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ABSTRACT We study theoretically the hexagonal phase of diblock copolymer melts and determine the 
conditions under which a region of lamellar ordering is induced near a flat surface. In the weak segregation 
limit we employ a Landau-Ginzburg mean-field theory to describe the interfacial structure of the ordered 
hexagonal phase. The surface field, proportional to the differential affinity of blocks A and B to the surface, 
couples to the wave component perpendicular to the interface and increases the lamellar character of the 
ordered structure close to the surface. The extent of the region where this lamellar character predominates 
diverges logarithmically when the bulk hexagonal-lamellar transition is approached. In the strong segregation 
limit we find that the lamellar region exists provided that the surface field is larger than some critical value, 
readily obtainable in experiments. We find that the extent of the region of lamellar ordering also increases 
logarithmically with decreasing free energy difference between the hexagonal and lamellar phases. 

I. Introduction 
It is now well established that, for temperatures below 

the order-disorder temperature TODT, diblock copolymers 
self-assemble spontaneously in the melt to form ordered 
phases consisting of sheets (the lamellar phase), rods (the 
hexagonal phase), spheres (the cubic phase), or multi- 
connected, bicontinuous arrangements of copolymers with 
cubic or more exotic symmetries.lI2 This self-assembly is 
driven by the immiscibility of the two different chemical 
components of the polymer, denoted by A and B. By 
forming a segregated phase, the system minimizes the 
number of A-B contacts, thereby saving energy which 
offsets the corresponding loss of polymer entropy. In a 
system containing lamellar layers, for example, each 
lamella can be viewed as a layer, with normal in the 
z-direction (say), where the concentration of one of the 
copolymer blocks is predominant. The layer itself is liquid 
and retains translational symmetry in the r-y plane. In 
the so-called weak segregation limit the excess of one of 
the species varies smoothly over the layer depth; see Figure 
la. On the contrary, in the strong segregation limit, well 
below the transition temperature, there is a sharp interface 
between alternate regions of almost pure A or B blocks; 
see Figure lb. In the hexagonal region of the phase diagram 
the diblock copolymers are disposed into cylindrical 
infinite aggregates which pack hexagonally in the plane 
perpendicular to the axis of the cylinders. In the other 
phases the polymers pack in a similar manner, according 
to the phase symmetry. 

We consider here a monodisperse melt of linear diblock 
copolymers with total degree of polymerization N ,  made 
up of one A-block of N A  monomers joined to one B-block 
of N - N A  monomers. The bulk phase behavior of these 
copolymers has been shown to be sensitive to  two 
parameter~:3?~ (i) xN, where x is the Flory incompatibility 
parameter between A and B polymers, in ~ B T  units, and 
(ii) the molecular asymmetry parameter f N A / N .  For 
symmetric ( f  = 1/2) diblock copolymers, for instance, the 
mean-field theory3 predicts the formation of a lamellar 
phase at  temperatures where xN = (xN8 10.49 (better 
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Figure 1. Representation of the density profile of the A 
monomers for a lamellar stack of symmetric A-B diblock 
copolymers. (a) Weak segregation limit. The maximum double 
amplitude is in general far from unity. The base line corresponds 
to the sample average content of A monomers. (b) Strong 
segregation limit. The bottom line is zero, the B monomers being 
completely excluded from the A-rich region. 

estimates can be obtained by properly taking into account 
the role of fluctuations5). For asymmetric copolymers (f 
# l/d cubic and hexagonal structures are predicted to 
form at lower temperatures, Le., at higher values of xN. 
Well below the transition temperature, in the so-called 
strong segregation limit, the transition from one to the 
other phase is mainly driven by f, the asymmetry 
parameter. The theory of Semenov4 predicts that the 
hexagonal phase is found for 0.12 C f C 0.28 (where we 
choose f I 0.5 without loss of generality), whereas the 
lamellar and cubic phases are found for f > 0.28 and f C 
0.12, respectively. In the present work we study the extent 
of surface-induced lamellar ordering in copolymer melts 
where the stable phase in the bulk is hexagonal. The 
presence of a flat surface with a differential affinity for 
blocks A and B has already been shown to induce a region 
of lamellar ordering in copolymer systems above the 
ordering temperature.6-10 In the next section we inves- 
tigate how this affinity changes also the interfacial 
structure of a weakly ordered hexagonal phase. The limit 
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of strong segregation is studied in section 111. Section IV 
is devoted to discussion of the results. 

