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ABSTRACT: We study the aggregation of diblock copolymers in a selective solvent as a function of the
asymmetry of the copolymer chains. When the shorter block is in a poor solvent, our mean-field approach
predicts copolymer micellization in spherical or cylindrical geometries. For large collapsed blocks a dense
lamellar phase is formed in an excess of solvent. A further increase of the size of the molten blocks leads
to the formation of reverse micellar structures, where small spherical swollen cores are surrounded by a
majority matrix of molten chains.

I. Introduction

Diblock copolymers self-assemble in a selective sol-
vent,1,2 a process that can be regarded as a macromo-
lecular analog for micellization in solutions of low
molecular weigth surfactants.3 At very low concentra-
tions isolated chains are dispersed in the solution.
These chains have a tadpole configuration, with a
collapsed head and a swollen tail. Above the critical
micellar concentration the tadpole heads minimize the
area exposed to the poor solvent by sharing the volume
in the center of the micelle. This central core is
surrounded by a shell of well-swollen chains. The
geometry of the dilute micellar aggregates is determined
by the copolymer asymmetry. For swollen tails much
larger than the collapsed heads, the copolymers form
spherical micelles. A reasonable agreement has been
found between experiments4 and existing theories5-7 for
spherical micellization, at least when thermodynamic
equilibrium can be reached.8 The existence of cylindri-
cal aggregates is of a more controversial nature. They
have been extensively studied for small molecular
weight surfactants where they are also known as living
polymers, wormlike micelles, giant micelles, or even as
vermicelles.9 They have been also reported in mixtures
of diblock copolymers and homopolymers,10 but to our
knowledge no vermicelles have been observed in dilute
solutions of diblock copolymers in a selective solvent.
Mean-field theories predict that as the ratio betwen the
collapsed block and tail lengths is increased, spherical
micelles will no longer be stable and vermicelles will
be formed. If this ratio is further increased, one expects
that solubilization of the aggregates should no longer
be possible, and the copolymers must phase separate
into a dense organized phase coexisting with an excess
of solvent. The reasons for phase separation are 2-fold.
On one hand solubility is ensured by the presence of
the swollen tail. If this block is too small, the isolated
chains can no longer remain in solution. On the other
hand a larger collapsed block also implies the onset of
a lamellar phase at some chain asymmetry. Because
copolymer bilayers have very large bending constants,
the usual stabilization mechanism by Helfrich fluctua-
tions11 is inoperative for this system. Therefore, the
condensed lamellar phase dissolves only the amount of
solvent necessary to swell the tails and expels any

additional solvent. At the level of a scaling analysis
both of these mechanisms predict a phase separation
from a dilute to a condensed organized phase when NA
= NB

3/2, where NA and NB are respectively the polym-
erization indices of the collapsed and swollen blocks. The
first condensed aggregate that appears upon increasing
the collapsed block size is the lamellar phase, but other
structures are expected to form by further increasing
the collapsed block size. In this limit we consider
reverse micellar structures consisting of small swollen
cores embedded in a large matrix of molten polymers
(see Figure 1).
A second pratical reason for studying the condensed

phases is related to the preparation conditions of melts
of diblock copolymers. These can be found in a variety
of different crystalline structures, with periodicity val-
ues in the mesoscopic range of 5-500 nm. The different
observed morphologies are determined by two param-
eters: the degree of incompatibility between different
blocks and their relative molecular weight.12 The
degree of incompatibility is for melts measured by the
product øN, where ø is the strength of the interactions
between monomers of different blocks and N the total
polymerization index of the chains. In practice, a strong
segregation of the two blocks, leading to sharp interfaces
between the different domains is achieved for øN values
larger than 15. In order to achieve a high degree of
segregation, one needs however to use rather large
molecular weights. For instance, a typical value of ø of
order of 0.1 would imply using chains with a molecular
weigth of tens of kilograms per mole. However many
chains with a high molecular weight are vitreous at
room temperature. Therefore, exposing the macromol-
ecules to a solvent is often a required intermediate state
to prepare the liquid crystalline phases of diblock
copolymers; this allows for a faster transition kinetics
by the plasticizing effect of the solvent on the vitreous
blocks.
In this paper we study the structure of the copolymer

aggregates in an excess of selective solvent, for the full
asymmetry range. As explained above direct micelles
are expected for small sizes of the collapsed blocks. In
the next section we review the theoretical predictions
for these large asymmetry values. Section III studies
the reversed copolymer phases within a mean-field
theory. The last section summarizes our main results.

