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Local entropic effects of polymers grafted to soft interfaces
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Abstract. In this paper, we study the equilibrium properties of polymer chains end-tethered to a fluid
membrane. The loss of conformational entropy of the polymer results in an inhomogeneous pressure field
that we calculate for Gaussian chains. We estimate the effects of excluded volume through a relation
between pressure and concentration. Under the polymer pressure, a soft surface will deform. We calculate
the deformation profile for a fluid membrane and show that close to the grafting point, this profile assumes
a cone-like shape, independently of the boundary conditions. Interactions between different polymers are
also mediated by the membrane deformation. This pair-additive potential is attractive for chains grafted
on the same side of the membrane and repulsive otherwise.

PACS. 36.20.-r Macromolecules and polymer molecules – 87.15.He Dynamics and conformational changes
– 87.16.Dg Membranes, bilayers, and vesicles.

1 Introduction

Fluid membranes are surfactant bilayers self-assembled
from solution [1]. They are the prevalent constituents of
many natural and industrial colloidal suspensions, that
often contain also other macromolecular species. In the
biological realm, phospholipid bilayers build the walls of
liposomes and cells, hosting proteins responsible for func-
tions as diverse as anchoring the cytoskeleton, providing
coating protection against the body immune response or
opening ionic channels for osmotic compensation [2]. In
cosmetics, pharmaceutics or detergency, many formula-
tions are membrane solutions with polymers added for
performance, processing, conditioning or delivery [3].

The interactions between polymers and fluid bilayers
have been well scrutinized in many systems. Polymers
grafted to the bilayers can induce gelation [4] or other
phase changes [5,6] in liquid lamellar phases. They sta-
bilize monodisperse vesicles [7] and modify the geometry
of monolamellar [8,9] and multilamellar cylindrical vesi-
cles [10]. Theoretically, the behaviour of fluid membranes
is well understood in terms of bending elasticity [11,12],
a description that requires as an input the value of three
material constants: the bending rigidity κ, the Gaussian
rigidity κ̄ and the spontaneous curvature radius R0. One
might hope that the behaviour of mixed systems can still
be described by an effective elastic energy, with modified
material constants. The task that theoretical studies have
undertaken is to calculate the modifications induced on κ,
κ̄ and R0 by the addition of the macromolecules [13–17].

However, polymer-membrane interactions must have a
local quality. For instance, if a polymer is end-tethered to

a membrane, it is clear that the interactions are strong
at the anchoring point and vanish far enough from it.
We show in this paper that, for grafted polymers, it is
possible to construct a local description of polymer mem-
brane interactions. Our description stands on the recogni-
tion that an end-grafted polymer applies a pressure field
to the grafting wall [18,19]. The pressure field results into
a local deformation of the membrane: a membrane with
grafted polymers can therefore be seen as a surface with
bending elasticity carrying a number of pressure patches,
each of them creating its own deformation.

The paper is organized as follows. In the next section
we compute the pressure field applied by a grafted poly-
mer in theta and good solvent conditions. In Section 3,
we consider the case of a freely standing membrane, for
which we compute the deformation induced by the poly-
mer pressure patch. We also show in this section that the
interactions between the different deformation fields give
rise to a membrane-mediated potential between different
grafted polymers. The consequences of such potential are
briefly discussed. Section 4 is dedicated to two membrane
geometries relevant for experiments. We first discuss the
case of supported membranes, and then the case of lamel-
lar phases. In the conclusions, we will briefly speculate on
the implications of our results for hairy vesicles.

2 The pressure applied by a grafted polymer

The number of available conformations for a long, flex-
ible polymer is strongly reduced by the process of end-
grafting the chain to a hard wall [20,21]. The average
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configuration of the macromolecule is a compromise be-
tween the need to avoid the surface and the constraint
imposed by the tethered end. It is clear that if the surface
can be deformed, there will be an entropic reason to push
it away from the monomer cloud. This can be described as
a pressure that the polymer applies to the grafting wall.
In the following paragraph we explicitly compute the pres-
sure for ideal chains and relate it to the concentration at
the wall. We then argue that this also provides a good
pathway to compute the pressure applied by chains with
excluded volume.

2.1 Gaussian grafted chain

We consider a Gaussian chain of N units, end-tethered
by one extremity to a non-adsorbing wall. The surface is
described by its height h(x, y), where (x, y) denotes the
position in the horizontal coordinates frame. The thermo-
dynamic properties of the chain are described by the prop-
agator GN (r, r ′), that satisfies the Edwards equation [22]

∂GN (r, r ′)
∂N

=
a2

6
∆GN (r, r ′) (1)

with the following boundary conditions: GN (r, r ′) ≡ 0 on
the wall and limN→ 0GN (r, r ′) = δ(r− r ′). The length a
is the monomer size. The statistical weigth of the chain at-
tached at a monomer distance from the origin a = (0, 0, a)
is given by

ZN (a) =
∫

dr ′ GN (a, r ′), (2)

the integral running over all the space available for the
free end. In the flat, reference case h(x, y) = 0, the Green
function can be factorized:

G
(0)
N (r, r ′) = ( 3

2πNa2 )3/2 exp{− 3(x−x′)2

2Na2 } exp{− 3(y−y′)2

2Na2 }
×(exp{− 3(z−z′)2

2Na2 }−exp{− 3(z+z′)2

2Na2 }) (3)

and the partition function is

Z
(0)
N (a) =

∫ +∞

−∞
dx′

∫ +∞

−∞
dy′

∫ +∞

0

dz′ G(0)
N (a, r ′)

