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Scattering from supramacromolecular structures

Carlos I. Mendoza and Carlos M. Marques
LDFC-UMR 7506, 3 rue de l’Universite´, 67084 Strasbourg Cedex, France

~Received 23 April 2002; published 21 November 2002!

We study theoretically the scattering imprint of a number of branched supramacromolecular architectures,
namely, polydisperse stars and dendrimeric, hyperbranched structures. We show that polydispersity and nature
of branching highly influence the intermediate wave vector region of the scattering structure factor, thus
providing insight into the morphology of different aggregates formed in polymer solutions.
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I. INTRODUCTION

Scattering by light, x rays or neutron radiation provide
fundamental tool to investigate the shapes and statistica
ture of large molecules in solution@1#. For objects of fixed
shape, like spherical, ellipsoidal, or cylindrical colloids, t
scattering functions are known and can easily be compa
to experimental data, thus allowing for a determination
shapes and relevant dimensions of the objects in a g
experimental sample. For objects of a relatively simple
ometry, but with a fluctuating nature, such as polymer cha
or semiflexible rods the scattering spectra contains not o
information about the average shape of the mass distribu
but carries also a signature of the conformational disor
determined by the nature of the thermodynamic fluctuatio
For flexible polymers, for instance, one can determine fr
the scattering data whether monomer-monomer exclu
volume interactions are relevant or not in a particular, giv
solvent.

Association of fixed-shape objects, such as the aggre
tion of spherical colloids that lead to fractal DLA~diffusion-
limited aggregation! structures@2#, brings also some degre
of disorder into the spatial distribution of the scattering e
ments. Although the object as a whole does not fluctuat
time, the spatial distribution of the scattering elements
statistically fixed by the aggregation process itself. DLA a
other related processes have been shown to lead to
similar aggregates@3#, where the frozen position correlation
g(r ) between different elements at a distancer are described
by a power lawg(r );r 2m. It is well known that the scat-
tering data from these objects also carries the signature o
exponentm, thus providing some insight on the type of th
aggregation process ruling the solution behavior.

When the aggregation process involves fluctuating
jects, the scattering function carries information both on
connectivity between different scattering elements and on
statistics of the fluctuations. In this paper we discuss
interplay between these two factors by studying a numbe
branched polymer structures. Branched polymers are a
ably the larger class of systems of connected fluctuating
ements, systems that also include aggregates of soft
beads, emulsion droplets, and others. In many polyme
polymerlike structures, control of the branching chemis
allows for a careful choice of the connectivity, like in de
drimers@4,5# or in star-branched polymers@6,7#, and to some
extent in dendrimeric~also called hyperbranched! polymers
@8–10#. Geometries with higher degree of disorder are o
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tained by spontaneous aggregation in solutions of polym
carrying sticking groups, and by random branching dur
polymerization growth. This leads to a great diversity in t
connections and to a polydispersity in sizes of the const
tive elements. In order to clarify the role of each of the
factors in shaping the scattering functions, we explore
number of structures obtained by variations of starlike po
mers: stars with polydisperse arms, and dendrimeric po
mers with different degrees of polydispersity.

The paper is organized as follows. In Sec. II we rec
some basic general features of the scattering amplitude
well known, fixed-shape and fluctuating objects. Section
discusses the scattering function of Gaussian branched
hyperbranched structures, and also discusses qualitativel
effects of excluded volume. Finally, in the conclusions w
discuss the different scattering signatures according
branching structure and statistical nature of the fluctuatio

II. SCATTERING FROM SIMPLE POLYMER
ARCHITECTURES

The structure factor of an aggregate is given by

S~q!5
1

N K (
n,m51

N
exp$ iq•~Rn2Rm!%L , ~1!

whereN is the number of scattering units in the aggreg
~monomers!, Ri is the position of thei th scattering unit, the
ensemble average is denoted by^•••&, andq is the momen-
tum transfer given byq5qs2qi . Here qi and qs are the
wave vectors of the incident and scattered fields. For ela
scatteringuqsu5uqi u52p/l, wherel is the wavelength of
the incident wave. Hence,q[uqu5(4p/l)sinu/2, with u the
scattering angle.

