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The structure of grafted polymer “brushes” may be profoundly modified by the action of 
“external fields”local shifts in chemical potential due to, e.g., inter-facial effects at the grafting 
surface. We discuss the strong-stretching limit of the self-consistent mean-field theory for a 
brush exposed to an arbitrary external potential, a simple scaling law for the brush height arises 
in the case where the external field pushes monomers towards the surface. In contrast, repulsive 
interactions can lead to “exclusion zones” or regions from which polymer ends are repelled, 
leading to a breakdown of the simple scaling formula. We exactly solve the self-consistent theory 
of the brush in a repulsive square well where an exclusion zone always appears. Our results 
describe a brush in the case where a thin layer of one component of a binary solvent that is a 
worse solvent for the polymer than is the bulk mixture wets the grafting surface. We also discuss 
the effects of thermal fluctuations and chain polydispersity on our results, and estimate the 
effects of various interfacial phenomena on the brush structure. 

I. INTRODUCTION 

Long polymers grafted at one end to a surface are 
strongly perturbed from their free-chain conformation in 
bulk solution. As the grafting density (the number of at- 
tachments per unit area) or molecular weight is increased, 
the excluded volume interactions force the chains to 
stretch away from the surface, to form a “brush.” Interest 
in brushes is motivated by their application to stabilization 
of colloidal particles. Coating such particles with grafted 
polymers introduces repulsive (osmotic) forces between 
the grafted coronas sufficient to overcome the van der 
Walls attractions that favor aggregation. Because the 
strength and the range of these repulsive forces depend on 
the mass of the polymer and on the grafting density, much 
experimental effort has been directed toward increasing 
surface coverages. Surface coverages of order of 8 mg mm2 
have been recently reported, corresponding to layers as 
thick as 110 nm and to stretching energies as large as 
- lOk,T.’ 

A theory of grafted polymer layers was first proposed 
by Alexander2 and de Gennes3 and later elaborated by 
Semenov.4 More recent work5*6 has developed a detailed 
statistical-mechanical picture of chain conformations in 
polymer brushes. A central theoretical result-well con- 
Ermed by experiments-is that the typical chain extension 
scales heady with molecular weight. ’ 

Polymer brushes are not only useful in colloidal stabi- 
lization but can also influence, or have their structure in- 
fluenced by, other interfacial phenomena such as wet- 
ting,‘p8 capillarity,g polymer adsorption, and electrical 
double layers.10y’ ‘,12 In each of these examples, the chain 
conformations are determined not simply by the balance of 
osmotic and elastic energies, but also by their interplay 
with a third, interfacial energy. The precise nature of this 
third contribution to the free energy depends on the sur- 

face under study. As an example, if there is wetting of the 
substrate by the minority component of a two-solvent mix- 
ture, there are forces acting on the chain monomers near 
the wetting layer due to differences in chemical potential of 
monomers in each of the solvents. In this case, the chains 
will adopt conformations maximizing the number of mono- 
mers in the better solvent.7 

Given the large amount of free energy ( - 10kBT) 
stored per chain under strong-stretching conditions, one 
might question whether such external fields will be able to 
significantly alter the brush structure. However, one must 
remember that for these strongly stretched brushes the po- 
lymerization index N is very large ( iV> lOOO), and thus 
the free energy per monomer is of order 0.0 1 k,T. Substan- 
tial responses can thus be expected to external fields, since 
they can locally greatly exceed O.OlkBT per monomer. 