= erf
(

a

2Rg

)
(4)

with Rg =
√

Na2/6 the gyration radius of the chain, and
erf the error function [23]. Now we seek for a perturbative
solution [24] of the Edwards equation by performing a
small displacement h of the surface. We write the partition
function as ZN = Z

(0)
N + Z

(1)
N + Z

(2)
N + . . ., where Z

(i)
N is

of order hi and Z
(0)
N is defined in equation (4). One can

notice that due to the linearity of equation (1), each term
of the perturbative expansion obeys an Edwards equation

∂Z
(i)
N

∂N
=

a2

6
∆Z

(i)
N , i = 0, 1, 2, . . . . (5)

The solutions of successive orders are coupled through the
boundary conditions on the wall:

0 = ZN (x, y, h)

= ZN (x, y, 0) + h(x, y)
∂ZN

∂z
(x, y, 0)

+
h2(x, y)

2
∂2ZN

∂z2
(x, y, 0) + . . . . (6)

In the following, we concentrate on the first-order term
Z
(1)
N , that is related, as we will see, to the pressure exerted

by the polymer on the surface. Z(1)
N is given by the solution

of equation (5) with the boundary condition

Z
(1)
N (x, y, 0) = −h(x, y)

∂Z
(0)
N

∂z
(x, y, 0). (7)

The solution can then be written as [25]

Z
(1)
N (a) =

a2

6

∫ N

0

dn
∫
dS

∂G
(0)
N−n

∂z
(x, y, 0;a)Z(1)

n (x, y, 0)

(8)
so that the displacement of the surface is achieved to first
order in h by the work

∆F = F [h]− F [0]

= −kBT log

[
1 +

Z
(1)
N

Z
(0)
N

]

=
∫

dSp(x, y)h(x, y), (9)

where the function p(x, y) has the radially symetric form

p(r) =
kBT

2π(r2 + a2)3/2

(
1 +

r2 + a2

2R2
g

)
exp

{
−r2 + a2

4R2
g

}
(10)

with r =
√

x2 + y2. At point r = (x, y), the elementary
work dF required to displace a volume dV (r) = h(r)dS is
given by dF = p(r)h(r)dS. The function p(r) is therefore
the pressure applied by the polymer on the surface at point
r. It is a non-homogeneous function —see Figure 1— that
sharply decays from its maximum value at the anchoring
point with the scaling form

p(r) � kBT

2πr3
for a � r � Rg. (11)

Well inside the polymer umbrella (a � r � Rg), where
the only relevant length is r, expression (11) is the natu-
ral scaling for the pressure. In this region, most of the
monomers that contribute to the pressure are close to
the grafted end. For distances larger than the polymer
size, the pressure vanishes exponentially. A grafted poly-
mer can then be pictured as a microscopic pressure tool
that applies a well-defined but non-homogeneous force on
a disk of radius ∼ 2Rg centered at the anchoring position.
In the middle of the patch the pressure has a strong value:
p(0) � 2.4 × 107 Pa for a = 0.3 nm at room temperature
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Fig. 1. The pressure applied by a grafted polymer to the sur-
face. We chose here a = 0.1Rg and arbitrary units of pressure.
The insert stresses the scaling form r−3 close to the grafting
point.

T = 25◦C. A small area within a monomer distance from
the origin supports most of the total force f exerted by
the chain onto the surface

f =
∫ ∞

0

2πrdrp(r) =
kBT

a
exp

(
− a2

4R2
g

)
� 13.3 pN,

(12)
with the precedent values of monomer size and temper-
ature. The grafted monomer exerts a point-like force −f
that ensures mechanical equilibrium.

Previous work [15,26] has focused on curvature contri-
butions to the polymer free energy ∆F : by considering a
surface of a given shape, ∆F is calculated as a function
of the curvature 1

R . For instance, for a sphere and a cylin-
der one gets ∆Fsph = −√

πkBT
Rg
R and ∆Fcyl = 1

2∆Fsph.
The minus sign indicates that the energy is lowered by
spherical and cylindrical surfaces that bend away from the
polymer. We naturally recover these results by consider-
ing a general surface defined by h(x, y) = − x2

2R1
− y2

2R2
,

and evaluating the integral (9) with R1 = R2 = R for a
sphere and R1 = R , R2 = 0 for a cylinder. Interestingly,
for a minimal surface (R1 = −R2 = R), there is no con-
tribution of the curvature to the free energy (∆F = 0): to
first order, the entropic cost of tethering a Gaussian chain
to a plane or to a minimal surface is the same.