An illustration of the form of the scattering amplitude fo
two objects of well defined shapes is shown in Fig. 1. In t
figure, the spherically averaged scattering function of an
finitely thin uniform rod of lengthL is compared to that of an
uniform sphere of radiusR5L/2. For simplicity both curves
have been normalized to 1 at the origin. The curve cor
sponding to the rod shows a power law region with slo
21 for large wave vectorq, reflecting the unidimensiona
nature of the rod. Indeed, for a mass density distribution
the formg(r );r 2(32D), whereD is the fractal dimension of
the object, one expects the scattering behaviorS(q);q2D.
For rods,D51, andS(q);q21. This holds for spatial scale
r !Rg or reciprocal lengthsqRg@1, whereRg is the radius
©2002 The American Physical Society05-1
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C. I. MENDOZA AND C. M. MARQUES PHYSICAL REVIEW E66, 051805 ~2002!
of gyration of the objectRg
25(1/2N 2)( i , j (Ri2Rj )

2. For
rods,Rg

25L2/12. At small wave vectorsqRg!1, S(q) rolls
off into a plateau~Guinier! region. Deviations from the pla
teau value give a measure of the radius of gyration of
object. In this regionS(q);12q2Rg

2/3. The structure factor
of the sphere also shows a Guinier zone that rolls off fr
the plateau at a smaller wave vectorq indicating that the
radius of gyration of this sphere is larger than the radius
gyration of the rod. For larger values ofq, the sphere struc
ture factor oscillates, the separation between the peak p
tions being also a measure of the size of the sphere.
decaying envelope has a slope24, typical of objects with
sharp interfaces.

As an example of the scattering function of fluctuati
objects, we consider the structure factor of a linear Gaus
polymer with P3N monomers and of an uniform star ofP
arms of N monomers each one@see Fig. 2 and also Eq
~A10!#. For the linear polymer, the largeq behavior follows a
power law with a slope22, a manifestation of the fracta
dimension of a Gaussian chain,D52. The same behavior i
seen at large wave vectors for the star scattering funct

FIG. 1. Sketch of the scattering intensity for a uniform rod
lengthL and massM ~dashed line! and a uniform sphere of radiu
R5L/2 and the same mass~solid line!. A straight line with slope
24 is also shown.

FIG. 2. Scattering intensity for a linear Gaussian polymer ofPN
monomers~solid line! and a Gaussian star ofP5103 arms each one
of N5106 monomers~dashed line!. A straight line with slope24 is
also shown.
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However, the star shows a second power law region w
slope24 before saturating at the plateau value. Notice tha
steepest curve is necessary to connect a plateau exten
further inq ~the radius of gyration of the star is smaller tha
the radius of gyration of the linear polymer! to a coincidental
high q region in which both, the polymer and the star, ha
the same local statistical structure. Quantitatively, the va
24 is related to the average concentration profile. Indeed
can be shown@11# that, when scattering from an inhomog
neous region of average concentrationf(r ) dominates the
spectrum,S(q) is calculated from

S~q!;
1

N F E
0

`

r 2dr
sinqr

qr
f~r !G2

. ~2!

For a Gaussian star polymer, the average concentration
file is given byf(r )53P/(2pa2r )erfc(r /2Rg), wherer is
the distance from the center of the star,a is the monomer
size, and erfc(x) is the complementary error function@12#.
Equation~2! thus leads to

S~q!;
P

Nq4
, 1!qRg!P1/2. ~3!

Note that this form crosses over correctly from the plate
region S(q);P3N at q;Rg

21 to the highq-region S(q)
;q22 at q;P1/2Rg

21 .
Even in the absence of an exact form for the radial c

centration profile, a general argument can be made@13# in
order to extract the value of the intermediate slope. For a
with P arms, the average concentration inside an infinite
mal spherical shell of volume 4pr 2dr and radiusr, centered
on the star, is given by

f~r !5PdN~r !/~4pr 2dr !, ~4!

