimers and SAW dendrimers, respectively.
First intermediate regim&(q)~q~ %
(@) s=4(1—1/2m)
where (b) s=2(1-2/(6m—1))
(c) s=4(1+1/2m)
(d) s=X(1+2/(6m+1)).

G n(Ra,Rm)=G(Ry,Ry;m—n+Ny), (AB)

Gy n(Rn,Rm) =G(Ry Ry sm+n+Ny), (A7)

3 (312) 3(R,—~R,)2 Transition points between the Guinier and the first inter-
G(R,,Ry )= . m 0 mediate regime:
n:» m:» 2 2 2
27a?|al 2a?|a| @ (qRy°~1
(A8) (b) (QR**~1
() (qRy)?~1

Substituting these expressions in E42) and taking the (d) (qRy)**~1.
continuos limit by transforming the sums into integrals we Transition points between the first and second intermedi-
find the structure factor for the dendrimer of two generationsate regimes:
@ (q Rg);;“ Nmax/Nmin
(b) (q Rg)zwj\'/\lma;j\?rﬁin
(C) (ng) max’/Vmin

N N
S(q)= msl(qw m —zz(exp{—xz}— 1)2 (d) (q_R.g)SBNNmaxP(l;/g/Nminplm- . _ .
1 2 1 2| Xz Transition points between the second intermediate regime
N N N and the region where fluctuations dominate:
2 2 2 (@ (qRy)>~P(Npyax/Npin) ™
+—(exp— X} —1+X) [+ 5| — (P gaxiiimin _
Xg ( q 2} 2) N]_+ 2N2 X% ( 0 (b) (ng)S/SN P2/3(Nmax/Nmin)4/(6m 1)

(c) (q Rg)2~ PG(Nmax/Nmin) ~um
) (o) (ARg)**~ PE(NinaxPs TN minP V9 ~ ¥ 1),
—L)exp{—2xy}(exp{ —xz} — 1) Transition points between the first intermediate regime
and the region where fluctuations dominate:
(@ (qRg)2~Pm(m 1

2N, 2N

P RaN 2 L (PomDexpl—xil] (b) (qRy) 3~ PE(en-2y(on-s)
ez (©) (aRy)*~Pg/ ™

X (exp{ = xa} — 1) (exp{ —xg} ~ 1), (A9) (@ (qRY¥*~PEREMTIIENTS),
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