This paper is organized as follows. In Sec. II we first 
review the self-consistent mean-field (SCMF) description 
of polymer brushes, and then discuss the effect of an arbi- 
trary external field on the chain conformations. If the free 
ends of the grafted chains remain distributed throughout 
the layer, the usual theory5*6 only requires slight modifica- 
tion to give a closed-form description of brush structure in 
the presence of an external field. This is usually the case 
when the external field tends to push the polymers towards 
the grafting surface. However, in many situations, external 
fields will tend to stretch the polymers away from the graft- 
ing surface. Given sufficiently strong forces of this sort, 
there may arise “end-exclusion zones”-regions in the 
layer from which the free ends are expelled. In Sec. III, we 
discuss the appearance of such an exclusion zone in the 
treatment of brush response to a wetting layer of a minor- 
ity solvent that is present on the grafting surface. This 
problem can be solved exactly in the SCMF theory even in 
the case where the polymer segments encounter repulsive 
interactions with the wetting layer leading to forma- 
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tion of an exclusion zone. Section III ends with a discus- 
sion of the effects of thermal fluctuations and chain 
polydispersity on these results. In Sec. IV we discuss the 
competition between grafted and adsorbed layers of poly- 
mers, a problem of some practical interest since the final 
properties of the brush can in principle be finely tuned by 
the adsorption of a (possibly different) polymer. This 
study also provides some insight into the problem of at- 
tractive, pointlike interactions that may exist between the 
substrate and the chains in the grafted layer. Lastly, in the 
Discussion, we make some estimates of effects of various 
sorts of inter-facial phenomena on the brush structure. 

II. GRAFTED LAYERS UNDER EXTERNAL FIELDS 

A. The mean-field model for strongly stretched chains 

Identical flexible polymers each of chemical length N 
are end-grafted to the surface z=O; the polymers are re- 
stricted to the half-space z> 0, and the number of chains 
grafted per unit area is o. We take the monomers to be of 
length unity, and we take energy units where kBT= 1. The 
ith chain is described by a space curve ri( n), where n runs 
from 0 at the free end to N at the grafted end; the position 
of the grafted end is fixed, ri( N) = [Xi( N), yi( N),O]. The 
free energy of the system for a given set of chain confor- 
mations is 

F= F ; kNdn($)2+ Id3r(; [@(I’)]~ 

+AsddQ(+) , I (2.1) 

where the first term measures the entropy loss due to 
stretching of the chains, and the second term accounts for 
interactions; Q(r) is the volume fraction occupied by 
monomer at point r. Two types of interactions are included 
in Eq. (2.1) (a) excluded volume interactions of strength 
w and (b) an external field whose precise form depends on 
the interactions between the monomers and the interfacial 
phenomenon of interest, be it a wetting layer, additional 
adsorbed polymer, van der Walls interactions between 
monomers and substrate, etc. The potential energy due to 
this interaction per monomer at r is &v(z) and the re- 
sulting force on a piece of chain of size dn at r is thus 
-A& ( z) dn [where U’ ( z) = du/dz] and is directed in the 
z direction. We take the potential profile v(z) to be nor- 
malized, 

I 
m dz v(z)=l, (2.2) 

0 

so that As measures the integral of the external potential. 
If a uniform monomer solution of volume fraction a0 were 

‘in contact with the grafting surface, AsQo would be the 
surface energy due to the external field. A typical profile 
v(z) will decay from its peak value at z=O, thus, we ex- 
pect v’(z) <O under most circumstances. In such cases, 
As <O corresponds to an attractive potential between 
monomers and the surface, while A, > 0 models a repulsive 
interaction. 

A mean-field theory may be obtained by retaining only 
the portion of the excluded-volume interaction linear in the 
fluctuating part of Qp; the free energy Eq. (2.1) then de- 
couples into a sum of single-chain contributions each of the 
form 

f(r)= I,“dn[i (g)2+pCzj] tconstant, (2.3) 