with dN(r ) is the average number of monomers per arm
the shell. For a Gaussian armN(r ).3r 2/a2 and one easily
recovers the exact result for the concentration in the sca
regime r !Rg . The Daoud and Cotton argument~4!, com-
bined with Eq.~2! also allows to compute the intermedia
regime of the scattering factor of a star in a good solve
where excluded volume interactions are important. In t
case, the star can be described as a semidilute solution,
a local, position dependent screening lengthj(r ). Pictorially,
this is represented by arms made of a succession of blob
increasing sizej(r ). The arms are stretched and within
distancer from the center one findsN(r ).(r /a)5/3P21/3

monomers, the size of the star in a good solvent beingRstar
.N3/5P1/5. It follows that the average concentration vari
radially asf(r );P2/3r 24/3 and the intermediate regime i
described by

S~q!;
P1/3

Nq10/3
, 1!qRstar!P2/5. ~5!

For higher wave vectors,qRstar@P2/5, the function S(q)
crosses over to a slope25/3 indicative of the local excluded
volume statistics of the arms@14#.
5-2
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SCATTERING FROM SUPRAMACROMOLECULAR STRUCTURES PHYSICAL REVIEW E66, 051805 ~2002!
III. BRANCHED STRUCTURES

The objective of this section is to show how the intern
branched structure of the aggregate modifies the form of
structure factor. In order to do this, we consider two differe
types of aggregates,~a! polydisperse stars, and~b! dendrim-
eric structures~see Fig. 3!.

The method of calculation for the structure factor of a
gregates~a! and~b! starts by considering an arbitrary aggr
gate whose scattering function is known. If a new arm
added to the structure, the scattering function that acco
for the new arm can be calculated in terms of the kno
scattering function plus corrections due to the correlati
between the monomers of the new arm with themselves
with all the monomers of the previous aggregate. A m
detailed discussion of the procedure is given in Appendi
where the structure factor of a dendrimer of two generati
is computed in terms of the structure factor of a monod
perse star.

A. Polydisperse stars

Consider a star-branched polymer made ofP1 arms ofN1
monomers,P2 arms of N2 monomers and so on@see Fig.
3~a!#. The structure factor of this aggregate is

S~q!5
1

(
i 51

G

PiNi

(
p,q51

G

PpPq

NpNq

xpxq
„exp~2xp!21…

3„exp~2xq!21…1
1

(
i 51

G

PiNi

(
q51

G

Pq

Nq
2

xq
2

3@2„exp~2xq!211xq…2„exp~2xq!21…2#.

~6!

Here, G is the number of different lengths,xq5q2a2Nq/6.
Note that this expression can be decomposed, as for
monodisperse star, in a contribution from the average c
centration of the star plus contributions from the fluctuatio
However, as we will see below, the general shape of
scattering curve now exhibits a richer behavior. The l

FIG. 3. Schematic representation of~a! Polydisperse stars an
~b! Dendrimeric structures formed by connecting linear polyme
05180
l
e
t

-

s
ts

n
s

nd
e

s
-

he
n-
.
e

wave vector and the high wave vector regions still pres
the usual Guinier roll off from a plateau and a ‘‘22 slope,’’
respectively. The signature of the star polydispersity is c
ried by the shape of the intermediate scattering region. C
sider the case of arm-size polydispersity. Here, we take
star to be made ofG different stars, each of them with equ
arm numberP but an arm-size distributionNi . For the form
Ni5Nmaxi

22m, wherem>0, i runs from 1 toG andNmax is
the number of monomers of the largest arms, the radius
gyration of each arm isRi5const3 i 2ma, and the average
concentration can be written as@15#

f~r !5(
i

f i~r !5
3P

2pa2r (
i

erfc~r /2Ri !

.
3P

2pa3

~23const!1/mGS 11m

2 m
D

Ap
S a

r
D (m11)/m

, ~7!

whereG is the gamma functionG(a)5*0
`dxxa21exp$2x%. If

the exponentm is very large, only theP largest arms con-
tribute to the concentration profile which is very similar to
monodisperse star. As the distribution width increases,
smaller arms start to significantly contribute to the profile.
this case, several different regimes can be identified,
shown in Fig. 4. By inserting the continuous limit of Eq.~7!
in Eq. ~2! we find an intermediate regime that scales
S(q);q22(221/m), for m>1/2. This means that for the poly
dispersity considered here, the exponent varies from 0 w
m51/2 to24 whenm→`. Interestingly, a second interme
diate regime develops due to the finite distribution of the a
polydispersity. When the size of arms has a finite small c
off at Nmin5NG , the polydisperse star consist of two par

.

