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Abstract

Aqueous solutions of surfactants such as CTAC/NaSal and CTAB/KBr, certain dye molecules, Sg rings in plastic
sulphur or the o form of polymethylstyrene are thought to self-assemble reversibly into long, linear flexible chains. The
fascinating properties of these systems arise from their propensity to randomly destroy or create connections between
chains, a labile character which allows for exchange of material from chain to chain. As a consequence they exhibit
a unique dynamic behaviour, which reflects both the kinetics of exchange of material from chain to chain and the
dynamic properties of polymers. In this paper four types of reaction that have been proposed as candidates for describing
the kinetics in these systems are reviewed. The implications of these mechanisms on the viscoelastic behaviour of the

living polymer materials are also discussed.

1. Introduction

The kinetic mechanisms allow the linear living
polymers to exchange material [1-6]. This results
in an intrinsic, annealed polydispersity of the chain
lengths. A simple description of the polydis-
persity [1] leads to an exponential chain-length
distribution

oLy =(¢/L*)exp [ — L/L} ()

with an average length L given by L = ¢/?
exp{(E + 1)/2}, where ¢ is the monomer volume
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fraction and E is the energy cost of creatin
two chain caps. This mean-field result can be
modified to take into account the effect o
excluded volume interactions: in the scalin
picture, the cutoff size is replaced by the correla-
tion length of the semidilute solution (¢ ~ ¢~ 3/4),
which leads to the new average length L ~ ¢°°

RS

= D 00

4]

2. Reversible scission

In this reaction scheme it is assumed that a chain
can only change mass either by breaking into two
new shorter chains or by recombining with another
to form a new, larger chain [5,6]. This scheme
provides an integro-differential equation for the
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time evolution of ¢(t,L):

o«

(LI
de (WD) jreen) + 2k J ct.L)dL
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L

L

+ (k’/2)J c(t,L)c(t,L — L')dL’

0

— k’c(t,L)J ct,l)dL’, (2)
o]

where k and k' are respectively the scission and

recombination rate constants. The length distribu-

tion (1) is a stationary solution of the rate equation

(2) under the condition ¢k’ = 2kL? (detailed ba-

lance).

In a T-jump experiment, a technique widely used
to determine the exchange rates in micellar solu-
tions, a sudden perturbation (a step-change in the
temperature) is imposed on the system [7]. The
system will then relax to the new equilibrium length
distribution with average length, L. The relaxation
can be calculated from the rate equation (2) for
any amplitude of the temperature jump, because
the exponential function c(t,L)= ¢/L*1)exp
{ — L/L(t)} is a non-linear eigenfunction of the rate
equation with the time-dependent average length
obeying

L) = L coth[([; [0)} (3)

b

for a positive t-jump (increase of the temperature)
[8]. The constant t, depends on the amplitude of
the temperature jump and the characteristic relax-
ation rate, 1y, is given by 1, = 1/(2kL,). Note that in
the perturbative limit where (L — Lg)/L; < 1 the
decay is simply exponential with decay rate 14,

The viscoelastic behaviour of entangled poly-
mers is described by the tube model which con-
siders that the pathway for stress relaxation after an
imposed small step strain, is provided by the diffu-
sion of the macromolecules along the tube formed
by the wrapping entanglements of the other chains.
The stress relaxation function y(L,t) associated with
this description is given by [9].

8 ..
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When the characteristic time for a chain to disen-
tangle from its tube (known as the reptation time,
Trep) is much smaller than the breaking time,
the chains behave as unbreakable chains an
the terminal time for relaxation in a viscosit
measurement is simply 1, ~ L3 Because of the
polydispersity of length distribution, the resulting
stress relaxation function is a strongly stretched
exponential,

A
u
Vv
J

() = 1/L2 J ‘L exp{ — L/L}u(L,t) dL
0

o exp{ — (t/Trep)''*} . (5)

In the opposite limit where the chains can break
and recombine many times before the chain is able
to reptate out of its tube, the reactions need to be
incorporated into the diffusion process. In order to
do so, one considers a length, 4, that a chain can
diffuse before it recombines with another end. This
length is given by 12 ~ D(L)t,, where D(L) ~ L is
the curvilinear diffusion coefficient of a chain of
average length. The relaxation time, 7, is then the
time for a break to appear within a distance, /,
which is given by © = 1,(L/4). This leads to a relax-
ation time given by [5].