11. Weak Segregation 
In this section we study the interfacial structure of a 

hexagonal phase of A-B diblock copolymers close to the 
ordering transition. In this limit the system can be 
described by a Landau-Ginzburg expansion of the free 
energy as a function of the local average excess concentra- 
tion of (say) monomer A, #(r) = 4A(r) - ( 4 ~ )  
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F = + U: + a t )  - 2pa1a,a, + Z(U; x + + U: + 
4a,2a; + 4a,2a,2 + 4a,2a,2) (4) 

In the bulk one has a1 = a2 = a3 = a h  corresponding to the 
free-energy density 

where S(q = Iql) is the Fourier transform of the two-point 
correlation function in the disordered homogeneous phase, 
and Itq is the q-Fourier component of the order parameter 
#. The factor of N on the left-hand side of eq 1 ensures 
that all the coefficients are of order unity (we will absorb 
the factor Nin  the definition of all the free energies written 
below). The third- and fourth-order coefficients p and X 
are simple q-independent (but f-dependent) approxima- 
tions for the vertex functions of the thermodynamic 
potential. For symmetric systems where f = 1 the third- 
order coefficient p vanishes. The (arbitrary) choice of the 
sign of the third-order term fixes conveniently the phase 
of the hexagonal structure a t  the surface. Close to the 
order-disorder transition the susceptibility S(q) is strongly 
peaked around some vector qo and can be approximated 
by 

with an effective temperature 7 which depends on the 
A-B interaction parameter x, T = 2(xN),-2(xN). When 
the effective temperature 7 vanishes (one has for instance, 
for symmetric cf = l / ~ )  diblocks, xN = (xNs = 10.491, the 
susceptibility S(q) diverges for values of the wavevector 
on the reciprocal space shell IqI = 40. The typical 
wavelength associated with the vector qo is of order of R 
=   NU^/^)^/^, the radius of gyration of the polymer chain, 
a being the size of one monomer. The constant c is related 
to the curvature of the scattering function at  its maximum. 
A good approximation6J1J2 for these quantities is provided 
by the relations qo2R2 = [3/f(l -f)11/2 and cqo2 = R2/ (2 f ( l  
- f ) ) .  The other two parameters entering in the free energy 
are also functions of the asymmetry f. In particular p 
vanishes for symmetric diblock copolymers where f = l/2. 
Values for these parameters can be found in refs 3 and 5. 
The Landau-Ginzburg functional in eq 1 predicts the 
formation of three ordered phases for diblock copoly- 
mers: body- centered cubic, hexagonal, and lamellar 
(smectic). We will investigate below the temperature 
region where the stable phase is hexagonal, with special 
attention to the neighborhood of the hexagonal to lamellar 
transition temperature. 

The bulk hexagonal phase can be described by a first- 
harmonic expansion of the order parameter: 

#(z,y) = 2a, cos{q#) + 2a, cos { q $!p]+ 

which leads to the free-energy density 

The density of a lamellar phase can also be obtained from 
eq 3 by setting a1 = a1 and a2 = a3 = 0. The associated 
free-energy density reads 

It is convenient to reduce the free-energy expressions and 
amplitudes in the following manner: 

4 
Fl = E [  -ax2 + iX4] 

h3 

(7 )  

where the amplitudes and temperature have been nor- 
malized by 7 = -apz/h,  and a h  = YpIA, and Q I  = XpIX. The 
bulk equilibrium values of the amplitudes are given by 

x = (2a)'/2 

The low-temperature phase is the lamellar phase; the 
transition temperature from hexagonal to lamellar is 
located a t  a = (7 +3&)/5 2.87. Note that the 
hexagonal phase only exists in the phase diagram for finite 
values of p. For symmetric copolymers (f = l /2) the 
parameter p vanishes, and only the lamellar phase is 
predicted to form in the bulk, a t  a = 0. 