2.2 Relation between pressure and concentration

As explained above, the pressure that a grafted polymer
exerts on the wall has an entropic origin: by displacing
the surface at point r = (x, y) from its flat position h(r)
one increases (h < 0) or decreases (h > 0) the number
of allowed chain configurations. The work per unit sur-
face associated with the corresponding entropy gain or
loss defines the pressure. Alternatively, the pressure can
be viewed as resulting from the forces applied by all the
monomers at a given surface point. If the surface poten-
tial acting on each monomer is u(z), the pressure is given

by [27]

p(x, y) = −
∫ ∞

0

dz
∂u

∂z
(z)c(x, y, z) (13)

with c the monomer concentration. Expression (13) reveals
the linear relationship between pressure and concentration
at the wall but is not very useful for the continuous Gaus-
sian chain considered in this paper. Instead, we directly
derive the pressure-concentration relation by noting that
the monomer concentration of a chain tethered to a flat
surface is written as [20]

c(0)(r ) =
1

Z(0)(a)

∫ N

0

dnG(0)
n (a, r )Z(0)

N−n(r). (14)

The interaction with the wall being purely repulsive, one
has c(0)(x, y, 0) = 0 and ∂c(0)

∂z (x, y, 0) = 0, the second
derivative of the concentration being the lowest deriva-
tive that does not vanish on the surface. Rewriting more
explicitly equation (8) leads to

Z
(1)
N (a) = −a2

6

∫
dS h(x, y)

∫ N

0

dn
∂G

(0)
n

∂z
(a;x, y, 0)

×∂Z
(0)
N−n

∂z
(x, y, 0), (15)

so that we directly deduce from (9) and (14) the relation

p(r) = kBT
a2

12
∂2c(0)

∂z2
(r, 0) (16)

with r =
√

x2 + y2. Qualitatively, the pressure can be
associated with an ideal gas pressure caused by the con-
centration of monomers at a distance z = a√

6
from the

wall:

p(r) = kBTc
(0)

(
r, z =

a√
6

)
. (17)

Equivalently, equation (13) can be used to assert that the
effective wall potential acting on the monomers has a sec-
ond moment of forces given by

∫ ∞
0

dzz2 ∂u
∂z (z) = kBT

a2

6 .

2.3 Grafted self-avoinding walks

Flexible polymer chains in good solvent cannot be de-
scribed by Gaussian statistics. They only exhibit ideal
Gaussian behaviour close to the theta temperature, at
which monomer attraction compensates for steric repul-
sion. Above the theta point, the polymers perform self-
avoiding walks (SAWs) which lead to distinct statistics.
In particular, the average dimension of a SAW coil is
larger than its Gaussian equivalent, the end-to-end dis-
tance scales as R = Nνa, with ν the Flory exponent, close
to ν � 3/5.

As stated in equation (13), the proportionality be-
tween the polymer pressure and the monomer concen-
tration in the vicinty of the wall is expected to hold on
general grounds, independently of the approximations in-
volved. Altough equation (13) does not easily provide for
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a proportionality coefficient, it does give a firm ground
for predicting the scaling form of the pressure applied to
the wall by grafted chains in a good solvent. For com-
parison, we first recall the structure of the monomer con-
centration profile for a Gaussian grafted polymer, a case
where an explicit calculation can be performed [21]. The
cone of equation z = r separates two regions in space.
Outside the cone (z � r) but well inside the polymer
“umbrella”(z, r�Rg), the monomer concentration grows
quadratically from the wall, c(r, z) ∼ z2/(r3a2). In this
region the wall has an important depletion effect on the
polymer configurations. Inside the cone (z 
 r) one re-
covers the usual bulk concentration of a Gaussian chain,
c(R) ∼ 1/(Ra2), where R = (r, z) denotes the position
in bulk. The crossover between the two behaviours occurs
as one crosses the cone surface z = r. In the presence
of excluded-volume interactions, the bulk concentration is
given by c(R) ∼ 1/(R4/3a5/3). For chains with excluded
volume, the profile grows from the wall as c(r, z) ∼ z5/3.
Writing the scaling form in the region z�r that matches
bulk behaviour at z = r leads to c(r, z) ∼ z5/3/(r3a5/3).
The pressure applied by a swollen grafted chain is there-
fore given by p(r) ∼ kBTc(r, z = a) ∼ kBTr

−3. It has the
same scaling form as the pressure applied by ideal chains.
We expect such scaling to be rather independent of the
molecular details or of the differences between chain mod-
els.

Excluded-volume effects might nevertheless modify the
amplitude and the range of the applied forces. In order
to quantify these effects we implemented a Monte Carlo
simulation on a polymer attached to a flat, impenetra-
ble wall. The chain is described as a pearl necklace [28],
each pearl of size a. The first monomer is grafted to the
wall with center-of-mass position (0, 0, 0). During simula-
tion a histogram c(r, z) for the monomer center-of-mass
concentration at a distance r along the wall and height z
above the wall is compiled. Although simulations are per-
formed in a continuum, we calculate the concentration by
discretizing space with a binsize of 0.18 · a in the r and
z direction. To extract the concentration at the wall at a
distance r away from the grafting point we fit the function
f(z) = c(r, z) with a fourth-order polynomial in z multi-
plied with an exponential exp(−λz), λ a fitting parame-
ter. Upon extrapolating the fitted function to z = 0 we
get the concentration of monomers at the wall at a given
distance r: limz→0 c(r, z). To ensure a reasonable error bar
on the resulting concentration we generated 6 · 106 con-
figurations for Gaussian random walks and self-avoiding
random walks. By analysing the statistics for end-to-end
distance, which represents the slowest relaxing mode for
the chain, we estimate that we have an maximal error bar
of 12% as r is increased from a few a, where the error bar
is less, to 30 · a.

