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Abstract. – We study the anisotropy of the spontaneous curvature induced by a membrane
inclusion consisting of two geminated polymer-lipid molecules. The anisotropy is found to be
of the order of the mean spontaneous curvature. Such a strong anisotropy yields a significant
reduction of the membrane bending rigidity K as well as an increase of the saddle splay K̄,
which might lead to curvature instabilities.

Inclusions play an important role in lipid bilayers. In biological membranes, for instance,
protein inclusions add functionality to the cell wall [1]: they provide specific receptor sites for
host proteins, act as ionic pumps or hold the spectrin cytoskeleton. They also play a role in
controlling membrane elasticity [2], an effect which has been extensively studied in surfactant
bilayers. In these systems, small inclusions such as cosurfactants are commonly used to lower
the bending rigidity of the bilayer [3]. Typically, the rigidity can be reduced from its bare
value of order 20 kBT to a few kBT . Another important effect of inclusions is that they can
induce spontaneous curvature. However, a density difference is required across the membrane,
otherwise there is a compensation resulting in a zero curvature. In biological membranes, a
typical example is the crenation effect caused by the adsorption of small anaesthetic drugs on
the exterior half of a red-blood-cell membrane [4]. It has recently been realized that anisotropic
inclusions can induce a nonzero membrane curvature even when they have the same density
on both sides of the bilayer [5]. Such inclusions promote different spontaneous curvatures in
the directions parallel and perpendicular to their orientation in the plane of the membrane.
Whereas the spontaneous curvatures of two isotropic inclusions do compensate when they face
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Fig. 1. – Schematic representation of a Siamese lipid-polymer molecule embedded in a lipid membrane.

each other across the bilayer, the corresponding effect for anisotropic inclusions adds up when
they orient at right angles. In order to study this effect, it is important to tailor molecules
with a strong deviatoric bending strength.

We propose a molecular architecture with this property, by combining two effects (fig. 1).
First, the spontaneous curvature induced by polymer chains grafted on a surface. This feature
has been studied both in the so-called brush regime [6], [7], where the grafted polymers interact
strongly, and in the mushroom regime as a single-chain effect [8], [9]. Water-soluble polymers,
such as poly(ethylene glycol), attached to lipid surfactants (PEG-lipids) are used to induce
spontaneous curvature in fluid membranes and to promote arrays of defects resulting in gel
phases [10]. The second effect relies on the asymmetry introduced by gemination of two
molecules. In small surfactants, gemination has been studied [11] and is known to promote
formation of thread-like micelles [12], [13]. Gemination of macromolecular surfactants can in
principle lead to molecules with a strong and tunable spontaneous anisotropic curvature.

Macromolecular surfactants grafted to liquid membranes, as the PEG-lipid molecules men-
tioned above, are water-soluble polymers (typically PEO) chemically attached to a lipid
molecule, the function of which is to anchor the polymer to the membrane. For the sake
of simplicity we assume that the lipid anchor is identical to the membrane molecules, and
therefore it has no effect on the properties of the inclusions. Each of the twin polymers in our
Siamese macromolecule can then be regarded as a chain grafted to an impenetrable surface,
the anchors being chemically connected by a rigid spacer of length ` (1).

The configuration of each arm is determined by the excluded-volume interactions within and
between the chains, and the hard-wall repulsion from the membrane. A complete calculation
that would include all these interactions in an arbitrarily curved geometry is a rather formidable
task that is beyond the scope of this letter. In order to simplify the problem while retaining
the main effects of the curvature and interarm repulsion, we model our Siamese molecules by
two Gaussian chains grafted, at a distance ` apart, to an impenetrable curved surface. The
repulsion between the two arms is accounted for by prohibiting each arm to penetrate the space
occupied by the other. Technically this is achieved by placing a hard-wall at the midplane
of the two molecules (see fig. 1 and 2). This clearly overestimates the interarm repulsion but
allows for calculating an upper bound to the spontaneous curvature anisotropy.

(1) This spacer itself provides a contribution to the bending rigidity of the order of kT`p` per
molecule, where `p is the spacer persistence length. However, it does not contribute to the spontaneous
curvature.
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Fig. 2. – Geometry of the membrane surface where the Siamese molecule is grafted. The middle plane
separating the two polymer coils is rotated by an angle θ with respect to the saddle’s principal axes.