The Landau-Ginzburg free energy (1) can also be used 
to construct the interfacial free-energy excess fi for systems 
where the translational invariance has been broken by the 
presence of an interface: 

fi = S,dV [#(r) U(r) + F [ # ( r ) l -  F[#(x,y,z--)ll (10) 

In this equation U is the surface potential. For a contact 
potential it can be written as U(z)  = -Ay6(z), where Ay 
is the differential affinity of the interface with respect to 
polymer A. If YAS and ~ B S  are the interfacial tensions of 
polymers A and B with respect to the surface, one has AT 
= YBS - YAS. In order to obtain a tractable expression for 
the excess free energy, we first remark that for a weak 
enough hexagonal-lamellar transition (which implies a 
weak enough third coefficient p or equivalently f close 
enough to l lz )  the bulk correlation length can still be large 
compared to qo-l, the period of the ordered phases. In 
this limit we look for solutions of the order parameter #(z, 
y )  as in eq 3 but with z-dependent amplitudes. The 
symmetry of our problem, where the interface is taken to 
lie in the [ x ,  yl plane, implies that only two out of the 
three amplitudes are independent, al(z) # a&) = a&). 
The slow variation of the amplitudes on the scale of the 
crystalline wavelength allows us to make a gradient 
expansion. We first transform the structure factor (2) in 
the equivalent gradient operator of the real space, then 
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insert the solutions for the order parameter with z- 
dependent amplitudes, and eventually coarse-grain the 
functional free energy on scales smaller than QO-’, keeping 
only gradients up to the square terms. This leads to the 
following equivalent excess free energy per unit surface, 
where the x and y variables have been integrated out: 

where the bulk density F l h  is the mixed function (eq 4, 
with a2 = a3) 

x 
4 Flh = 7(a12 + 2~;) - 2 ~ ~ 1 ~ , 2  + -(ai4 + 6 ~ ;  + 8al2a,2) 

(12) 

This expression gives the hexagonal free-energy density 
in the bulk when al(m) = a2(m) and the lamellar energy 
density whenever a2 = 0. 

A crucial point to remember is that only the amplitude 
a1 is coupled to (and thus enhanced by) the surface 
potential. It is this coupling that leads to a lamellarlike 
interfacial phase where a1 is large and a2 and a3 are small. 
The interfacial profiles can be obtained by functional 
minimization of the excess free-energy (eq 11) with respect 
to the amplitudes a1 and a2. Renormalizing the distances 
by z = t[ with F2 = 8cqo2X/p2, and the amplitudes as in the 
bulk case, one gets the new surface excess functional 

F{h[X(t),Y(t)l - Flh[x(m),y(m)l] (13) 

with plh[X,YJ = a(X2 + 2 P )  - 2Xy2 +1/4(X4 + 6Y4 + 
8X2Y2) and where C is given by C = 8A.yA2/(3[fi3). 
Minimizing (13) with respect to X and Y, one gets the 
following two coupled differential equations 

= (-2a + 4 p ) X  + X3 - 2y2 
dt2 

(14) 

which are to be solved subject to the boundary conditions 

d2Y - 
dt2 
- - (-2a - 2x + 2X2)Y + 3y3 

dX -(t=O) = -c dt 

%(t=O) = 0 

There is an interesting analogy between our copolymer 
system and the movement of a classical particle of mass 
unity moving in the [X, Yl space under the potential 
-Flh(X, m.13 The solutions of the amplitude equations 
(14) correspond to the trajectory of a particle starting at  
a special point in the [X, YJ plane with a speed -C parallel 
to the X-axis and terminating a t  [X,, Y-I with zero speed. 
The positions in the classical potential corresponding to 
the pure lamellar or hexagonal phases are tops of hills; see 
Figure 2. Above the transition temperature between the 
hexagonal and lamellar phases the hexagonal hill is higher 
than the lamellar one. A t  the transition temperature the 

Figure 2. Trajectory of a classical particle in the mixed potential 
(eq 12), far from the hexagonal-lamellar phase transition (a = 
1). The reduced surface strength is C = 10. The point where the 
trajectory stops is the top of the hexagonal hill. The lamellar 
metastable point in this [X, Yl space is at [ f i , O ] .  Drawn 
equipotential lines are at levels -0.1, -0.2, -0.3, -0.4, and -0.5. 

two hills have the same height. Because there is conser- 
vation of the total energy, it is possible to define the curve 
in the [X, Yl space where the initial point must be located 
(complete determination of the initial position would 
require a second integral of motion or the resolution of the 
differentialequations of motion (eq 14)). For our boundary 
conditions this curve is simply the equipotential line at 
the level -C2/2 from the top of the hexagonal hill. 