II. Direct Structures

We consider the formation of dilute cylindrical and
spherical structures of AB diblock copolymer chains in
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the presence of a solvent poor for block A and good for
block B. We take the usual limit of maximum selectivity
with no solvent penetration in the core and athermal
solvent conditions in the corona. We will refer to these
as the direct structures. We also determine the onset
of phase separation into a dense phase by studying the
transition into a lamellar geometry. As for copolymer
melts, the structure of the aggregates is determined by
two parameters: the strength of the interfacial energy
γ between the collapsed monomers and the solvent, and
the relative value of the polymerization indices of the
two blocks NA and NB. Here however, the asymmetry
is not given simply by the ratio NA/(NA + NB), but is a
different function of these two numbers. In order to
determine the asymmetry functions relevant for our
study, we write the three main contributions to f, the
free-energy per chain in a given geometry

where fγ is the interfacial energy that accounts for the
area exposed to the solvent, fA is the stretching energy
of a block in the molten region of the aggregate, and fB
the osmotic contribution of the swollen blocks. Let R
be the size of the collapsed region, σ the number of
copolymer junction points per unit surface, and h the
size of the swollen regions (see Figure 2). For the direct
structures the incompressibility of the core regions also

Figure 1. Reverse periodic strucutures which might occur in
the limit of large molten blocks.

Figure 2. Wigner-Seitz cells corresponding to (a) lamellar
strucuture, (b) direct curved structures, and (c) inverted curved
structures. (b) and (c) represent either cylindrical or spherical
configurations

f ) fγ + fA + fB (1)
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implies that R ) dNAaσ, where a is the monomer size,
d ) 1 for lamellas, d ) 2 for cylinders, and d ) 3 for
spheres. We measure hereafter all lengths in units
where a ) 1. The size of the swollen chains being also
a function of the chain density σ (h ∼ NBσ1/3), we will
choose for convenience h as the independent variable.
The three contributions in eq 1 scale as (in energy units
where KBT ) 1) fγ ∼ γ/σ ∼ γNB

3/h3, fA ∼ R2/NA ∼ h6NA/
NB

6 and fB ∼ h2/NB, where we have assumed mean-field
expressions for the contributions of both the molten and
the swollen chains. For large swollen blocks one expects
the interfacial and corona contributions to dominate the
free energy. The thickness of the swollen layer scales
therefore as h ∼ NB

4/5γ1/5, and the two other related
quantities scale as σ ∼ (γ/NB)3/5 and R ∼ NA(γ/NB)3/5.
Exact coefficients can be determined from the expres-
sions discussed below. An important point is that
chains in the corona are very stretched, and chains in
the core become stretched (R . NA

1/2) for large enough
collapsed blocksNA . NA

s ) NB
6/5γ-6/5. However, it can

be checked from eq 1 that the elastic energy of the A
chains dominates only the free energy for large enough
sizes of the collapsed blocks: NA . NA

â ) NB
9/5γ-4/5. One

expects the shape transitions to occur in the direct
micelles when the sizes of both the collapsed and the
swollen regions are of the same order, h = R. This
occurs when NA = NA

R ) NB
7/5γ-2/5. We also anticipate

that a last important point in the asymmetry range
corresponds to the asymmetry value where curvature
corrections to the osmotic energy become of the same
order of the elastic energy of the molten chains. This
can be checked to happen at NA ) NA

ε ) NB
8/5γ-3/5.