The free energy for our calculation is that of two Gaussian chains tethered to a surface with
equation z = ξ(x, y). The grafting points are (±`/2, 0, ξ(x, y) +a) with a the typical monomer
length. The impenetrable midplane is the x = 0 plane (fig. 2). The partition function of each
chain is Z( `2 , 0, ξ(x, y) + a;N), with

Z(r;N) =
∫

dr′GN (r, r′) , (1)

where GN (r, r′), the Green function of the Gaussian polymer, obeys the Edwards equation [14]

a2

6
∆rGN (r, r′) =

∂GN
∂N

(r, r′) , (2)

with the following boundary conditions: GN (r, r′) = 0 at the walls x = 0 and z = ξ(x, y), and
GN→0(r, r′) = δ(r− r′).

In the reference, flat case (ξ(x, y) = 0), the Green function G
(0)
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From eq. (1), the partition function is

Z(0)(r;N) = erf
[ x

2Rg

]
× 1× erf

[ z

2Rg

]
, (4)

where Rg =
√
Na2/6 is the gyration radius of the chain, and erf is the error function [15].

In order to calculate the deviation from the flat case, we consider a weakly curved membrane
of equation z = − 1

2X
2/R1− 1

2Y
2/R2 in the frame of its axes of principal curvature. In general,

these axes are at an angle θ with respect to the reference frame xyz of the Siamese molecule,
and the membrane equation reads

ξ(x, y) = −1
2

( 1
R1

cos2 θ +
1
R2

sin2 θ
)
x2 −

( 1
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− 1
R2
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·
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We seek for a perturbative solution to the partition function of the form

Z = Z(0) +
1
R1

Z
(1)
1 +

1
R2

Z
(1)
2 + . . . , (6)
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where Z(0) is defined in eq. (4). Each perturbative term obeys an Edwards equation

a2

6
∆rZ

(1)
i =

∂Z
(1)
i

∂N
(i = 1, 2) , (7)

with boundary conditions Z
(1)
1 (x, y, 0) = ( 1

2x
2 cos2 θ + xy sin θ cos θ + 1

2y
2 sin2 θ) × ∂Z(0)/

∂z|z=0 ≡ f1(x, y); Z
(1)
1 (0, y, z) = 0 and a similar set of BCs for Z

(1)
2 . The magic-rule

solution [16] to the diffusion equations (7) allows then to write

Z
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The xy contribution from f1 to the magic rule vanishes because the average 〈y〉 is zero for a
Gaussian integral in the free space. The x2 and y2 contributions correspond to the particular
cylindrical surfaces with axis parallel and perpendicular to the Siamese midplane x = 0,
respectively. In the limit of interest where the mushrooms interact strongly, |r| ¿ Rg, we get

Z(r) =
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The free energy of the two-arm Siamese molecule F = −2kBT lnZ( `2 , 0, ξ(x, y) + a;N) can
be written as

F = F0 + α
( 1
R1

+
1
R2

)
+ ω

( 1
R1
− 1
R2

)
cos 2θ , (10)

with the coefficients α and ω given by

α = −7
√
π

4
kBT Rg , ω =

3
√
π

4
kBT Rg , (11)

to leading order in a/Rg. The anisotropy of the spontaneous curvature ω/α is therefore, for this
Siamese molecule, of order unity. Note that the curvature contribution in (10) has the same
structure as the coupling between an anisotropic inclusion described by an in-plane orientation
vector and the curvature tensor [5]. At first order in curvature, the three-dimensional structure
of the polymers is thus effectively reduced to a nematic-like order parameter.

It has been shown [5] that anisotropic inclusions with spontaneous curvature of the form
(10) renormalize the elastic constants of the membrane K and K̄ according to

∆K = −1
2

∆K̄ = − σω2

2kBT
, (12)

where σ is the surface density of the inclusions. From eqs. (11) we obtain

∆K = −1
2

∆K̄ = −9π
32
kBT σR

2
g . (13)

This anisotropically induced renormalization of the bending constants is of opposite sign to the
usual contribution from isotropic polymer inclusions which tend to increase K and reduce K̄.
For instance, from eq. (8), in the limit |r| À Rg, we obtain for a single-arm grafted polymer
∆K = (π + 2)/2 kBTσR

2
g and ∆K̄ = −2kBTσR

2
g. Although the explicit calculation of the

bare contribution of the Siamese molecule to the bending constants is beyond the scope of this
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paper, we expect that contribution to be of the same order of magnitude of the renormalization
induced by the anisotropy of the spontaneous curvature (13). This leads to several interesting
possibilities when Siamese molecules are grafted to lipid bilayers. For instance, dense coating
of membranes with grafted polymers could be achieved without significantly increasing the
rigidity by using such Siamese molecules. Also, these molecules might drive instabilities by
lowering the rigidity constant K leading to the formation of cylindrical vesicles [5] or gel phases
induced by a high defect density in lamellar systems [10].
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