As can be seen from Figure 2, above the transition 
temperature, only a small closed line around the top of 
the H-hill is available as astarting point. This corresponds 
to small differential affinities of the surface with respect 
to monomers A and B, well above the transition tem- 
perature, where the interfacial structure only deviates 
slightly from the bulk phase. Linearization of the trajec- 
tory equations is possible in this case, leading to the 
solutions 

n n n  
L LL AX = X - X, = - 3k1 exp(-klt) + - 3k2 exp(-k2t) 

n n 
L L 

A y  = y -  Y, = - 3k1 exp{-k,t) - - 3k2 exp(-k,tj (16) 

with k l  and k2 given by k12 = -2a - 4X, + 15Xm2 and kz2 
= -2a + 2x, + 3x-2. 

If one increases the adsorption strength C at  fixed 
temperature (or decreases the temperature a t  fixed C), 
the line of possible starting points crosses the Y = 0 axis, 
leading to a possible solution for the trajectory where the 
phase at the interface would be purely lamellar. However, 
it is clear from the equations of motion (eq 14) that a 
particle starting at  Y = 0 with dY/dt = 0 would never 
reach the top of the hexagonal hill a t  t = -. A small 
hexagonal component must thus always exist a t  the 
interface. We present in Figures 3-7 two profiles obtained 
by numerical integration of the differential equations 
describing the trajectory and the corresponding interfacial 
structure of the hexagonal phase. The first profile was 
obtained at  temperatures far from the transition tem- 
perature. In this case the trajectory never gets close to 
the L-hill top, and the profiles go monotonically toward 
their bulk equilibrium values. Note also that in this case 
the curvature of the enhanced X amplitude never changes 
sign. 

The second profile was obtained close to the transition 
temperature a,. In order to understand the foot in the 
profile, we need to follow the trajectories for temperatures 
close to a,. Immediately below a, the particles need to 
stop at the top of the L-hill because the bulk equilibrium 
phase is then the lamellar phase. A t  the transition 
temperature a, there is, somewhere in the bulk, a free 
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Figure 3. Time dependence of the amplitude profiles cor- 
responding to the trajectory in Figure 2. The curvature of the 
enhanced X amplitude never changes sign. 
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Figure 6. Time dependence of the amplitude profiles cor- 
responding to the trajectory in Figure 5. The point where the 
curvature of the enhanced X-amplitude changes sign defies the 
half-thickness of the layer. 

Figure 4. (a) Contour plot of the interfacial region of the 
heragonal phase with the amplitude profiles of Figure 3. The 
correlation distance [ defined in the text is taken in this case to 
be equal to 4r40-1. (b) Three-dimensional plot of the same 
interfacial region. 

Figure 7. (a) Contour plot of the interfacial region of the 
hexagonal Phase with the amplitude Profiles Of Figure 6. The 
correlation distance 4 defined in the text is taken in this ~ a e e  to 
be equal to 4rqo-l. (b) Three-dimensional plot of the same 
interfacial region. 
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Figure 6. Trajectory of a classical particle in the mixed potential 
(E), close to the hexagonal-lamellar phase transition (a = 2.8). 
The reduced surface strength is C = 20. The point where the 
trajectory stops is the top of the hexagonal hill. The lamellar 
metastable point in this [X, yl space is at [5.6lI2, 01. Drawn 
equipotential l i es  are at levels -0.1,-0.2, -0.3,-0.4, and 4 . 5 .  
interface between the lamellar and hexagonal phases. For 
temperatures approaching the transition temperature from 
above, the trajectories pass increasingly closer to the top 

of the lamellar hill where they have a small speed; see 
Figure 5. This slowing down shows up in the profile as a 
foot which extends up to a distance 1 which diverges 
logarithmically with a - ac 

