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Membranes in Rod Solutions: A System with Spontaneously Broken Symmetry
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We consider a dilute solution of infinitely rigid rods near a curved, perfectly repulsive surface and
study the contribution of the rod depletion layer to the bending elastic constants of membranes. We
find that a spontaneous curvature state can be induced by exposbrghdadides of the membrane
to a rod solution. A similar result applies for rigid disks with a diameter equal to the rod’s
length. We also study the confinement of rods in spherical and cylindrical repulsive shells. This
helps elucidate a recent discussion on curvature effects in confined quantum mechanical and polymer
systems. [S0031-9007(97)03316-4]

PACS numbers: 87.22.Bt, 11.30.Qc, 82.70.Dd

The elastic properties of fluid membranes are among theermine the contribution of the rod depletion layer to the
ruling factors in the physics of many biological and surfac-elastic constants of the membranes. An important rea-
tant systems such as cell membranes, vesicles, lyotropgon for considering this case can be better understood by
liquid crystals, or microemulsions [1]. When macro- comparing the order of magnitudes of changeXimand
molecular species are also present in such systems, the ik-caused by depleted layers of rods with those caused by
teractions between the membranes and the macromoleculggherical particles. In a solution of colloidal spheres of
change the bare elastic constants. Recent studies haxegliusry and particle number densipy,, the typical scale
explored contributions from adsorption [2—6], depletionof the energy density i€zTp,. Corrections to the in-
[4—6], or end grafting [5,7—9] of flexible polymers. In all terfacial energy are thus of the ord&ry = kgT p,ro.
of these cases, exposure of both sides of the membrane t@m the other hand, interfacial tensions in most liquids
solution results in a modification of the bending and splayare of the order ofy, = kzT/a?, wherea is a micro-
modulii K andK, the sign of the contribution depending on scopic size. For instance, far ~ 0.1 nm, vy, is of the
the possibility of surface-bulk equilibration. For instance,order of tens of mXm. The corrections due to the de-
depleted or adsorbed polymers reduceand increas&, pletion of spherical particles are thus a factar/r,)?
whereas the reverse holds for end-grafted polymers. lower than typical interfacial tensions even at order unity

Interest in solutions of rigid macromolecules can bevolume fractions¢ = p,(47/3)r;. Curvature correc-
traced to the extraction of tobacco mosaic virus (TMV)tions to the interfacial energy can generally be written
[10] and to the subsequent observation of the nematiasAy = kzT p,ro(1 + Ciro/R + Cary/R?), with R the
phase in TMV solutions [11], later explained by the radius of curvature and’;, C, two numerical constants.
seminal theory of Onsager [12]. Rod shaped particles i his leads to modifications of the bare elastic constants of
the colloidal range have since been studied in a large vahe order ofAK = kzTp,r;: at the upper concentration
riety of mineral and organic systems [13]; they are alsdimit p, ~ 1/r3, these corrections are only of ordesT,
present in the biological realm, where examples ranga value at the lower end of the range [18]-20)kzT,
from the TMV-like virus to fibrils of amyloidB protein, of most bare elastic constants. In the case of a rod solu-
the molecular agent at the origin of the Alzheimer diseasetion with rod number density,, the upper concentration
The surface interactions of rigid macromolecules werdimit of the isotropic solution is the Onsager concentration
first studied by Asakura and Oosawa [14] who showedp; = 4.2/L2D [12], with L the length of the rod an®
that the steric depletion of the molecules at a flat surfacés diameter. The contributions to the interfacial tension
increases the interfacial energy of the system, implyingare now of the ordedAy = kzTp,L, but even for rod
that two surfaces brought to separations smaller than diameters of order of the microscopic lengththe con-
rod length will experience an attractive force. The the-tribution to the interfacial tension of rod solutions at the
ory of depletion interactions for rods has since been exOnsager concentration is still a factar/{.) smaller than
tended to include ordering effects of the bulk phase [15}ypical interfacial tension values. However, modifications
or effects of rod-rod excluded volume interactions [16],of the elastic constants are here of ord&f = kT p,L>,
but it has been mostly devoted to flat geometries—a firsa factor (L/D) larger thankzT. Therefore, even rather
study of curved geometries can be found in [17]. In thisrigid phospholipid membranes with elastic constants as
Letter we extend the original Asakura and Oosawa thelarge a®20kgT may have their rigidities modified substan-
ory [14] to include effects of surface curvature and de-tially at low rod concentrations where rod-rod interactions

4514 0031-900797/78(23)/4514(4)$10.00 © 1997 The American Physical Society



VOLUME 78, NUMBER 23 PHYSICAL REVIEW LETTERS 9 UNE 1997

are negligible. We remark also that the steric surface ineonstants of a membrane exposed to a colloidal solution:
teractions are identical for rigid rods and rigid disks if oneAK = 0 andAK = 2/3kzT pyri.
takes the rod’s length and the disk’s diameter to be the Figure 1 shows the angular geometrical constraints for
same; however, the disk system does not enjoy the above-rod close to a flat or curved surface. When the center of
mentionedL /D enhancement. mass is at a perpendicular distance larger than from