To summarize these results we recapitulate the four
mean-field asymmetry points in this problem: NA

s <
NA

R < NA
ε < NA

â. As we increase the size of the
collapsed blocks from a small value, the molten chains
in the core start to stretch at NA ) NA

s. At NA ) NA
R

the size of the swollen corona is of the same order as
the size of the molten core. At NA ) NA

ε the curvature
corrections to the free energy are of the same order of
the elastic energy in the core, we will see below that
this is the point where the transitions to inverse
structures occur. Finally atNA ) NA

â the elastic energy
of the chains in the core dominates the free energy of
the aggregates. It is also important to stress that our
choice of mean-field expressions for the osmotic contri-
bution is due to computational reasons. In fact, contrary
to results from scaling, approximate analytic forms for
these contributions are available for all the cases
studied below, therefore allowing for a numerical study
of the phase diagram. The main consequence of intro-
ducing the appropriate scaling exponents into the
osmotic contribution of the corona is to change the
functional form of the four asymmetry points discussed
above, all the different regimes remaining unchanged.
We quote here results from ref 13 that provides scaling
results for these four points: NA

s ) 1,NA
R ) NB

15/11γ-4/11,
NA

ε ) NB
3/2γ-3/2, NA

â ) NB
18/11γ-7/11.

Analytic expressions for the different stretching con-
tributions to eq 1 have been calculated in the
literature,14-17 which we summarize in the Appendix;
in the following we discuss the main approximations
involved in those expressions. For the direct structures
the chains in the cylindrical or the spherical cores can
be viewed as polymer chains grafted to a concave
dividing surface. In the limit of strong stretching,
results of Semenov14 and Witten, Milner, and Cates
(S&W.M.C.)15-17 provide an exact expression for the

elastic and osmotic contribution of the chains free
energy. The chains in the cylindrical or the spherical
coronas can be regarded as being effectively grafted to
a convex dividing surface. For this case the S&W.M.C.
results only provide an approximate expression for the
free energy contributions. However when comparing
free energies, we expect the results to be reasonably
accurate (this is known to hold for instance when
computing the phase diagrams of copolymer melts). For
the lamellar structure, S&W.M.C. expressions are exact
for both the molten and the swollen layers.
In Figure 3 we compare the minimized values of the

free energy of eq 1 as a function of the asymmetry ratio
NA/NA

R, for the particular value of NB ) 105/2 = 316 (for
simplicity we set hereafter γ ) 1). Each one of the three
phases considered has a region of stability in this phase
diagram. The cylindrical phase is stable close to the
point NA ) NA

R. As expected, large swollen blocks (NA
, NA

R) lead to the formation of spherical micelles,
whereas large collapsed blocks (NA . NA

R) have a
tendency to form lamellar phases. In Figure 4 the
asymmetry points for the spherical-cylindrical and
cylindrical-lamellar transitions is plotted in the phase
diagram [NA/NB

8/5, m]. The X-axis is a logharitmic
representation of the NB values that are spanned by
setting NB ) 10m. The Y-axis represents the value of
the asymmetry ratio NA/NA

ε at which the different
transitions occur. For all explored asymmetries the
spherical micelles are the stable aggregates for small
collapsed blocks, and cylindrical and lamellar aggre-
gates appear upon an increase of the collapsed block

Figure 3. Energy of the direct structures as a function of x
≡ NA/NA

ε: L, lamellae; C, cylinders; S, spheres.

Figure 4. Phase diagram for diblock copolymers in a selective
solvent. For this particular diagram the free-energy contribu-
tions of the molten chains in the inverse geometry have been
calculated with the A-dG approximation. The X-axis is a
logarithmic representation of the NB values that are spanned
by setting NB ) 10m. The Y-axis represents the value of the
asymmetry ratio NA/NA

ε. Key: L, lamellae; C, cylinders; S,
spheres; IS, inverted spheres.
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sizes. We now investigate the geometry of the ag-
gregates formed under a further increase of the col-
lapsed block size.