1 = UR log{b(a - ac)] (17) 

where a and b are functions of the surface strength Ay. 
This logarithmic divergence can be understood as follows: 
Let r be a variable defined from dr2 = dxz + 2 d P ;  the 
trajectories will then be parametric functions of the 
variable r which runs from r, at  the surface to rr. in the 
bulk. In [X, Yl space there is a point [X(r*) ,  Y(r*)l, close 
to L, where R has a maximum in r and where the profile 
r(z) ,  given by dz = dr/[Fhdr)11/2, also slows down and 
exhibits a foot. If we expand the free energy around r* 
and define 1 as the distance along z which separates r, 
from r*, one gets the characteristic logarithmic divergence 
of eq 17, often found in wetting problems.'' 

Summarizing the results for the weak segregation case, 
we stress the following: 
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(1) The lamellar order appearing close to the interface 
of a weak hexagonal phase of diblock copolymers is induced 
by the preferential coupling between the surface potential 
and the wave component perpendicular to the interface. 

(2) The extent of the lamellar region diverges logarith- 
mically with the relative decrease in temperature below 
the lamellar-hexagonal transition. 

The formalism developed in this section bears strong 
similarities with the work of Frederickson5 on the inter- 
facial behavior of symmetric diblock copolymers, and the 
main results of ref 5 may be recovered in the limit of p - 
0. Two main differences are to be noted however. First, 
our treatment of the interfacial inhomogeneities is based 
on the gradient expansion of the free energy, instead of 
the mixed gradient/Green function representation for the 
real space form of the scattering function Stq). Second, 
we neglected all the details related to the definition of the 
exact phase matching of the bulk phase with the interface; 
we rather assume the wave phase to be such that the 
composition which couples strongly with the interface has 
its maximum there. A better phase matching can in 
principle be achieved by introducing an arbitrary phase 
cp in the definition of the hexagonal wave composition (eq 
3) and then fixing it by the conservation condition $$ dz 
= 0. 

Surface potentials with two parameters have also been 
considered by Hauge,15 who studied the mean-field wetting 
behavior of a three-state Potts model. In wetting more 
refined versions of the surface contribution to the free 
energy are often used. In particular, one introduces a 
phenomenological second virial coefficient (the coefficient 
of the second-order term in an expansion of the surface 
energy in powers of which describes the relative change 
induced by the surface on the strength of the microscopic 
interactions. If such a term is taken into account, the line 
of possible starting points for the particle in the classical 
analogy is no longer an equipotential line but a curve 
generated by the intersection of the potential surface and 
an inclined plane. Obviously we have not attempted here 
a general description of the wetting phenomena generated 
by this additional parameter, but rather supposed that 
the main effect is driven by AT, the surface chemical 
potential which corresponds in our case to the difference 
in interfacial tensions between each of the blocks and the 
surface. It is worth noting that, according to the clas- 
sification of Hauge, our Landau's free-energy density falls 
in the case where the wetting transition, when it exists, is 
first order. 
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111. Strong Segregation 
Our treatment of the interfacial structure of a strongly 

segregated hexagonal phase proceeds as follows. We first 
assume that there exists a surface layer of lamellar ordering, 
with thickness E ,  and that the lamellar phase matches onto 
the hexagonal phase at  some interface. At this interface 
the incompressibility of the melt forces the lamellae to 
undulate so as to physically match the contour of the 
hexagonal phase; see Figure 8. The lamellar layer nearest 
the surface is flat, and the undulation in the lamellar layers 
grows monotonically as one travels from the flat surface 
to the interface with the hexagonal region. The bending 
and compressional moduli of the lamellar layer tend to 
suppress rapid growth of undulations near the flat surface. 
We will model the mechanical properties of the lamellar 
phase using these bending and compressional terms in a 
derivative expansion of the free energy. One might expect 
there also to be some distortion in the hexagonal region, 
close to the interface with the lamellar phase, although we 
neglect this here. We expect this simplification to have 

b. 

5 

Figure 8. Schematic diagram of the lamellar ordering induced 
by a solid surface and the undulation which develops to match 
onto the hexagonal phase at the hexagonal/lamellar interface. 
We see a slice through the y-z plane with symmetry in the 
x-direction. The dotted circles represent the position of the 
interfaces between the A and B blocks of the copolymers. 

little effect on our results, a t  least a t  the qualitative level 
of interest in the present work. 