We first consider the Monte Carlo results for a chain
without excluded volume. Because our Monte Carlo chain
is actually a freely hinged chain, we do not expect the
amplitude coefficient of the Gaussian model to exactly
hold. We therefore plot in Figure 2a, both the expres-
sion for the pressure from equation (10) and the val-

2 5 10 20 50 100
b) self avoiding walk

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

r
a

2 5 10 20 50 100
a) gaussian chain

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

r
a

Fig. 2. Comparison of the calculated pressure and monomer
concentration at the wall extracted from Monte Carlo sim-
ulations. a) Freely hinged chain of 200 monomers. b) Freely
hinged chain of 200 monomers with excluded volume. The
continuous line is the expression (16) of the pressure. Note
that there is no adjustable parameter for the Gaussian chain.
For the chain with excuded volume, the size of the polymer is
R2 = 1.5N2νa2, with ν = 0.6.

ues for the monomer concentration at the wall extracted
from a Monte Carlo simulation of a chain with N = 200
monomers. Agreement is excellent, except at distances of
the order of a monomer size where the fixed length be-
tween monomers induces oscillations reminiscent of those
observed in the correlation function of hard spheres. In
Figure 2b we show equivalent results for a chain of
N = 200 monomers with excluded volume. Agreement
is also excellent, if we replace the dimension of the chain
R2 = Na2 in expression (10) by R2 = 1.5N2νa2, with
ν = 0.6. For the chain representation used in our simula-
tions, excluded-volume effects influence only the range of
the pressure field. The scaling form at small distances and
even the amplitudes are equivalent to those of the ideal
chains.

3 Polymers anchored on a freely standing
membrane

Grafted polymers are small pressure patches: when a poly-
mer is grafted to a soft interface, the pressure deforms the
interface into a characteristic shape which is determined
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by the balance between the pressure and the elastic re-
sponse of the grafting surface. In this chapter we consider
first the deformation induced by a chain grafted on a freely
standing elastic membrane, and then membrane-induced
interactions between two grafted chains.

3.1 Deformation induced by the pressure field of a
Gaussian polymer

The thermodynamic properties of a fluid membrane are
well described by the Canham-Helfrich Hamiltonian [11],
provided that the thickness d of the bilayer is small com-
pared to the other relevant lengths of the problem (i.e.
d � Rg). The surface is described by its height h(x, y),
where r = (x, y) refers to the coordinate frame in the
reference plane h(x, y) = 0. Assuming a gentle surface de-
formation (| ∇h |� 1), the Hamiltonian is written in the
Monge representation as

H =
κ

2

∫
dxdy(∆h)2 (18)

with κ the bending rigidity and ∆ the 2-dimensional
Laplacian operator. For a membrane with fixed topology,
the Gauss-Bonnet theorem implies that the Gaussian cur-
vature term is constant and can therefore be ignored. For
a purely repulsive surface, the total free energy of the sys-
tem {membrane+polymer} is the sum of the bending en-
ergy of the membrane and the work of the entropic force
exerted by the polymer

F [h] = F [0]+
κ

2

∫
2πrdr(∆rh)2+

∫
2πrdrp(r)h(r) (19)

with F [0] the work required to graft the polymer to a flat
plane. Since both the applied pressure and the bound-
ary conditions considered below are radially symmetric,
we coveniently expressed all quantities in cylindrical co-
ordinates. The equilibrium shape of the membrane ensues
from a compromise between the applied pressure and the
restoring bending forces. Functional minimization of the
free energy with respect to the membrane profile h(r) leads
to the Euler-Lagrange equation for the equilibrium shape:

κ∆r∆rh(r) + p(r) = 0, (20)

where ∆r = 1
r
d
dr r

d
dr is the radial part of the Laplacian

operator. We first focus on the central region, close to the
grafting point, where most of the stress is concentrated.
Here (r � Rg), the pressure behaves like kBT/(2πr3), so
that the resulting deformation has a cone shape:

h(r) �
r→0

−
(
kBT

κ

)
r

2π
(21)

independently of the boundary conditions. A point-like
defect is generated at the origin and we will refer to this
conic shape as the fundamental pinch —see Figure 3. The
surface curvature diverges at short distances as∆rh∝ r−1.
Physically, this divergence is cut off either at a distance of

Fig. 3. The pinched form of a fluid membrane under the pres-
sure of a grafted polymer. The deformation profile is the actual
calculated form for a freely standing membrane.

the order of the membrane thickness d by non-harmonic
terms in the curvature energy or, for infinitely thin mem-
branes, at the monomer length a at which the pressure
saturates. It is interesting to note that if a polymer is
grafted to the tip of a purely conic deformation with an
arbritary slope, and then the slope determined by balanc-
ing the global entropy gain of the polymer and the elas-
tic cost of deforming the membrane into a cone shape,
one finds the same slope as that of expression (21), given
by the local balance of equation (20) [16]. This is an in-
dication that the conic region supports most of the to-
tal stress imposed by the pressure patch. Neglecting ef-
fects in the cut off region, the analytical solution of equa-
tion (20) can be written as h(r) = hp(r) + hbh(r), with
hbh(r) = kBT

2πκ [c1 + c2 ln(r) + c3r
2 + c4r

2 ln(r)] the kernel
of the biharmonic operator and

hp(r) = −kBT

2πκ

[
1
4
r exp

(
− r2

4R2
g

)
−

√
π

8
r2

Rg
erfc

(
r

2Rg

)

+
√
π

4
Rgerf

(
r

2Rg

)
+

Rg
√
π

2

∫ r
Rg

0

du
u
erf

(u

2

)]

(22)

a particular solution of equation (20). The constants c1,
c2, c3 and c4 are determined by the boundary conditions.
In the simple case considered here, the membrane has no
imposed constraints other than its known position of the
center of coordinates h(0) = 0. Because there are no forces
acting on the membrane at large distances from the center
the average curvature must vanish there∆rh(r → ∞) = 0.
This determines the four constants c1 = c2 = c3 = c4 = 0.
At distances larger than Rg, the profile is a catenoid, a
radially symetric shape with zero average curvature,

h(r) � −kBT

2πκ
Rg ln

(
r

Rg

)
for r 
 Rg. (23)

The complete profile is displayed in Figure 3. It has a
characteristic pinched shape, with a cone-like deformation
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(20) that crosses over to the catenoidal shape (23). The
divergence of the profile is related to the unconstrained
nature of the membrane considered here. We will discuss
in Section 4 how the deformation profile is modified by
the boundary conditions or other external fields.