where p(z) = w+(z) + A,v( z). Here 4(z) is the expecta- 
tion value of the microscopically defined Q(r); c$( z) does 
not fluctuate in the mean-field theory. Symmetry indicates 
that C$ is independent of the x-y planar coordinates. The 
“potential” p(z) is the work required per chain volume to 
insert a section of chain at a given height z; the work per 
unit total volume, #( z)p( z), is the osmotic pressure. We 
will find it useful to express (p in terms of p as c$( z) 
=crp(z)--yv(z),wherea:=l/~andy=A~/wisalength 
characterizing the strength of the surface interactions com- 
pared to excluded volume interactions. A mean-field ap- 
proach will be used throughout this paper. We note this is 
completely valid only when the solvent has “marginal” 
quality, l3 or for weak self avoidance, w < o”~ in d = 3. The 
theory could be extended to good solvent conditions by the 
approach of Milner et al.6 Effects of the correlations aris- 
ing in a good solvent on the layer structure at scales be- 
yond the blob size cr- 1’2 are small, except at the outer edge 
of the brush. 

We are concerned in this paper with the “strong- 
stretching limit” relevant to long polymers, where the layer 
thickness h, the typical distance that chains are extended 
over, is much larger than the ideal chain radius of gyration 
RG = ,/%%, but is much less than the maximum extension 
of the chain. In this limit576 one expects that a chain with 
free end at a height z. fluctuates only narrowly about the 
path r(n) which minimizes the free energy functional 
f(r); more precisely, in the x-y plane monomer n fluctu- 
ates a distance of order R&h away from r(n). Again 
symmetry indicates that a chain grafted at a position rN 
has a free-energy minimizing conformation of the form 
r(n) =rN+z(n)2. 

Since the chains are in mechanical equilibrium, we de- 
mand that there is no tension at the free end, dz/dn 1 n=O 
=O. Functional minimization off furthermore indicates 
that z(n) satisfies “Newton’s law” for the trajectory of a 
particle when the variable n is interpreted as “time” and p 
is interpreted as potential energy, 

d2z dp --- 
dn2- dz (2.4) 

with boundary conditions z(0)=zo, z(N) =O, and dz/ 
dn [ n,o=O. Integration of this equation leads to the clas- 
sical relation between the “velocity” dz/dn and the two 
potentials p and p’ reflecting the positions of an observa- 
tion point, and the free end, respectively, dz(p) 1 I dn =-~%qiE. zo=z(p') (2.5) 
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Assuming that ends are distributed throughout the layer, 
we see that the boundary conditions strongly constrain 
p(z); it must be an “equal-time” potential with the prop- 
erty that the “time” required to “fall” from rest to z=O is 
independent of the initial height. For a chain with free end 
at a height z,, this “fall time” is 

” 

(2.6) 

It is convenient to work in terms of the potential p as a 
height coordinate; from mechanical stability consider- 
ations we know that p(z) is monotonic, decreasing from 
some value P at z=O to 0 as one moves to the top of the 
layer. Writing Eq. (2.6) in terms of the potential p and 
inverting it13 leads to 

-dp’ dN 
mdp“ (2.7) 

In the case that ends are distributed throughout the layer, 
we require the equal-time condition N(p) = N8( P-p) 
[e(z) is the usual Heaviside distribution throughout this 
paper]. Thus, dN/dp= - NS(p- P); Eq. (2.7) then gives 
dz/dp= - (2N2/32)1’2( P-P)-“~. Integration yields 
the celebrated parabolic potential 

(2.8) 

where the layer height is h = ( 8PN2/3~) 1’2. 
In the absence of external fields (As=O), the value of 

P= PO is determined by monomer conservation to be PO 
= (27?/32) 1’3 ~~‘~2’~. The layer height for A,=0 fol- 
lows ho= (4wa/3) 1’3N. Assuming that the free ends are 
distributed throughout the layer, we can compute the free 
energy density per unit surface for the brush by integrating 
the chain chemical potential from the bare surface to the 
actual surface density (T. Because the chains are in equilib- 
rium they all have the same chemical potential. In partic- 
ular, we choose those with a free end at the surface for 
which the chemical potential is easily calculated to be 
NPo.6 This leads to an area1 free energy density in the 
A,=0 case, 