III. Reverse Structures

We consider the formation of reverse cylindrical and
spherical structures of AB diblock copolymer chains
exposed to a selective solvent, poor for block A. In the
limit where A blocks are very large, the structures that
we consider can be regarded as swollen holes organized
in a majority matrix of molten blocks (see Figures 1 and
2c). We assume that the copolymer sample is exposed
to an excess of selective solvent such that the equilib-
rium state of swelling of the B blocks can be attained.
In contrast to the previous section where we explored
NA values smaller than or of the order of NA

R ) NB
7/5,

we scan here the range NA . NB
7/5.

Technically, the minimization of eq 1 with expressions
for the free energies of the inverted structures is more
involved than the corresponding minimization for the
direct structures. The increased difficulty stems from
the fact that now the radius R of the surface separating
the molten and the swollen regions is a second inde-
pendent variable that will adjust to equilibrium condi-
tions. In fact the equilibrium R value will determine
how much solvent the structure can accommodate. The
height of the swollen chain can still be regarded as a
function of the grafting density σ; we thus choose to
minimize eq 1 with respect to the two variables h and
R. A comparison of the stretching energies and inter-
facial tension shows that the scaling form for the radius
is R ∼ NB, the exact numerical coefficient being always
of order unity. The sizes of the swollen holes are larger
than the height of the corona therein, by a factor NB

1/5.
Also the solvent fraction present in the sample is φ )
R3/RT

3 with RT
3 ∼ (NAσR2)3 the volume occupied by the

chains grafted to the surface of one hole. From the
above results, σ ∼NB

-3/5 and one gets a volume fraction
φ ∼ NB

8/5/NA ) (NA/NA
ε)-1, which is of order 1 at the

transition asymmetry NA
ε. Diblock copolymers in this

composition range should be able to host a finite fraction
of selective solvent.
The geometry of the solvent holes is determined by

minimization of (1) with the appropriate energy expres-
sions given in the Appendix. We present in Figure 5
results for the minimized free energies of a diblock
copolymer system similar to the one studied in the
previous section: NB ) 105/2 and NA . NA

R. In this
figure both swollen and molten chains are described by
free energies of the S&W.M.C. approximation. This

formalism is known to describe exactly the swollen
chains grafted to a concave surface but to underestimate
the energy of the molten chains which are grafted to a
convex surface. As the figure shows, for NB ) 105/2, the
spherical inverted structures are the only stable in-
verted geometry, even if for a relatively large range of
NA values the three studied structures have very similar
energies. More generally, Figure 6 displays the transi-
tion points from the direct spheres to direct cylinders
and from the direct cylinders to inverted spheres for a
large range ofNB values. In the studied range, inverted
micelles are the only stable structure.
In order to raise the degeneracy in the S&W.M.C.

expressions for the inverted structures, we also mini-
mized the total free energy using the Alexander-de
Gennes (A-dG) approximation18,19 for the molten chains.
The justification for this procedure is the following. The
S&W.M.C. picture of a grafted layer assumes that the
chain ends are distributed over the height of the layer.
However, for convex surfaces, the chain ends are known
to avoid a region close to the surface, known as the
exclusion zone. This increases the elastic energy of the
system. If the exclusion zone had the size of the layer,
then all the ends would be confined at the outer surface
of the grafted layer. This is the explicit assumption in
the A-dG model of the grafted layers. The free energy
of a polymer layer grafted to a convex surface is
therefore intermediate between the S&W.M.C. and the
A-dG values. Using the expressions derived by these
last authors allows for an estimation of an upper bound
for the free energy. More accurate predictions for the
actual free energy, in the range of parameters relevant
to the phase diagram, might soon become available by
further extensions of the variational approach developed
in ref 20 or perhaps by extending the work of Olmestd
and Milner.21,22 Also self-consistent numerical calcula-
tions might also allow refinement of the picture pre-
sented here.
Figures 4 and 7 present the modifications introduced

to the phase diagrams by the A-dG expressions. The
energy values of the lamellae, inverted cylinders, and
inverted micelles are well resolved. A finite window in
the asymmetry diagram is now open for the lamellar
phase. However the inverted cylinders are never present
in the diagram.