3.2 Interaction potential between two grafted
polymers

Most often, bilayers anchor a finite concentration of poly-
mers. Each polymer is a pressure patch that carries with it
a pinched form. Beyond the usual Van der Waals or steric
interactions between the different chains, the superimpo-
sition of the different pinches will also lead to membrane-
mediated forces. Due to the linear nature of the pressure
contribution to the free-energy of the system, the many-
body problem reduces in this case to a sum of two-body in-
teractions that we now study. Notice however that higher-
order terms in the perturbative expansion would generate
many-body interactions, but this point is far beyond the
scope of this paper.

The free energy of two pressure patches applied at po-
sitions r1 and r2, on the same side of a membrane is

F [h, r1, r2] =
∫

dS[p(| r − r1 |) + p(| r − r2 |)]h(r)

+
κ

2

∫
dS(∆h(r))2, (24)

so that the deformation field obeys

κ∆∆h(r) + p(| r − r1 |) + p(| r − r2 |) = 0 (25)

with ∆ = ∆r+ 1
r2

∂2

∂θ2 the Laplacian operator in cylindrical
coordinates. Note however that the problem has now lost
its radial symmetry. A particular solution of this equation
is hp(| r−r1 |)+hp(| r−r2 |), the function hp being given
by (22). The general solution of the biharmonic equation
∆∆h = 0 that satisfies the requirement limr→ ∞ ∆h = 0
with a finite value at the origin is simply a constant. If
we impose the conditions h(r1) = h(r2) = 0, we are led to
the solution of the differential equation (25)

h(r) = hp(| r− r1 |)+hp(| r− r2 |)−hp(l)−hp(0) (26)

with l the distance between polymers, l =| r1 − r2 |. The
interaction potential V (l) is given by the difference be-
tween the free energy (24) and twice the free energy of
one isolated polymer. Inserting the solution of the Euler-
Lagrange equation in (24) and integrating by parts leads
to

Vcurv(l) = −κ

∫
dS∆hp(r)∆hp(r − l). (27)

The potential V (l) is always negative: the membrane-
mediated interaction between two polymers attached on
the same side of the bilayer is attractive. It also follows
from equation (27) that two polymers anchored to the op-
posite side of a membrane repel each other. The interac-
tion potential has in this case the same functional form but
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Fig. 4. The membrane-mediated interaction potential between
two Gaussian polymers, grafted to the same side of a mem-
brane. Polymers grafted on opposite sides have the same func-
tional form with the reverse sign.

with the reverse sign. The interaction potential is shown
in Figure 4 for two polymers grafted on the same side.
Notice that the potential range is of the order of the poly-
mer size: at larger distances, the deformation field having a
zero curvature shape, the cost of grafting a second polymer
to it is the same as grafting a polymer to a flat interface.
The mechanisms responsible for attraction or repulsion are
easy to understand. When two polymers are grafted to the
same side of a membrane, they can both share the same
deformation profile, instead of creating each one a pro-
file of their own. When they are grafted to opposite sides,
the deformations are mutually neutralized: the polymers
can only fully develop their deformation profiles at a large
distance from each other.

At short distances (l � Rg), the attraction has a log-
arithmic behaviour:

Vcurv(l) � (kBT )2

2πκ
ln(l/Rg). (28)

For soft membranes the elastic constant is of order kBT ,
which leads, for a polymer with a radius of gyration of ten
nanometers, Rg = 10 nm and a minimum approaching dis-
tance of the order of a monomer size l = 0.3 nm, to an
attraction well of a couple of kBT . Moreover, the potential
varies quadratically with temperature, this class of inter-
actions is thus quite sensitive to temperature variations.
We will further discuss in the conclusions the possible im-
plications of such sensitivity.

It is important to stress the differences between the
potential that we just described and other membrane-
induced interactions abundantly described recently [30,
31]. The pressure patches do not lead to Casimir-like inter-
actions, there are here no logharitmic or algebraic tails. In
the literature, the inclusions are considered as rigid bod-
ies that set the value of the membrane curvature at the
inclusion site. It can be checked that our case corresponds
to “local” curvature source of imposed strength, that does
not lead to long-range interactions. On the contrary, if
the curvature sources fix the local curvature amplitude,
then long-range interactions will arise [32]. In the jargon of
membrane-induced interactions, our potential corresponds
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Fig. 5. The two-body interaction potential with the estimated inter-chain repulsion. The plots show 2πV (l)
kBT

as a function of

l/Rg for different values of the bending rigidity (in kBT units), with fixed parameter b = 1/(2π) .

to a “short range” potential. Notice however that for poly-
mers, the range of the interaction can be at least one order
of magnitude larger (∼ tens of nanometers) than typical
inclusion sizes (∼ few nanometers).