FIG. 4. Diagram showing the different scaling regimes of t
scattering function for: polydisperse stars inu solvent
@b521/(m21), g5m/(m21), e5g, h521/2, s50, and
s52(221/m)], polydisperse stars in athermal solve
[b524/(6m25), g51/3(6m21)/(6m25), e52g, h523/5,
s521/5, and s510/3(122/(6m21))], dendrimeric structures in
u solvent @b51/(2m11), g52m/(2m11), e5g, h521/2, s
50, and s52(211/m)], and dendrimeric structures in atherma
solvent @b51/(2m11), g5(1/3)2m/(2m11), e52g,
h523/5, s521/5, and s510/3„112/(6m11)…].
5-3
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C. I. MENDOZA AND C. M. MARQUES PHYSICAL REVIEW E66, 051805 ~2002!
the outer polydisperse shell and a central starlike core. T
second intermediate regime therefore appears at length s
smaller than the length of the smaller arms and follows
usual q24 scaling. At low wave vectorsq the spectrum
shows a Guinier plateau. The transition point between
Guinier zone and the first intermediate region occurs
(qRg)2;1 as can be verified by inserting the exact form
Eq. ~7! in Eq. ~2! and exploring the smallq limit of the
resulting expression. The radius of gyration of the polyd
perse star is Rg

25@*0
`dr r 4f(r )#/@*0

`dr r 2f(r )#
53R1

2@( i i
24m#/@( i i

22m#, whereR1;aN1
1/2 is the gyration

radius of the largest arm. For large values ofm one recovers
the limit of the monodisperse starRg

253R1
2 . Written in terms

of the monomer sizea, the transition point between th
Guinier zone and the first intermediate regime occurs
(qa)2;1/Nmax, whereNmax5N1 is the number of mono-
mers of the largest arms. The transition point between
two intermediate regions occurs at (qa)2;1/Nmin , where
Nmin5NG is the number of monomers of the shortest arm
Finally, the transition between the second intermediate
gion and the region where fluctuations dominate occurs
(qa)2;P/Nmax(Nmax/Nmin)

1/m. One can see that the regio
where fluctuations dominates appears only ifNmax

.Pm/(m21)Nmin
21/(m21) . If the exponentm is larger than one

and the number of monomersNmax is very large,Nmax
@NminP

m/(m21), the region with slopeq24 disappears and
one crosses over directly to the region dominated by fluc
tions with slopeq22. The transition point then occurs a
(qa)2;Pm/(m21)/Nmax ~see Fig. 4!. For values ofm between
1 and 1/2, the scattering function always crosses from
regime S(q);q22(221/m) to a regimeS(q);q24 indepen-
dently of the number of monomersNmax. Examples of some
of these cases are presented in Fig. 5~see note Ref.@15#!. In
the limit m51/2 the scattering function does not exhibit
developed scaling but rolls over gently from the Guinier p
teau to the large wave vector limit of slope22.

For a polydisperse star in a good solvent a Daoud-Co

FIG. 5. A comparison of the scattering intensity as a function
the scattering vector in a log-log scale for polydisperse stars of
same mass inu solvent. The parameters for the polydispersed s
areG5100, Pi5104, andNi;108i 22m with m51 ~solid line!, m
52 ~dashed line!, and m→` ~dotted line!. This last case corre
sponds to a uniform star ofPG5104 arms. Straight lines with
slopes24, 23, and22 are also shown.
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argument can also be applied to determine the scattering
gimes. Letp(r ) be the number of arms at distancer from the
center. Then, the local correlation length is set byj(r )
5rp(r )21/2 and the concentration isf(r )5p(r )2/3r 24/3. In
the infinitesimal shell of volumedV54pr 2dr, there are
thendn5p(r )21/3r 2/3dr monomers in one arm. By knowing
the polydispersity of the chainsp(n) one can compute the
function p(r ) and extract the concentration. If we choose,
for the precedent Gaussian example,Ni5Nmaxi