T~ (Tl:t‘[rep)l/2 . (6)

Another consequence of the fast breakeage-
recombination process is that the relaxation func-
tion, u(t), becomes single exponential. For surfac-
tant solutions one can calculate the volume fraction
dependence of the terminal time, 7, by replacing in
Eq. (6) the average lengths by their values as a func-
tion of the volume fraction. One obtains © ~ ¢!
for reactions faster then the reptation time and

7 ~ ¢>* in the other limit.

3. End interchange

The end-interchange mechanism is a reaction by
which the end of one chain collides with a second
chain at a random position along its length,
forming a transient three-armed star which
then decays into two new chains of different
lengths [10]. The equation for the time evolution of
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c(t,L) is now given by

= — k.Le(t,L) J wc(L’) dr

0

de(t,L)
dt

- keC(L)J Le(t,L'ydL’
0
L ©
+ kef dr J dL" C(L)C(L")
(o] L—-Ls

+ k,w,c(t,L)JoO c(t,L')dL’, )
0

where k. is the reaction rate constant. Because the
reaction conserves the chain number, it cannot
relax the length distribution after a 7-jump. Indeed,
it can be verified by inspection that the rate equa-
tion (7) has a solution for any C(L) of the form (1).
Still, we can define a characteristic time for an
interchange event to occur on a chain of the typical
length 7, = 1/(¢k.).

We can calculate the viscoelastic response
for a system where end-interchange reactions
are present along the same lines of the calcula-
tion for reversible scission. In fact, the end-
interchange reaction can be viewed as a scission
or a recombination process, activated by a collision
with or from a second chain. Then, in the
regime where the breaking time is much smaller
then the reptation time, one still has © ~ (.7..p)'?
and a mono-exponential decay for the stress
relaxation function [6]. Note however, that the
scaling of 7, with the volume fraction is different,
leading to a terminal time which scales as

T~ @2

4. Bond interchange

This reaction involves two reactant chains which
come into contact at some random point along
their arc lengths, form a transient four-armed star
and decay into two new chains of different lengths.
Let Lo=L,+ 1L, and Lg=L;+ L, be the
lengths of the two chains, with the reaction occur-
ing at a distance L; from one end of chain A
and at a distance L; from one end of chain B.

Then, the rate equation for this reaction is:

d L L oC L o)
oe.l) _ kif dL1J dLZJ dL;;J dL,
dt 0 0 0 0

XO(Ly + Ly — Lye(Ly + Ly)e(Ly + Ly)

——kf dLJ dLZJ dL3J dL,

oLy + Ly — L)e(Ly + Ly)e(Ls + Ly),

(8)

where k; is the reaction rate. As far as the T-jump
technique is concerned, the situation is similar to
end-interchange: because chain number is conser-
ved in the reaction, it does not provide a path for
the chain relaxation of the chain-length distribu-
tion. It can also be checked that the any-exponen-
tial distribution is a stationary solution of the rate
equation. The characteristic reaction time is now
given by 1; = 1/(¢Lk,).

The terminal time for the stress relaxation is
calculated again by considering: (i) the distance, A,
over which a chain is expected to diffuse without
making any reaction and (ii) the time it takes to
a chain end to appear at a distance, 4, from the end.
Note that both quantities differ from their ana-
logues of the reversible-scission reaction by a factor
L/J. because not only a reaction needs to occur at
a distance A from the end, but the added piece of the
chain needs also to be smaller than A. This leads to
the relaxation time [4]

e~ i o)

which scales with concentration as © ~ ¢'".