Since the bulk phase is hexagonal, there is a free-energy 
difference (per unit volume) AF between the hexagonal 
and lamellar phases which suppresses the extent of any 
lamellar region. The extent of this region is also suppressed 
by the bending and compressional energies of the lamellar 
phase. Balancing these energetic penalties is the difference 
in surface tension between the two chemical components 
at the surface Ay which is what drives the lamellar 
ordering: the lamellar phase allows the component which 
minimizes the surface tension to concentrate a t  the surface, 
while the symmetry of the hexagonal phase requires both 
A and B components to reside there, with an associated 
energetic penalty. 

While this treatment is formulated in the limit of a 
completely inflexible (solid) surface, a copolymer/air 
interface (say) results in a surface which is approximately 
flat provided the surface tension between the copolymer 
and the air is sufficiently 1arge.l6 The necessary condition 
is T I ( K B ) ~ / ~  >> 1, where y is the copolymer/air surface 
tension and K and B are the bending and compressional 
moduli of the lamellar phase, respectively. Recent ex- 
periments on the PS/PBMA system17 suggest that 
Y I ( K B ) ~ / ~  = 27, leading to a rather flat surface. 

111.1. Smectic Energy. We consider a system com- 
prising an infinite, flat solid surface in contact with a 
strongly segregated diblock copolymer melt in which the 
bulk stable phase is hexagonal. We take the normal to 
the solid surface to define the z-direction and the axis of 
symmetry of the hexagonal phase to define the x-direction. 
We assume that a region of lamellar ordering exists in the 
vicinity of the surface; see Figure 8. The local vertical 
displacement of the lamellar layer is u, and we take the 
continuum limit where u varies smoothly throughout the 
sample. We take the following as the energy density of 
the lamellar phase18Jg (per unit length in the x-direction): 

Here K is the bending or splay modulus and B is the 
compression modulus. This expression includes only the 
leading order terms in an expansion of the energy density 
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in derivatives of u and is therefore only strictly valid 
provided u is slowly varying. 

We retain only the first Fourier component of the 
lamellar displacement field a(z) with u = a(z) cos qy. Using 
eq 18 the free-energy density of the lamellar phase becomes 

Hexagonal Phase of Diblock Copolymers 4991 

F ( z )  =-(-) B d a 2  + - f ~  K 
4 dz (19) 

The boundary conditions are that the amplitude of the 
deformation vanishes a t  the solid surface a(0) = 0 and 
that the undulation of the lamellae must match onto the 
hexagonal phase at the relevant interface, approximated 
by a(Q = ao. Minimizing eq 19, we find that a is given by 

sinh uz a(z) = a - Osinh u[ 
(20) 

with u a characteristic inverse length given by u = q2(K/ 
B)lf2. Substituting eq 20 into eq 19 and integrating over 
0 < z < (, we obtain the smectic free energy per unit area 
FA 

In order to determine the penetration depth [, we 
consider the free energy per unit area F, which includes 
the free-energy difference (per unit volume) between the 
hexagonal and the lamellar phases hF: 

(22) 

Minimizing F with respect to [, we find that 5 is given by 

F = FA([) + AFf 

(23) 

which simplifies in both the limits of large and small [ to 

- log(Ka,,"?q4/AF) for [ u  >> 1 

-(KU,,"?~*/AF)'/~ for [ u  << 1 2 u  
(24) 

As we shall see below the product [ u  corresponds to the 
number of lamellar layers present, to within a numerical 
factor of order unity. Hence, the limit [ u  << 1 may have 
little physical significance. 