22m, and a
constant arm number of each length,Pi5P, we get in the
continuous limit p(n)5P(n/Nmax)

21/2m, leading to p(r )
;r 25/(6m21). Correspondingly, the concentration scales
f(r );r 2a with the exponenta5 2

3 @215/(6m21)# and the
scattering from that intermediate region scales asS(q)
;q2s, with exponents5 10

3 @122/(6m21)#. In the limit
where m is very large one recovers the usual intermedi
slopes510/3. As m decreases we reduce the intermedi
slope, as for the Gaussian case. The transition point betw
the Guinier zone and this region occurs at (qa)5/3

;1/(NmaxP
1/3). As in the Gaussian case, we find a seco

intermediate region that scales asS(q);q210/3. The transi-
tion point between the two intermediate regions occurs
(qa)5/3;1/(NminP

1/3). Finally, the transition between th
second intermediate region and the fluctuating regime oc
at (qa)5/3;P1/3/Nmax(Nmax/Nmin)

4/(6m21). These results
are shown in Fig. 4. One can see that the region where fl
tuations dominates appears only if Nmax

.P1/3(6m21)/(6m25)Nmin
24/(6m25) . If the exponentm>5/6 and

the number of monomersNmax is very large, Nmax
@NminP

2/3(6m21)/(6m25), the region with slopeq210/3 disap-
pears and one crosses over directly to the region domin
by fluctuations with slopeq25/3. The transition point then
occurs at (qa)5/3;P(2m11)/(6m25)/Nmax. Again, by choos-
ing the value ofm betweeǹ and 5/6, it is possible to obtain
scattering functions with intermediate slopes ranging fr
the monodisperse star value of210/3 to 25/3 slope. For
values of m between 5/6 and 1/2, the scattering functi
always crosses from the regimeS(q);q210/3„122/(6m21)… to
a regime S(q);q210/3 independently of the number o
monomersNmax.

B. Dendrimeric Structures

These structures are formed by starting from a unifo
star of P15P arms ofN1 monomers each one, and branc
ing each arm twice so that in the second generation there
P252P1 arms of lengthN2. We then branch each of th
newest arms twice so that in the third generation there
P352P2522P1 arms of lengthN3. We repeat this proces
up to any desired number of generations@see Fig. 3~b!#. This
means that the number of arms in each generation isPi
52i 21P. As in the case of the polydisperse stars, for a la
number of arms and generations, asymptotic shapes ca
reached for particular types of polydispersity distribution
Let us consider the case of a dendrimer ofG generations
with arm-size polydispersity of the form Ni

522m( i 21)Nmin , whereNi5( j 51
i Nj is the sum of mono-

mers per arm from generation 1 up to generationi. By
choosingm>1/2, we assure that the first generation alwa

f
e
s
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SCATTERING FROM SUPRAMACROMOLECULAR STRUCTURES PHYSICAL REVIEW E66, 051805 ~2002!
has the smallest number of monomers per arm. By us
arguments similar to those for the polydisperse star, we
for the Gaussian dendrimer, an average concentrationf(r )
;r 2(121/m), that gives rise to an intermediate scaling regim
S(q);q22(211/m) @16#. Again, if m is very large, only the
last generation contributes to the scattering, which is sim
to the monodisperse star withPG arms. Asm decreases, the
first generations start to contribute significantly, modifyi
the slope of the scattering curves that reaches the stee
value of28 whenm51/2. The transition point between th
Guinier zone and this region occurs at (qa)2;1/Nmax,
whereNmax5NG . Also, there is a second intermediate r
gion which scales asS(q);q24. The transition point be-
tween these two intermediate regions occurs at (qa)2

;1/Nmin , whereNmin5N1 ~see Fig. 4!. Finally, the transi-
tion between the second intermediate region and the flu
ating regime occurs at (qa)2;P/Nmax(Nmax/Nmin)

21/2m.
The region where fluctuations dominates appears onl
N max.P2m/(2m11)N min

1/(2m11) . The regime withS(q);q24

disappears whenNmax;NminP
2m/(2m11). In this case the

transition point between the region withS(q);q22(211/m)

and the fluctuating regime occurs at (qa)2

;Pm/(m11)/Nmax(Nmax/Nmin)
1/2(m11). Note that for large

Nmax and by tuningm betweeǹ and 1/2, it is possible to
obtain scattering functions with intermediate slopes rang
from the monodisperse star value of24 to 28 slope. In Fig.
6 we show examples of some of these cases.