5. End evaporation

When the reactions are confined to the terminal
region of the chains, the resulting kinetics can be
described by the evaporation/condensation mech-
anism [11], which is described by the rate equa-
tions

de(L)
dt

= kp[c(L + 1) — (L)]

kpe(D[e(L — 1) — «(L)] (10)



C.M. Marques et al. | Journal of Non-Crystalline Solids 172-174 (1994) 1168-1172 1171

for all the chains with length L > 2 and

de(1
fi(t )_ k,,[c(z) +

— kp (1) |:2c(1 + ic ] an

S au|

for the monomers. One of the important points in
considering end evaporation is that it does provide
a way to relax the chain length distribution. It is
thus a serious candidate for the systems where
evidence suggests the scission recombination to be
absent [12]. After a T-jump, there is a fast initial
process by which almost every chain can lose or
gain by an order of one monomer, thus allowing
the monomer density to relax much faster to its
final (equilibrium) value than any other population
of chain lengths. It can be checked, for instance,

that there is a difference of two powers of L

in the initial decay times of the monomers and
of the dimers. Different moments of the distribu-
tion relax here with different characteristic
times, and the average length does not decay
exponentially (even for small perturbations) to
its final equilibrium value. The rate equations can
be solved numerically for any 7-Jump amplitude.
For instance, in the case of small amplitudes,
the second moment of the distribution (the
average sampled for instance in a light scattering
experiment) relaxes with a characteristic time
1p = 4L%/kp.

In order to determine the viscoelastic behaviour
in systems where end evaporation is the dominant
mechanism, we note that, crudely speaking, the
contour length of ‘original’ polymer which has
evaporated at time, ¢, from each chain, 1:(t), is
determined by the extent of a simple one-dimen-
sional biased random walk, corresponding to the
evaporation and condensation of monomers. Thus
chains with a contour length <L will have com-
pletely evaporated; longer chains will have lost
~ L of their original monomers. On average, each
chain undergoes an evaporation reaction in a time
1/kp and a condensation reaction in a time
exp{1/L}/kp. This is a diffusion convection process
with a small bias towards small chain lengths.

Hence

~oN2 ~ EZI/TD
Ly” =~ {L‘Z(t/rn)z

for t<tp

[
—

for t=1p.

The stress is proportional to the number of
‘original’ monomers remaining at time ¢, which
scales like u(t) ~ [P- (L — L)e " dL where we
have neglected numerical factors of order unity.
Hence

N expy{
o) = u(O){exp )

—yt/rp)/?} for t<tp
for tz 1

——
—
(%]

~—

where y and ' are constants of order unity. We
see that the stress relaxation is stretched exponen-
tial for times smaller than tp with a characteristic
timescale of order tp = 4L%/kp, For times much

a single exponential with the same characterlstlc
decay rate. Whenever 1 <1,,, We expect stress
relaxation by way of end evaporation to dominate
over that resulting from reptative motion, and
vice versa. For intermediate times, we expect some
smooth interpolation between the two limiting
cases. We also remark that tp/7,, ~ 1/L and so
for long enough chains end-evaporation reactions

diffusion constant for reptation scales as D, ~ L,
whereas individual end-evaporation reactions lead
to an effective diffusion constant of chain ends
(relative to the tube) that is insensitive to chain

length.

6. Conclusions

We have described four reaction mechanisms
which may account for the kinetic and dynamic
response of living polymers systems. Only two of
these mechanisms (reversible scission and evapo-
ration condensation) are able to relax their chain-
length distribution under a sudden change of the
thermodynamic conditions (T-jump). The evapo-

times for the average length, three powers of L
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larger than the corresponding time under reversible
scission reactions.

The stress relaxation functions depend strongly
on the ratio of the characteristic time for each
reaction to the reptation time. When the reptation
time is much smaller than this typical time, the
chain behaves as a classical solution (or melt) of
polydisperse unbreakeable chains. When the repta-
tion time is the largest time in the system, the chains
can react many times before they disentangle from
their original tube. This leads to a much faster
relaxation time, which is a combination of the
breaking and reptation times for the three first
described mechanisms, and independent of repta-
tion for end evaporation. In this regime of fast
reactions, the first three mechanisms also lead to
a monoexponential decay of the stress function,
while the fourth is only monoexponential at times
larger than the reaction time, tp,
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