Recent theoretical work on diblock copolymer lamellae 
has provided a microscopic calculation of the smectic 
moduli for a symmetric f = ' 1 2  lamellar layer.20 These are 
B = QymIh and K = y m h / 3  where h = ( y ~ ~ / 3 ) ' / ~ W / 3  is 
the thickness of a single lamellar layer and ym is the surface 
tension which acts a t  the interface between the A and B 
blocks in a lamellar layer. This in turn has been calculated 
by Semenov4 for very long chains and is well approximated 
by ym = bx1/2 where b is the monomer size. Assuming 
tht the smectic moduli do not depend crucially on f ,  we 
may use the above expression as estimates whenever f # 
l12. The amplitude and the wavelength of the lamellar 
undulations are both of the order of the hexagonal lattice 
size (repeat distance) which is itself of the order of the 
lamellar thickness h. Thus, recalling the definition of u 
= q2(K/B)1/2, the product [v can be identified with the 
number of layers in the lamellar region to within a 
numerical prefactor of order unity. Using these estimates, 
eq 24 with t u  >> 1, and neglecting numerical factors of 
order unity, we find 

TAB f l h  N const + log- hAF (25) 

Figure 9. Schematic diagram of the polymer conformations for 
the case when no region of lamellar ordering exists. We see a 
slice through the y-z plane with symmetry in the x-direction. 
The dotted circles represent the position of the interfaces between 
the A and B blocks of the copolymers. Note that both the A and 
B components of the copolymer are in contact with the surface. 

This behavior, where [ diverges logarithmically as A F  - 
0, suggests that 6 is rarely very large. An estimate of AF 
may be obtained from the theory of ref 4. One simply 
compares the free-energy densities of the hexagonal and 
lamellar phases near the phase boundary, expanding to 
first order in f. 

AF = c o n s t ( y ~ ~ ) ~ / ~ ~ ~  - f i  (26) 

where fo  = 0.28 is the position of the phase boundary and 
the constant of proportionality has a numerical value of 
approximately 3.05. 

Three main approximations are inherent in the preced- 
ing treatment: (i) We ignore the effect of any distortion 
to the hexagonal phase near the interface with the lamellar 
region. (ii) We neglect all higher order Fourier components 
of the displacement field u. (iii) We utilize an expansion 
of the free energy equation 18 which is strictly only valid 
for slowly varying perturbations. However, we do expect 
our results to remain accurate a t  the qualitative level. 

111.2. Overall Stability of the Lamellar Region. 
Even in copolymer melts where the bulk phase is hex- 
agonal, the difference in surface tension between the A 
and B components a t  a surface A y  may stabilize a region 
of lamellar ordering at  that surface; compare Figures 8 
and 9. This is because the lamellar phase allows the 
component which minimizes the surface tension to reside 
at the surface while the symmetry of the hexagonal phase 
requires both A and B components to be in contact with 
it, with an associated energetic penalty; see Figure 9. A 
lamellar region will exist provided Ay is large enough to 
overcome the sum of the free-energy penalty for creation 
of the lamellar region and the bending and compressional 
energies of the deformed lamellar layers. 

Hence the lamellar region exists whenever the energy 
difference AQ is negtive 

AS2 FA([) + AFf -PAY (27) 

where p(f) - 1 is the proportion of the surface which 
would be in contact with the unfavorable polymer com- 
ponent if the hexagonal phase existed at  the surface; see 
Figure 9. Solving As2 = 0 for Ay determines the smallest 
value of AT, written Ayo for which the lamellar region 
exists. Using the above estimates K = y m h ,  B = y d h ,  
q = l lh,  and a, = h, and solving for Ay, in the limit f u  
>> 1, we find 
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and strong segregation regimes, suggests that [ is rarely 
very large. This is consistent with the presence of a single 
layer in the system of ref 24. A larger number of layers 
would require values for the copolymer asymmetry much 
closer to the values at which the lamellar phase forms in 
the bulk. 

While the possibility of a similar region of induced 
lamellar ordering in other regions of the phase diagram 
(e.g., where the equilibrium phase is cubic) was not 
explicitly considered, we are able to make some general 
observations. In both the weak and strong segregation 
regimes the calculations are expected to be very similar 
to those presented here. In the strong segregation regime 
there is only a different boundary condition on the 
deformation of the lamellar layers at the lamellar/cubic 
interface, while in the weak segregation regime a slightly 
different Fourier expansion in the local concentration 
difference is required. Hence, we expect results similar 
to those obtained for the case of a hexagonal phase. 
However, in the strong segregation regime the chemical 
potential difference between the cubic and lamellar phases 
will never be very small, and the extent of the lamellar 
region is expected to be severely limited. 
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