F,=N w2’3c?/3 N. (2.9) 

Returning to the general case As#O, we introduce a 
function indicating the number of free ends per unit height, 
da/dz. This distribution is normalized so that Jdz(da/ 
dz) =(T. This quantity is determined by recognizing that 
the monomer density at height z may be computed by add- 
ing up all of the contributions from chains with free ends 
above z, 

#(z)=J; dz’dz’ z d* id”) . 
PC-+) 

(2.10) 

where we have introduced the distribution of ends per unit 
change in p, da/dp= (da/dz) 1 dz/dp ( . We may invert 
Eq. (2.11) byL ap 1 ace transform to give an integral for the 
end distribution 

- 

{$= J; cp$;j1,2[a-r$ uw~4. 
(2.12) 

In the event that this da/dp is everywhere positive, there 
are no end exclusion zones, and the end distribution may 
be directly. calculated using this equation with dz/dp given 
by Eq. (2.7). 

From Eq. (2.7) it is evident that the end distribution 
Eq. (2.12) is everywhere positive if the derivative of the 
external field with height always exceeds the (negative) 
slope of the parabolic potential [i.e., Asv’( z) > dp/dz; this 
condition corresponds to a monomer concentration profile 
that decreases monotonically as z increases]. For a decay- 
ing V(Z) with u’ (z) < Q everywhere, we see that this con- 
dition is satisfied for A,<O, or for a wide class of poten- 
tials attracting the monomers to the grafting surface. 

If this condition is not met for all z, da/dp may be- 
come negative; the self-consistent solution outlined above is 
nonphysical. To remedy this, one must consider con- 
strained self-consistent solutions that introduce “end- 
exclusion zones,” or finite regions of z for which da/dz 
=O. We will extensively discuss this point in Sec. II C. 

B. Attractive potentials 

In the case where v’ (z) < 0 and y < 0 (everywhere at- 
tractive forces) Eq. (2.12) leads always to a positive 
(physical) end distribution, In this case, the potential p has 
the parabolic form Eq. (2.8)) and we may proceed to com- 
pute the end distribution using Eq. (2.12). Since dp/dz is 
known, the end distribution may be explicitly computed 
once u(z) is specified. However, some aspects of the sys- 
tem are independent of the form of V(Z) within the bounds 
stated above. 

An important property of the end distribution is that it 
is a sum of two contributions. The first, proportional to a, 
is the end distribution that would arise without surface 
interactions. The second, proportional to y, arises solely 
due to the surface forces, and is only nonzero in regions 
where v’ (z) is nonzero. Thus, if V(Z) has a range smaller 
than the layer height (we expect this under a wide range of 
circumstances), then at heights above the cutoff of v(z), 
da/dp has the same form as that for an unperturbed layer. 
Since p(z) is parabolic, we find that da/dz is also of the 
same form as for the unperturbed layer, above the surfacer 
force cutoff. This remark also applies to the monomer den- 
sity, which is explicitly 

#(z)=aP(l-s/h2)+ Iyju(z). (2.13) 

Above the cutoff of u(z), the monomer distribution is par- 
abolic, and of the same form as in the case y=O. Inside the 
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range off; we note an enhancement in monomer density 
near the surface that is proportional to the coupling y, 
physically consistent with the attractive nature of the sur- 
face interaction. 

Integrating the end distribution yields an expression 
for the total end density. A bit of algebra yields 

J 

P 
U'= dpd" 

0 dp 
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There must be, in such circumstances, finite intervals in 
height where no free ends are found. In the following, we 
assume that the external potential is monotonically de- 
creasing from the surface, which implies that there will be 
only one single exclusion zone extending from the wall up 
to a distance z*. Let Q=p( z*) be the value of the poten- 
tial at the edge of the exclusion zone, and P=p(z=O) to 
be its value at the wall. It is convenient to use the following 
dimensionless variables for the potentials and distances in 
the problem: 

=T($)1’2++[ l’dzv(z)-l;zu(z)]. 