The potential (27) accounts only for curvature-
mediated interactions. At distances of order Rg, inter-
chain interactions give also rise to a repulsive contribution.
We qualitatively account for the polymer-polymer repul-
sion by separating the two chains with a mid-plane hard
wall [24]. This over-estimated repulsive potential reads
−kBT ln[erf(l/Rg)]. We now write the total interaction po-
tential as

V (l) = Vcurv(l)− b kBT ln[erf(l/Rg)] (29)

with b a constant smaller than unity. Both parts behave
logarithmically at short distances: the potential is attrac-
tive for small values of the bending rigidity and is repulsive
for high values. Figure 5 shows the plots of V (l) for dif-
ferent values of the rigidity κ and b arbitrarily fixed at
b = 1/(2π). In this paticular case the crossover between
attraction and repulsion occurs at κ = kBT . Changing
the value of b will accordingly rescale the crossover value.
When the surface is covered with a finite density of chains,
the onset of aggregation can be monitored by the second
virial coefficient B:

B =
1
2

∫
dS

(
1− exp

{
−V (r)

kBT

})
. (30)

The plot of B as a function of the bending rigidity with our
particular choice of b is shown in Figure 6: for κ < 0.6kBT ,
the second virial coefficient becomes negative, indicating
aggregation of different chains.
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Fig. 6. The second virial coefficient as a function of the bend-
ing rigidity (in kBT units), with fixed paramater b = 1/(2π).
Chains aggregation is induced by negative B, which occurs at
κ < 0.6kBT for this particular value of b.

3.3 Star-like polymer aggregates

Attractive interactions between chains grafted to the sur-
face may lead to a star-like structure: the grafting points
merge into a core, while excluded volume repulsions act-
ing on the arms give the aggregate the hemispherical shape
displayed in Figure 7. We now discuss how the structure
of the aggregate changes the nature of the pressure ap-
plied to the grafting surface, and the deformation that
the pressure induces on a free-standing elastic membrane.

The structure of a star polymer with f arms of poly-
merization indexN can be described by the Daoud-Cotton
model [33]. Attachment of the chains to a central core ef-
fectively forces the local polymer density to be everywhere
inside the star above overlapping concentration. The star
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Fig. 7. The conformation of a star anchored to a plane. Inside
each “blob” of size ξ(r) ∼ rf−1/2 the branches have a single-
chain behaviour.

can therefore be described as a semi-dilute solution [20],
with a local, position-dependent screening length ξ(r),
where r is here the distance from the center of the star
in a frame of spherical coordinates. Pictorially, we repre-
sent this by associating with each arm a string of blobs
of increasing size ξ(r). The radial dependence of the blob
size ξ(r) can be obtained by noticing that at a distance
r from the center there are f blobs of cross-section ξ(r)2
occupying a total area of 4πr2. The blob size thus varies
as ξ(r) � rf−1/2 and the corresponding local polymer
concentration as cs(r) � f2/3a−5/3r−4/3. Note that there
is a crowded region of size Rc � af1/2 in the middle of
the star where the concentration reaches one. The size
of the star can be obtained from monomer conservation
Nf = 4π

∫ R

0
r2drcs(r). Neglecting the small-core region

one gets R � aN3/5f1/5.
The structure of interest to us is a half-star, simply

obtained from the Daoud and Cotton model by replacing
f/2 arms by a repulsive half-plane —see Figure 7. The
local pressure is a simple function of the blob size ps(r) ∼
kBTξ(r)−3, leading to a pressure applied on the surface of
the form

ps(r) � f3/2
kBT

r3
, (31)

where r is the distance from the center in a surface cylin-
drical frame. The reasons beyond this functional form
can also be related to the interfacial structure of the
star. Close to the surface there is a monomer depletion
layer, growing from the surface as c(r, z) ∼ z5/3. Due
to screening, the bulk behaviour is recovered when one
crosses the cone surface z = rf−1/2, which correspond to
the first blob layer [34]. Writing again the r-dependence
of the depletion layer such as to match the bulk value
cs(r) � f2/3a−5/3r−4/3, one gets c(r, z) � ps(r)(z/a)5/3,
with ps(r) the pressure field in equation (31). For distances
r larger than the star size, we expect the pressure to vanish
rapidly.

For ideal chains, the pressure applied by f chains
grafted at the same point is f times larger than the pres-
sure applied by a single chain. For polymers with excluded
volume there is an additional crowding effect that results
in a pressure f3/2 times larger than the pressure of a sin-

gle chain. Also, the range of the pressure grows as the
star size, and is a factor f1/5 larger than the range of a
single chain. Since the pressure field close to the grafting
point has the same scaling form as a single-chain pres-
sure, the patch still induces a conic deformation on a free-
standing elastic membrane. The angle of the cone is more
pronounced for a star than the angle of a pinch from a
single chain

hs(r) � −f3/2
(
kBT

κ

)
r (32)

and the energy gained by the creation of the star-pinch is
much greater than the the sum of the energy gains of f
individual pinches

Fcurv
kBT

∼ −kBT

κ
f3 ln

(
R

a

)
. (33)

The Daoud-Cotton model also allows to compute the
excluded-volume cost to build a star-like structure, the
result is

Fev
kBT

∼ f3/2 ln
(
R

a

)
. (34)

For a number of chains f greater than a threshold f0 ∼
(κ/kBT )2/3, aggregation is always favored. Nevertheless,
that process might be slow since it is hindered by an en-
ergy barrier∆F ∼ κ. It is also important to stress that the
mecanical constraints on the bilayer may limit the maxi-
mum aggregation number. This can be determined by set-
ting | ∇h |∼ 1 in expression (32) which leads to fmax ∼ f0.
At this stage a piece of membrane decorated with fmax
polymers might as well detach from the main membrane,
leading to a coexistence between decorated membranes
and decorated small vesicles or micelles [7].