Figure 5. Energy of the inverted structures as a function of
x ≡ NA/NA

ε, within the S&W.M.C. approximation for the
molten chains: L, lamellae; IC, inverted cylinders; IS, inverted
spheres. The inverted spheres are always the stable structure.

Figure 6. Phase diagram for diblock copolymers in a selective
solvent. For this particular diagram the free-energy contribu-
tions of the molten chains in the inverse geometry have been
calculated with the S&W.M.C. approximation. The X-axis is
a logarithmic representation of theNB values that are spanned
by setting NB ) 10m. The Y-axis represents the value of the
asymmetry ratio NA/NA

ε. Key: C, cylinders; S, spheres; IS,
inverted spheres.
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IV. Conclusions
In this paper we studied the formation of micelle

aggregates of diblock copolymers in a selective solvent.
Using a mean-field analysis we predict the formation
of direct spherical and cylindrical micelles and of
lamellar and inverted spherical phases upon increasing
sizes of the blocks in a poor solvent. No inverted
cylindrical phase is predicted to be stable. These shape
transitions for direct structures occur for asymmetry
parameters NA/NB

7/5 of order unity. Transition into
reverse shapes is controlled by the asymmetry function
NA/NB

8/5.
We have restricted our analysis to the three simplest

possible phases, which are representative of one-, two-,
and three-dimensional geometries. At this level the
approximation of a circular Wigner-Seitz cell is suf-
ficient to resolve aggregates in the three geometries but
precludes the distinction between different phases with
the same dimensionality. It would also be important,
as an extension of this work, to further investigate the
presence of bicontinuous phases. However, a first
indication that reverse structures of these phases migth
have a poor stability is provided by the absence of the
reverse cylindrical phase, and therefore by the absence
of a cylindrical-lamellar border where the bicontinuous
phases are located.
Birshtein and Zhulina23 have addressed a similar

problem by forcing each of the blocks NA and NB to be
solvated at concentrations cA and cB. In contrast, we
studied the case where the solvent is selective (cA ) 1 )
and the system self-adjusts to the appropriate cB values
when exposed to a solvent reservoir. Moreover, here
we restrict ourselves to a mean-field analysis, for which
the numerical factors are known.
In a previous paper we studied the direct micellar

structures by using an asymptotic analysis of scaling
forms for the different free energy contributions. We
did not find any asymptotically large window for stable
cylindrical geometries, a result in agreement with the
present mean-field result which confines the window
range of cylindrical stability to a small region around
NA = NB

7/5. In the appropriate scaling framework this
asymmetry has a different power law dependence and
would correspond to NA = NB

15/11.
An interesting feature of the inverted spherical

structures is that the size of the solvent hole is always
larger than the height of the corona hosted therein. The
volume fraction φ of the solvent that the sample can
accommodate decreases with increasing asymmetry, φ
∼ NB

8/5/NA.

Further developments of this work should consider
the question of the solvent molecular weight. Indeed,
in the context of copolymer/homopolymer blends it is
known10 that cylindrical structures exist when the
homopolymer is the majority component (direct vermi-
celles), it would be important to know if they persist in
the reverse situation where the homopolymer is the
minority component. Interestingly, this is also related
to the question of the embedding of solid particles in
diblock copolymer phases,24 in both situations the
corona being a molten polymer layer.
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Appendix
Here we present general expressions for the free-

energy contribution to eq 1 for the different geometries.
The total free energy is then minimized to determine
the stability of the structures as a function of the
polymerization indices NA and NB. All expressions are
written in energy units where kBT ) 1 and length units
where a ) 1.
The interfacial contribution fγ per chain is

For the lamellar geometry, the S&W.M.C. contributions
for the molten A and swollen B blocks (see Figure 2a)
are

and

The height of the swollen brush h and the chain
density σ are related by σ ) (π2/12NB

3)h3. As explained
in section II, the natural rescaling variables for the
different quantities are h̃ ) hNB