(2.14) 

If the layer height h is larger than the range of v(z), this 
reduces to 

The fraction of ends “bound” to the surface is 1 yl /(ON), 
independent of the form of u(z). 

(2.15) 
(2.17) 

&; X=&. 

Integration of Eq. (2.11) for the concentration, over the 
range where chain ends exist (0 < p < Q), and integration 
of the equal-time constraint Eq. (2.6) leads to the two 
following integrodifferential equations: 

Since these free ends are bound inside the range of the 
potential, and since the unperturbed end distribution goes 
to zero at z=O, in the case that the range off is small 
compared to the layer height, these bound ends will con- 
tribute with a peak to the end distribution at the grafting 
surface. 

The layer height may be computed by combining the 
expression for the grafting density Eq. (2.15) with the 
relation P=3gah2/8 N2, 

where ho= h (y=O) is the unperturbed brush thickness. 
The expression for h is formally identical to the case where 
no extra interaction is present if one replaces the density o 
by the effective “unbound” end density cr- 1 yl /N. An 
interesting point is that for 1 yl/aN<l, the correction to 
the brush height (which is independent of N) is indefi- 
nitely smaller than ho in the N-+ CO limit. 

(2.16) 1 1 1 Y’” dV 
+,x’/2 J 

--dY, o X+YdY (2.19) 

which determine the form of the total potential inside and 
outside the exclusion zone for a given external potential V. 
The value of the total potential at the wall X, (or equiva- 
lently the value of P), is given by X[V(x=O)]. Note that 
when the derivative d V/dx is a function of V only (i.e., V 
is piecewise linear), then the preceding equations deter- 
mine V in the two regions of the brush, which by inversion 
would give the values of the total potential, X[ V( x)] and 
y[V( x)] in these regions. Equations (2.18) and (2.19) 
need to be complemented by the two limiting equations 

The preceding results only apply for bound fractions 
smaller than unity. For sufficiently strong interaction 
strength (or long range of interaction), low grafting den- 
sity, or short chains, the polymers are fully bound inside 
the range of v(z) . Under such circumstances, the thickness 
of the layer is equal to the range of the external field. This 
tells us that computation of the free-energy cannot be di- 
rectly made using the above results. There will always be 
some portion of the integral in Eq. (2.9) near a=0 over a 
regime of totally bound chains. This is further discussed in 
Sec. III. 

J 

xs 1 dx T 
o pdXdX=-y, (2.20) 

J 

1 1 dV 
o FzdY=--2. (2.21) 

The first of these expressions accounts for the flight time of 
the chains with ends just at the edge of the exclusion zone. 
The second equation, obtained by combining Eqs. (2.19) 
and (2.20), states that the end-distribution vanishes at z*. 
The value Q of the potential at the edge of the exclusion 
zone is fixed by the normalization condition 

C. Repulsive potentials 

In the cases where the forces act to push the chains 
away from the grafting surface [e.g., u’(z) < 0 and y > 0] 
the integral contribution to the end distribution Eq. (2.12) 
can be negative (an unphysical result) if the hypothesis 
that free ends are distributed throughout the layer, and 
therefore the parabolic potential Eq. (2.8), is assumed. 

x-/-Q - for p>Q; 
Q 

y=Q-p - for p<Q; 
Q 

(2.18) 

dV 2 
a=; (arctan X1’2+X-1’2) 

($j3”=1+; l yd!& (2.22) 
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Equations (2.18 )-( 2.22) completely determine the solu- 
tions of the problem of the grafted polymer brush under a 
repulsive, continuous, and monotonically decreasing po- 
tential. 

Now, we discuss the asymptotic behavior of the solu- 
tions for two limiting situations. The first is the limit of a 
strong potential close to the wall, V$ 1 for x=0. For small 
x one has 

V-V(p)=X[ I-$- ($y+O(X-5/2)]. (2.23) 

In this region the total potential is dominated by V, and the 
chains of the brush are very stretched. 