Applying a Daoud-Cotton argument to the case of d
drimers in good solvent we determine the correspond
scaling regimes. In this case,p(r );r 5/(6m11). Correspond-
ingly, the concentration scales asf(r );r 2a, with a5 2

3 @2
25/(6m11)# and the scattering from that intermediate r
gion scales asS(q);q2s, with s5 10

3 @112/(6m11)#. In
the limit wherem is very large one recovers the usual inte
mediate slopes510/3. Asm decreases we reduce the inte
mediate slope, as for the Gaussian case. The transition p
between the Guinier zone and this region occurs at (qa)5/3

FIG. 6. A comparison of the scattering intensity as a function
the scattering vector in a log-log scale for dendrimers with the sa
mass. The parameters used wereG510, P520, and N i

;103i 22m with m51/2 ~solid line!, m51 ~dashed line!, and m
→` ~dotted line!. This last case corresponds to a uniform star
PG520329 arms. Straight lines with slopes28, 26, and24 are
also shown.
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;1/(P1/3Nmax)(Nmax/Nmin)
21/6m. As in the Gaussian case

we find another intermediate region that scales asS(q)
;q210/3. The transition point between the two intermedia
regions occurs at (qa)5/3;1/(P1/3Nmin). Finally, the transi-
tion between the second intermediate region and
fluctuating regime occurs at (qa)5/3

;P1/3/Nmax(Nmax/Nmin)
21/2m. These results are shown i

Fig. 4. The region where fluctuations dominates appears o
if Nmax.N min

1/(2m11)P2m/[3(2m11)]. If Nmax is very large,
Nmax@N minP

4m/[3(2m11)], the region with slopeq210/3 dis-
appears and one crosses over directly to the reg
dominated by fluctuations with slopeq25/3. The transition
point then occurs at (qa)5/3;P(2m21)/(6m15)/
Nmax(Nmax/Nmin)

(2m21)/[2m(6m15)]. Again, by choosing the
value ofm betweeǹ and 1/2, it is possible to obtain sca
tering functions with intermediate slopes ranging from t
monodisperse star value of210/3 to25 slope.

The results for the scaling regimes and the transitions
tween these regimes for both, polydisperse stars and hy
branched structures are summarized in Appendix B.

In Fig. 7 we plot the structure factor for Gaussian de
drimers with arms of equal size for all the generations. In t
case a non-scaling regime is present between the Gu
zone and the highq region. This region shows a hump th
reflects the fact that as we increase the number of gen
tions, the outer core of the aggregate becomes very de
thus dominating the structure of the spectrum which
sembles the one for a spherical shell. We see in Fig. 7
the size of the hump increases as we increase the numb
generations in qualitative agreement with the experime
results of Ref.@17#. Note that while growth of dendrimers t
a high number of generations is usually hindered by ste
reasons, a polydisperse dendrimer can grow indefinitel
the polydispersity is correctly tuned.

From the scattering curves of branched structures
which there is aq region where fluctuations dominate, w
note that there is always an intermediateq region with a
steeper slope than the corresponding one for a linear p
mer. This can be understood by using a simple graph

f
e

f

FIG. 7. A comparison of the scattering intensity as a function
the scattering vector in a log-log scale for a dendrimeric structur
different number of generations,G. The parameters for the den
drimer areNi5100, P520.
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argument. Consider a linear Gaussian polymer of massN. Its
structure factor consist of a power law region with slop
22 and a Guinier zone for low wave vectorq. Now, let us
consider any branched Gaussian polymer. Its structure fa
coincides, in slope and absolute value, with the one for
linear Gaussian polymer at short-wave lengths. This refle
the fact that the internal structure of the polymer is the sa
in both cases. If the branched polymer has the same m
than the linear one, both spectra must coincide in the pla
Guinier zone. However, since the radius of gyration of a
branched polymer is always smaller than the correspond
one for the linear polymer, the Guinier zone must extend
larger wave vector value, as shown for example in Fig.
Therefore, the only possible way of crossing from one reg
to the other is by an intermediate region with an avera
slope larger than the slope at short-wave lengths. This a
ment is also valid in good solvent conditions where t
Gaussian model is not valid and monomer-monomer inte
tions play an important role.