4 Polymers anchored on a constrained
membrane

In most practical situations, the bilayer does not stand free
in the solvent but it is subjected to additional constraints.
In this section, we consider two important situations. First
we discuss the pressure applied by a grafted polymer to a
supported bilayer. Supported bilayers are fluid membranes
that adhere to a substrate, allowing for instance for the
observation of cell phenomena like membrane protein ag-
gregation, opening of ionic channels and others [35–37].
Adhesion of membranes on a substrate plays a role in bio-
logical phenomena such as endocytosis and exocytosis [2];
it is also of relevance in biotechnological processes, such
as drug delivery by liposomes [38]. A second important
case of constraint membranes corresponds to lamellar Lα

phases, where the membranes are confined by interactions
with their neighbors in the lamella stack [4,39].

4.1 Supported bilayers

We consider a membrane adhering to a flat surface with
a contact energy per unit area Γ/2. The combined effect
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of the polymer pressure and the point-like anchoring force
peels off a region of radius L and central height h0 = h(r =
0). The corresponding free energy functional is

F [h(r), L, h0] = F0 − ΓπL2 +
κ

2

∫ L

0

2πrdr(∆rh)2

+
∫ L

0

2πrdrp(r)(h(r)− h0) (35)

with F0 a constant. Notice that the membrane height h is
here measured with respect to the substrate. Performing
the functional minimization of equation (35) with respect
to the deformation h leads to an Euler-Lagrange differen-
tial equation identical to equation (20) of the free-standing
case, with boundary conditions h(0) = h0, h(L) = 0 and
dh
dr (L) = 0. Further minimization of the free energy (35)
with respect to the size of the peeled region L, and with
respect to the height at the origin h0, provides two more
boundary conditions :

∂F

∂L
= 0 ⇔ ∆h(r = L) =

(
Γ

κ

)1/2

, (36)

∂F

∂h0
= 0 ⇔ d

dr
∆h(r = L) = 0. (37)

Relation (36) equates the balance between the attractive
potential and the elastic moment at the contact line r =
L [40]. The peeled radius is given by the implicit equation
for L,

1
4
exp

(
− L2

4R2
g

)
−

√
π

2
Rg

L
erf

(
L

2Rg

)
+ π

L

Rg
β = 0. (38)

The parameter β2 = κΓR2
g/(kBT )

2 controls the value
of L. For small adhesive energies or very flexible mem-
branes we have β � 1, the membrane is loosely at-
tached to the surface and the deformation is similar to
the free-standing case: L = Rg/(2

√
πβ)1/2 and h0 =

(kBT/4
√
πκ)Rg ln(L/Rg). For large adhesive energies or

stiff membranes, β 
 1, only the conical deformation sur-
vives and the pinch height is proportional to the peeled
radius: L = Rg/(2πβ) and h0 = (3kBT/16πκ)L. One
might be astonished that these quantities cannot be ex-
pressed only as a function of the length λ0 = (κ/Γ )1/2.
For many problems involving bending energies and ad-
hesion (or interfacial tension) of membranes this length
separates two regimes. On length scales larger than λ0,
adhesion or tension effects dominate the behaviour of the
membrane, while for lengths below λ0 the deformation is
ruled by the bending curvature. In our case, the results
can also be understood in terms of λ0, by recalling first
the simpler case of a membrane that adheres to the sur-
face but has a fixed, given height ζ0 at the origin. It is easy
to show that in that case the peeling radius is given by
L = (8λ20ζ

2
0 )

1/4 ∼ (λ0ζ0)1/2. But when a polymer patch is
applied, the height is fixed by the polymer pressure and
it follows, for strong adhesions, the conic form (21). One
has thus ζ0 ∼ L/κ which leads to L ∼ λ/κ. This holds up
to a length L of the order of the radius of gyration Rg.

For smaller adhesion strengths the balance is determined
by ζ0 ∼ Rg/κ leading to L ∼ (Rgλ0/κ)1/2.

Adhesion energies can be found in the range Γ ∼
10−7–10−4 N ·m−1 [41]. For typical bending moduli κ ∼
5–20kBT , the extension of the peeled zones is in the range
of one to ten nanometers, which is also the typical size for
polymers.

4.2 Membrane in a potential well

In this section, we focus on the effect of pressure patches
applied to membranes confined in an harmonic potential.
This is for instance relevant to describe the lyotropic smec-
tic phases Lα [12] but serves also as a paradigm for other
situations where the membrane is constraint by an exter-
nal soft potential. The energy functional of one bilayer
reads

F [h(r)] = F [0] +
∫ ∞

0

2πrdrp(r)(h(r)− h0)

+
κ

2

∫ ∞

0

2πrdr(∆rh)2 +
B

2

∫ ∞

0

2πrdrh(r)2, (39)

where h0 is the value of the deformation at the origin. In
the case of a stack of membranes the amplitude of the har-
monic potential B is the compression modulus of the sys-
tem and can be related to the curvature of the interaction
potential. The natural length arising in expression (39)
is l0 = ( κ