-4/5γ-1/5, σ̃ ) σNB
3/5γ-3/5,

and f̃ ) fNB
-3/5γ-2/5. Expressions 2, 3, and 4 and can

be rewritten as

and

with σ̃ ) (π2/12)h̃3 and â ) NA/NB
9/5. Hereafter, we will

be using renormalized quantities as defined above.
For the direct cylindrical geometry (see Figure 2b)

and

Figure 7. Energy of the inverted structures as a function of
x ≡NA/NA

ε, calculated within the A-dG approximation for the
molten chains: L, lamellae; IC, inverted cylinders; IS, inverted
spheres. The inverted cylindrical structures are never present
on the diagram.

fγ ) γ/σ (2)

fA ) π2

24
NAσ2 (3)

fB ) 3π2

40
h2

NB
(4)

f̃γ ) 1/σ̃ (5)

f̃A ) π2

24
âσ̃2 (6)

f̃B ) 3π2

40
h̃2 (7)

f̃γ ) 1/σ̃ (8)

f̃A ) π2

12
âσ̃2 (9)
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with σ̃ ) (π2/12)h̃3 (1 + (3/8)ε(h̃/R̃)). For the direct
structures, the radius of the cylinder R ) 2NAσ has been
renormalized according to R̃ ) RNB

3/5NA
-1γ-3/5.

For the inverted cylindrical geometry (see Figure 2c)

where

and

with σ̃ ) (π2/12)h̃3 (1 - (3/8)xâε(h̃/R̃)). For the in-
verted structures the radius R of the cylindrical holes
is an independent variable with a different renormal-
ization, R̃ ) RNB

-1.
The spherical counterparts of the above expressions

are the following. For the direct spheres (see Figure
2b)

and

with σ̃ ) (π2/12)h̃3 (1 + (3/4)ε(h̃/R̃) + (1/5)ε2(h̃/R̃)2). For
the direct structures, the radius of the sphere R ) 3NAσ
has been renormalized according to R̃ ) RNB

3/5NA
-1γ-3/5.

For the inverted spheres (see Figure 2c)

where

and

with σ̃ ) (π2/12)h̃3 (1 - (3/4)xâε(h̃/R̃) + (1/5)âε(h̃/R̃)2).
For the inverted structures the radiusR of the spherical
holes is an independent variable with a different renor-
malization, R̃ ) RNB

-1.
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40
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12
ε
h̃
R̃
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8
ε
h̃
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(10)

f̃γ ) 1/σ̃ (11)

f̃A ) π2

48
εR̃2[12 + 3u + 8

u
(1 - (1 + u)3/2)],

for S&W.M.C. (12)

f̃A ) 1
4
xâε σ̃

R̃
ln(1 + u), for A-dG (13)

u ) 2xâ
ε

σ̃
R̃

f̃B ) 3π2

40
h̃2

1 - 5
12
xâε h̃

R̃

1 - 3
8
xâε h̃

R̃

(14)

f̃γ ) 1/σ̃ (15)

f̃m ) 3π2

80
âσ̃2 (16)

f̃b ) 3π2

40
h̃2

1 + 5
6
ε
h̃
R̃

+ 5
21
ε
2(h̃R̃)

2

1 + 3
4
ε
h̃
R̃

+ 1
5
ε
2(h̃R̃)

2
(17)

f̃γ ) 1/σ̃ (18)

f̃m ) π2

80
εR̃2[10 + 9v - 15

v
(1 + v)4/3 + 6

v
(1 + v)5/3],

for S&W.M.C. (19)

f̃A ) 1
2
xâε σ̃

R̃[1 - 1
(1 + v)1/3], for A - dG (20)

v ) 3xâ
ε

σ̃
R̃

f̃B ) 3π2

40
h̃2

1 - 5
6
xâεh̃

R̃
+ 5
21

âε(h̃R̃)
2

1 - 3
8
xâεh̃

R̃
+ 3
4

âε(h̃R̃)
2

(21)
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