A second interesting limit corresponds to weak exter- 
nal potentials linear in x, V= Vo( 1 -x/D)0( D-x). Let p 
be the value of the total potential at the point where the 
external potential vanishes, B= Y(D). The integrals over Y 
on the right-hand side of Eqs. (2.19) and (2.2 1) thus have 
limits 0 and fi. The four Eqs. (2.18)-(2.21) determine the 
four unknown variables of the problem X,, p, dx/dY(z*) 
=dx/dX(z*), and z*. We have 

.xy2 p “2 r 
D-x*=2 x I( 1 s -2 

+ ( 1+$)arctan(5)1’2], 

Vdc* -=z-Z$ [(I+:) [ ~ctan(5)1’2]2-% 
D 

+2(~)1’2arctan(~)1’2+log( l+$)], 

dx -i7- - 
dX x=0 

=-$7-c (2.24) 

~=($)1’2arctan($)1’2++log( I+$-), 

determining the four parameters, and 

x l/2 
+ (Y+X,)arctan f 

01 
, 

(2.25) 

V(x) = V(x*) +f [ (1 +X)arctan X1’2+X1’2] 

for the potential profiles outside and inside the exclusion 
zone, respectively. The ratio V,-JD governs the position of 
the edge of the end exclusion zone. For small values of this 
ratio the position of x* diverges from the wall with an 
essential singularity 

x*=(g)Dexp[ -g]; XS=D’exP]-$]’ 

p=DT (2.26) 

This behavior echoes that encountered in the theory of a 
molten brush attached to a convex surface;i3 in that case, a 
linear “potential” appears due to the Jacobian of, e.g., cy- 
lindrical coordinates. An effective repulsion of monomer 
occurs in that case because of chain crowding as one ap- 
proaches the convex grafting surface. 

For larger values of the ratio VdD the position of the 
border tends to D, 

D-x* D -=-. 
D vo ’ 

(2.27) 

p=DT 

We may calculate the ratio PdQ from Fq. (2.22), 

(2.28) 

The value of the total potential at the edge of the exclusion 
zone is thus slightly larger than PO, the maximum value of 
the unperturbed profile. We have, for small and large val- 
ues of the ratio VdD, 

(2.29) 

We note that these results have been obtained under 
the assumption that the slope of the total potential at the 
edge of the exclusion zone is fmite. It can be seen from Eqs. 
(2.18)-(2.21) that if a power-law is assumed for the vari- 
ation of the slope, one gets a 0 exponent. Thus, the pre- 
ceding perturbative results may overlook factors in the po- 
tential of the form log 1 z--z* 1. 

III. STRUCTURE OF THE BRUSH IN A SQUARE 
POTENTIAL 

In this section we present detailed calculations for the 
brush in an external square potential A~u(z)=E[~(z) 
-0(z-z*)]. We note that e=As/z* is the potential well 
height/depth. This potential may be used to describe many 
important situations where the applied external potential is 
constant over some range and then dies off in a distance 
much smaller than the brush thickness. Examples of this 
are the wetting of the polymer grafted substrate by a sec- 
ond minority solvent or the adsorption of a second poly- 
mer, for which the brush solvent is a poor solvent. We 
study both the attractive (E <O) and the repulsive (E> 0) 
cases. 
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FIG. 1. State diagram for the brush immersed in an external step poten- 
tial. The coordinates are the potential range z*/h, and the potential 
strength E/P~, where ho and PO are the brush height and monomer chem- 
ical potential at z=O in the absence of the external field. I and IV Un- 
perturbed regime. II Total confinement of chain ends. III Partial confine- 
ment. V Partial exclusion of chain ends. VI Total exclusion of chain ends. 
The dashed lines correspond to different construction paths for the brush. 