We consider an ideal gas of rods of lengthin the the surfaces, the direction of the rod is not constrained.
presence of flat and curved surfaces which repel th&or distance® < z < L/2 only a fraction of the solid
rods. We parametrize the possible rod configurations bgngle is available to the rod. For rods outside a curved
the center of mass coordinates, and the two angles geometry a second distangg must be defined: for? <
specifying in which direction the rod points, = (6,¢). z < L/2 the rod touches the surface with its end, whereas
For the sake of simplicity the thickness of the rods isfor distances smaller thasf the rod touches the surface
taken to be zero. The relevant potential describing theaomewhere along its length. Inside a curved geometry

thermodynamics of the system can be written as yet a different length! must be defined, below which the
rod is geometrically not allowed. Performing the angular
Qlp(F,w)] = ] d?f dow p(F,0){In[vp(F, w)/e] integrations one gets the density profiles plotted in Fig. 2.
As expected rods outside a spherical curved surface
— [up = Uexi(F, )]}, (1) have a larger density than rods close to a flat surface.

wherev is some normalization volume, is the solution Conversely, rods inside a spherical surface have a smaller
chemical potential, and/.y, is the hard wall interaction density than rods close to the flat surface. The density

potential that is either infinite or zero, depending onProfile of rods close to cylindrically bent surfaces is
whether the configuration of the rod is allowed by theldentical to the spherical profile when the rods are oriented

“hard wall” requirement or not. Functional minimization Perpendicularly to the cylinder axis, and to the flat profile
of Q with respect t (7, ) gives the equilibrium density when the rods are oriented along the cylinder’'s axis.

profile Intermediate angles interpolate smoothly between the two
limits. A notable feature of the density profiles is that they
s _ ¢ e = Pt —U(i0) are nonanalytic functions of the curvature. For instance,
pli w) = —e e e . ;
v 4 the inner part{ < z?) of the external profile depends on

The local, position dependent, number density of particle&® square root ?f the curvature, and the internal profile

calculated from functional form of the allowed phase space changes across
. these boundaries causes this nonanalyticity. This implies
Ay = Qp(F, @)] — Oplz = *,0)] that even for large radii of curvatur® (— =) one cannot
N simply obtain the internal profiles from the external one
3) by a R — —R transformation; nor can one obtain the
= f dz[py — p(2)lJ(z,R), concave surface tension from the convex one via the same

transformation. Integration of the profiles leads to the
whereS is the surface areg, the perpendicular distance following contributions to the interfacial energies:
from the surface, and(z, R) is the appropriate Jacobian L
for the geometry. For flat surface€z, R) = 1, for the AYour = kpTpp — 4
outside of a cylinder of radiug, J(z,R) = 1 + z/R, and 4
for the outside of a spher&z,R) = (1 + z/R)*>. From for rods outside spheres and cylinders, or close to flat
Eq. (3) it is clear that differences between the excess
energy of a flat and a curved surface depend on two N
factors. The first is the configurational part measured ‘
by the differences in the rod density profiles; the second
one is associated with the space available to the center of
mass in the neighborhood of the surface, and is measured
by J(z,R). In the case of hard sphere solutions, where
there is no coupling between configuration and curvature,
only J(z, R) is responsible for energy differences(f) =
p»O(z — ry), independent of geometry]. It is easy to _ )
show that in that case one haSy = kT p,ro(l + FIG. 1. Configurational space of a rod near a flat surface,

. : . outside a curved surface, and inside of a curved surface. The
ro/2R) for cylindrical surfaces andy = kzTpyro(l + rods are represented at the angle where they touch the surface.

ro/R + r3/3R?) for spherical ones. Following the usual The complete allowed angular space is obtained by rotation of
procedure [1] one then finds the corrections to the elastithe figure around the axis.
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ilp similar to other depletion and equilibrium adsorption
problems, but as explained above the amplitude of the
0.8 contributions in this system is very large, of order of
0.6 L/D times larger thank,T, a value to be compared,
for instance, tok,TInN for adsorbed polymers with
0.4 polymerization indexv.
0.2 In a confined geometry, e.g., in ordered stacks of
z membranes (lyotropic smectics), in multilamellar vesicles,
0 02 04 06 08 7 or between any other two surfaces separated by some

] ) ) ) distanced the rod configurations are restricted by two
FIG. 2. Profiles for the rod number densjyz), in p;, units,

close to &) a flat surface, If) outside a spherical surface, and constraints. If the distance is larger than the rod