B )1/4. On scales larger than l0 the deformation
is controlled by the harmonic potential while on smaller
scales the behaviour of the membrane is ruled by curva-
ture effects. In particular, for non-ionic Lα phases where
steric Helfrich interactions control the repulsion between
the membranes [42,43], it is possible to show that the
lenght l0 is proportional to the average interlamellar spac-
ing d

l0 = (
π

6
)1/2(

κ

kBT
)1/2d (40)

Minimizing the free energy functional with respect to ζ =
h− h0 leads to

κ∆r∆rζ(r) +Bζ(r) = −(p(r) +Bh0) (41)

with boundary conditions ζ(0) = 0 and ζ(∞) = −h0. In
order to solve equation (41), we first evaluate the associ-
ated Green function g(r, r′) defined by

κ∆r∆rg(r, r′) +Bg(r, r′) = δ(r − r′) (42)

so that the deformation field ζ is eventually obtained from

ζ(r) = −
∫ ∞

0

dr′g(r, r′)(p(r) +Bh0). (43)

A straightforward but tedious calculation gives for r > r′

g+(r, r′) = −kBT

κ
l20r

′{Bei0(r′/l0)Ker0(r/l0)
+Ber0(r′/l0)Kei0(r/l0)

+
4
π
Kei0(r′/l0)Kei0(r/l0)} (44)
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Fig. 8. The deformation profile of a fluid membrane for differ-
ent strengths of the harmonic potential. The curves are plotted
for α = 0.5, 1 and 2, the largest deformation corresponding to
the weaker potential.
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Fig. 9. Amplitude of the pinch at the grafting point. The pa-
rameter α controls the strength of the potential. For a soft
potential, h0 varies like the logarithm of α. The insert empha-
sizes the scaling form for large values of α.

and for r < r′

g−(r, r′) = −kBT

κ
l20r

′{Bei0(r/l0)Ker0(r′/l0)
+Ber0(r/l0)Kei0(r′/l0)

+
4
π
Kei0(r/l0)Kei0(r′/l0)}, (45)

where the Kelvin functions Ber0(x), Bei0(x), Ker0(x) and
Kei0(x) are the real and imaginary parts of the modified
Bessel functions I0(xeiπ/4) and K0(xeiπ/4) [23]. The har-
monic potential allows then for an oscillatory profile, as
depicted in Figure 8.

The amplitude of the deformation, h0 is obtained by
minimizing the free energy with respect to h0, leading to

h0 = l0
kBT

8κ

∫ ∞

0

dx
x2

(
1 +

4
π
Kei0(x)

)

× exp
(
− x2

4α2

)(
1 +

x2

2α2

)
, (46)

where α = Rg/l0. Asymptotically h0 varies like the loga-
rithm of α for small values of α, and decays with a power
law for large values: h0 ∼ α−2 —see Figure 9. For Helfrich

systems where the length l0 is proportional to the inter-
lamellar spacing l0 ∼ d (and κ ∼ kBT ), one may easily in-
duce a deformation of 0.1d, by using polymers of gyration
radius Rg ∼ 0.5d. For even smaller polymers the ampli-
tude of the deformation becomes comparable to the poly-
mer size. For polymers much larger than the interlamellar
distances, our approach would need to be completed by
accounting also for the pressure exerted by the polymer
on the neighboring membranes (of order of kBTd−3) [44].

5 Discussion and conclusion

We have developed in this paper a new picture to describe
the interactions between a grafted polymer and a flexible
membrane.

We have shown that the polymer behaves in fact as a
small pressure tool. The pressure applied by this tool is
very high close to the grafting point and decays sharply
over a distance of order Rg, the gyration radius of the
chain. Through scaling arguments and numerical simula-
tions we further confirmed that excluded-volume interac-
tions mainly change the range of the pressure field, while
its amplitude and functional form are rather independent
of solvent conditions.

Under the pressure of the polymer, a flexible interface
assumes a characteristic deformation: each flexible surface
is a pressure sensor. We have shown that for fluid mem-
branes, the deformation has a pinched conic form. The
exact shape of the pinch depends on the boundary con-
ditions imposed upon the membrane, but its form at the
center of the deformation field is rather universal.

For many grafted polymers, the deformation field in-
duces an interaction potential between the polymers. We
have shown that this potential is attractive for polymers
grafted on the same side of a membrane and repulsive
for polymers grafted on opposite sides. This interaction
potential rises interesting possibilities. For instance, by
changing the temperature one might expect to control the
aggregation behavior of polymers grafted on the mem-
brane. Also, if many polymers are added to a vesicle, the
attraction might bring many polymers to the same site, in-
creasingly catastrophically the pressure until a decorated
micelle or small vesicle detaches from the surface.

Our treatment of the polymer-induced deformations
does not account for the fluctuations of the membrane.
Thermal fluctuations arise spontaneously in membrane
systems on the scales above the de Gennes-Taupin persis-
tence length: ξ = a′ exp( 4πκ

kBT ) [45]. When the elastic con-
stants are of the order of kBT , the lenght ξ is in the range
10–100 nm, and fluctuations become important. At the
level of the first-order perturbation scheme implemented
in this paper, the pressure is an external field that cou-
ples only linearly to the deformation of the membrane, so
the fluctuation spectrum is not perturbed. It is therefore
important to extend to second order this type of perturba-
tive expansion in order to determine both the corrections
to the elastic parameters of the membrane and the correc-
tions to the fluctuation spectrum itself.
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