IV. CONCLUSIONS

In this paper we have shown how different branched po
mers give rise to different structure factors. This informati
can be used to probe the morphology of supramacromol
lar aggregates. We have shown how the slope in the inter
diateq region can be tailored according to the polydispers
in the length of the constitutive linear chains of the branch
aggregates. In particular, for polydisperse stars we fo
scaling regimes with slopes ranging from22 to 24 in u
solvent conditions and between25/3 and210/3 for ather-
mal solvent. In the case of dendrimeric structures, sca
regimes ranging from24 to 28 in u solvent and between
210/3 and25 for athermal conditions, although richer b
havior was obtained for specific choices of the polydisper
parameters. We have shown using simple arguments
whenever there is a region where fluctuations dominate
scattering response, then the structure factor of branc
structures always present an intermediateq regime with at
least a small region where the slope in a log-log plot is lar
than the corresponding slope of the linear polymer. T
means that these aggregates are not strictly self-similar
the entire range of length scalesa, l ,Rg . Results presented
in this paper can be qualitatively used as a guiding tool
exploring the branching morphology of aggregates accord
to the type of regimes presented in the scattering inten
curves. They also provide qualitative information from t
analysis of the values of the slopes of the intermediatq
regimes.

APPENDIX A: METHOD OF CALCULATION

In this appendix we outline the procedure to obtain
structure factor for the branched structures described in
paper by considering a specific example. Suppose a bran
polymer that grows following a given rule like the on
shown in Fig. 3~b!. In this figure, we show a polymer tha
grows from a star ofP1 arms each one made ofN1 mono-
mers. Each arm is then branched in two other arms mad
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N2 monomers. Then, each arm of the newest generatio
branched again in two arms and so on. The structure facto
the structure made ofG generations is related to the structu
factor of the structure made ofG21 generations by the
equation

SG~q!5

(
i 51

G21

PiNi

(
i 51

G

PiNi

SG21~q!1Scorr~q!, ~A1!

wherePi and Ni are the number of arms and monomers
the i th generation, respectively,Si(q) is the structure factor
of the structure made ofi generations and thecorrections,
Scorr(q), are due to the correlations between the arms gro
in the Gth generation with themselves and the rest of
arms. Assuming thatSG21(q) is known, the problem consis
in calculate these corrections. Then, applying the proced
recursively, the structure factor of any structure made of
arbitrary number of generations can be calculated.

Now we proceed with the calculation of thecorrections.
In order to show the general idea, we are going to treat
simple case of a dendrimer withG52 generations~see Fig.
8!. Any monomerm that belongs to the last generation (G
52) interacts with all other monomers of the structure. The
interactions can be classified according to the relative lo
tion, in the structure, of the second monomern with respect
to to monomerm. This is shown in Fig. 8 where we classif
the position of the second monomer in 5 different familie
The monomersn of family 1 belongs to the same generatio
and to the same arm of monomerm. Family 2 comprises all
the monomersn of the same generation ofm but that belong
to a different arm whenever this arm has a common ori
with the arm wherem is located. Family 3 consists of mono
mers n of the same generation ofm and whose respective
arms originate in different arms of the previous generati
For family 4 one monomer, saym, belongs to generationG
and the other~n! belongs to generationG21, and the arm
wherem is located originates in the arm wheren is located.
Finally, family 5 consists of monomersn of different genera-
tion than that of monomerm, and the monomerm cannot be

FIG. 8. Representation of a dendrimer withP54 arms, andG
52 generations. The solid circle represents the location of mo
mer m and the open circles represent the locations of monomen
representatives of the different families.
5-6
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reached by going through the arm wheren is located. All the
monomers that participate in the corrections belong to on
these families. Contributions to the structure factor from
given family f are calculated from the expression

Scorr
f ~q!5

1

NT
(
m,n

E dRmdRnGm,n
f ~Rn ,Rm!