(c) inside a spherical surface. In the particular case shown het€ngth the confinement effect can be calculated from
we havel = 1, R = 2, z¢ = 0.061, andz! = 0.064. the above results simply by summing the effects of two

nonoverlapping depletion layers. If the surfaces are at a
distance smaller than the rod’s length the two depletion

surfaces; layers overlap, and one needs to compute two-surface ef-
L 12 fects specifically. The overlap of the rod depletion layers
Avin = kpTpp (1 — @ o3 (5) is known to lead to an attractive force between the two

o ] surfaces, but recent calculations that include rod-rod ex-
for rods inside spheresy(= 1/12) and cylinders & = ¢ ded volume interactions in flat geometries show that a
1/32). Results for the outside configuration are exactygpsive force can set in at distances of the order of the
For the |n5|de' configuration results are exact fpr spheresggq length [16]. Our method can in principle be applied
and perturbative to second order IfiR, for cylinders. i, the evaluation of the force between two convex spheri-
Equations (4) and (5) bear a few interesting consequencesy| or cylindrical surfaces, but we postpone presentation
For instance, Eq. (4) implies that the excess free energys those results to a forthcoming paper [19] and concen-
of a convex volume immersed in a rod solution doesyate here on the simpler case of confinement in spheri-
not depend on how the surface of the object is curvedyq or cylindrical hard shells. This problem is related to
but only on its area. Also, Eq. (5) indicates that flexible recent discussion of the curvature effects in confined
membranes which expose one surface to a rod solutiog,antum mechanical or macromolecular systems. Indeed,
will spontaneously bend towards the solution. Notejs 4 quantum mechanical particle is confined in a one
however that there is no spontaneous curvature in thgy tyo dimensional manifold embedded in three dimen-
usual sense of a contribution to the energy linear insions; its movement along that manifold will be described
I/R. When the membrane is immersed in the solutiony,y the ysual Schrédinger equation with an additional

(exposure of both sides of the membrane) the total surfacgryature dependent potential. For instance, a quantum
energy excess is given by the sum of the two contrlbutlongartide moving in a confinement tube will always be

Ayin and Ayoy. Curving the surface still decreases theiracted by curved regions of that tube. A quantum par-
total free energy, but in this symmetric situation therecle in a two dimensional manifold will experience an
is no preferred side toward which the membrane shoul xtra potential [20]1/ = _ﬁ_zi(i _ L)z with R, and

2m 4 \R; R, !

bend. Immersion will therefore spontaneously break th

symmetry of the system. We noted above [Egs. (4) andracted to curved regions of the surface except when it
(5)] that the surche tension of a membra_ne exposefl spherically bent K, = R,). It has also been shown
to rods on one side only is not an analytic functionyhat sych curvature effects propagate into the classical
of curvature. Assuming that this is not the case for ayoriq of statistical mechanics and that the quantum me-
membrane exposed to rods on both sides the followingpanical results hold also for flexible polymers confined
contributions to the membrane elast|q constants can _%to spherically or cylindrically bent gaps [21]. For such
extracted, as usual [1], from the two linear equations iny sysiem the difference in the free energy of confined
these two unknowns that follow from the surface tensions;iaies in curved shells as compared to flat ones is given

» the two principal radii of curvature. Particles will be

for the sphere and the c3yI|nder: by U = —kBTth%;%(RLI _ RLz)z, where R = %Naz,

AK = —knT L~ _ kT PP 1 L © ° being the monomer size. Apart from the typical en-
BLPb 64 B ph 152 D’ ergy scale, these potentials are identical. This identity is

3 due to similarities in the equations governing the behav-

— L pb 1 L . .

AK = kgTpyp — = kT 5% — = (7)  ior of both systems, and in fact holds more generally for
96 py 229 D i other systems containing Laplacians in their equations of

One finds thus a reduction iK and an increase iIK—  motion. In this context it is also interesting to investi-

this favors the formation of saddle structures (for instancegate the confinement effect for other classical systems,
cubic phases with periodic minimal surfaces). This iswhose configurations are not determined by Laplacian
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equations. For confined colloidal particles it is conve-a test for the generality of the conclusions drawn here will
nient to study these effects by considering open curvedequire the study of systems where the particles are at-
gaps, i.e., shells that allow the concentration of their solutracted to or bound to the confining walls. Work under
tions to equilibrate with an external reservoir. Attractive progress includes, for instance, end-grafted polymers and
curvature effects under these conditions will show up asdsorbed rodlike particles.
an increase of the average concentration in the curved gap This work was partially supported by CNRS and
as compared to noncurved gaps of identical thickness. FAMATO fellowships, and NSF Grants No. DMR-9624091
illustration we present first to second orderlifR the av- and No. MRL-DMR-9632716. Acknowledgment is also
erage concentratiop = fg dz p(z)J(z,R)/ fﬁ dzJ(z,R) made to the donors of the Petroleum Research Fund,
for a confined solution of dilute hard spheres: administered by the ACS, for support of this research
_ o (No. 29306-AC7).
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