3exp$ iq•~Rn2Rm!%, ~A2!

where NT is the total number of monomers, the sum ru
over monomerm andn with at least one of them belongin
to the latest generation (G52), and Gm,n

f (Rn ,Rm) is the
Green function of thef family given by

Gm,n
1 ~Rn ,Rm!5G~Rn ,Rm ;m2n!, ~A3!

Gm,n
2 ~Rn ,Rm!5G~Rn ,Rm ;m1n!, ~A4!

Gm,n
3 ~Rn ,Rm!5G~Rn ,Rm ;m1n12N1!, ~A5!

Gm,n
4 ~Rn ,Rm!5G~Rn ,Rm ;m2n1N1!, ~A6!

Gm,n
5 ~Rn ,Rm!5G~Rn ,Rm ;m1n1N1!, ~A7!

where

G~Rn ,Rm ;a!5S 3

2pa2uau
D (3/2)

expH 2
3~Rm2Rn!2

2a2uau J .

~A8!

Substituting these expressions in Eq.~A2! and taking the
continuos limit by transforming the sums into integrals w
find the structure factor for the dendrimer of two generatio

S2~q!5
N1

N112N2
S1~q!1

2N2

N112N2
FN2

x2
2 ~exp$2x2%21!2

1
2N2

x2
2 ~exp$2x2%211x2!G1

2N2

N112N2
F2N2

x2
2 ~P0

21!exp$22x1%~exp$2x2%21!2G
1

2N2

N112N2

2N2

x2
2 @11~P021!exp$2x1%#

3~exp$2x1%21!~exp$2x2%21!, ~A9!
05180
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where

S1~q!5
~P121!N1

x1
2 ~exp$2x1%21!2

1
2N1

x1
2 ~exp$2x1%211x1!, ~A10!

is the structure factor of a star ofP1 arms andN1 monomers
@18#. This expression contains two terms. The first term
the right-hand side expresses cross correlations betwee
different arms of the star. The second term refers to the n
mal Debye function for a linear polymer ofN1 monomers, as
found by taking the appropriate limitP151. Note that the
general procedure explained above can be easily genera
to calculate the structure factors of general branched st
tures like those studied in this paper.

APPENDIX B: SUMMARY FOR THE SCALING REGIMES

In this appendix we summarize the results for the scal
regimes of the branched and hyperbranched structures s
ied in this work and write them using a simpler notation.~a!,
~b!, ~c!, and ~d! show the results for Gaussian polydisper
stars, self-avoiding walk~SAW! polydisperse stars, Gaussia
dendrimers and SAW dendrimers, respectively.

First intermediate regimeS(q);q2s:
~a! s54(121/2m)
~b! s5 10

3 „122/(6m21)…
~c! s54(111/2m)
~d! s5 10

3 „112/(6m11)….
Transition points between the Guinier and the first int

mediate regime:
~a! (qRg)2;1
~b! (qRg)5/3;1
~c! (qRg)2;1
~d! (qRg)5/3;1.
Transition points between the first and second interme

ate regimes:
~a! (qRg)2;Nmax/Nmin
~b! (qRg)5/3;Nmax/Nmin
~c! (qRg)2;Nmax/Nmin

~d! (qRg)5/3;NmaxPG
1/3/N minP

1/3.
Transition points between the second intermediate reg

and the region where fluctuations dominate:
~a! (qRg)2;P(Nmax/Nmin)

1/m

~b! (qRg)5/3;P2/3(Nmax/Nmin)
4/(6m21)

~c! (qRg)2;PG(Nmax/Nmin)
21/m

~d! (qRg)5/3;PG
2/3(NmaxPG

1/3/N minP
1/3)24/(6m11).

Transition points between the first intermediate regi
and the region where fluctuations dominate:

~a! (qRg)2;Pm/(m21)

~b! (qRg)5/3;P(2/3)(6m21)/(6m25)

~c! (qRg)2;PG
m/(m11)

~d! (qRg)5/3;PG
(2/3)(6m11)/(6m15) .
5-7
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