A. The attractive square well 

When the external potential is attractive the free ends 
are distributed over the whole layer thickness, and the total 
potential retains its parabolic shape, as discussed in Sec. 
II B. The concentration profile is then given by Eq. (2.13). 

(3.4) 

When z*, the range of the attractive well, is larger than 
ho, the unperturbed brush size, the brush shape and thick- 
ness are not modified by the presence of the external field. 
For values of z* smaller than ho the monomer concentra- 
tion inside the well increases, causing the layer to shrink. If 
the attraction is weak, only a Unite fraction of the chain 
ends is confined inside the well (we will refer below to this 
situation as the regime of partial confinement). The brush 
thickness is then given by Eq. (2.16) which we rewrite as 

B. The repulsive step 

by making use of the equality waN=2Poho/3. By increas- 
ing the interaction strength E at constant interaction range 
z* we reach a critical strength 

!gq [;w(E)2] 

For positive values of interaction strength E (repulsion 
of monomer from the region z< z*) there is always an 
exclusion zone in the brush. This is a consequence of the 
infinite slope (discontinuity) at the edge of the external 
potential. However this exclusion zone, which propagates 
from z* inwards, does not always reach the grafting sur- 
face. If the discontinuity in the potential is not too strong, 
the free energy is reduced if a few of the chains place all of 
their monomers fully inside the range of the external field. 

(3.1) This balance leads again to three distinct regions in the 
positive half-space of the [dPO,ti/ho] phase diagram of 
Fig. 1. For large ranges of the potential the brush size and 
profiles remain unperturbed, as in the attractive case. By 
decreasing the potential range at fixed strength one reaches 
a point where in equilibrium a few of the chains stretch 

(3.2) beyond z* in order to avoid the repulsive field. Below this 
point, a further decrease of the potential range increases 
the number of chain ends in the outer part of the potential. 
This is the repulsive partial exclusion regime. For a small 
enough z* all the ends are excluded from the region where 
the external potential acts, and the size of the exclusion 
zone is equal to the range of the potential. This is the 
regime of total exclusion. 

above which all the chain ends are confined inside the 
range of the potential; we will refer to this as the regime of 
total confinement. In this regime the brush thickness is 
equal to the interaction range z* and the profile disconti- 
nuity at z* is fixed to its critical value E,. It is convenient 
to summarize the preceding results in a “phase diagram” 
(see Fig. 1) of the two dimensionless parameters of the 
problem, the reduced interaction strength e/PO and the 
reduced interaction range z*/ho. The three regimes de- 
scribed above correspond to the negative-e/PO part of the 
(e/PO, */ho) plane in Fig. 1 (attractive interaction). 
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regions I-III in the phase diagram, following the construc- 
tion line [e/PO (a), z*/ho (a)]. Note that the reference po- 
tential and length scale as Po-d’3 and ho-&3. The con- 
struction path for the brush starts therefore at iniinity in 
the phase-diagram (a=O) and proceeds from there follow- 
ing a square-root curve, as shown by the dashed line in 
Fig. 1. 

The excess free-energy of a brush in the unperturbed 
regime is just - No I E I . A progressive increase of the cov- 
erage leads first to a brush in the total confinement regime, 
with free energy excess 

:i by!!+; ($)1_; (Epg!~,. (3.3) 
0 

On the transition line between the partial and total con- 
finement regimes the free energy is given by Eq. (3.3) with 
the interaction strength is replaced by its critical value Eq. 
(3.2). Further integration over the partial confinement re- 
gime leads to the free energy excess of the partially con- 
fined brush 

5’3 

In order to compute the excess free-energy AF=F 
-F. we must compute the integral Eq. (2.9). In doing so, 
for a given value of E and z*, we may cross the three 

1. The total exclusion regime 

We first consider the case where chain ends are ex- 
cluded from the whole interaction range 0 < z < 3. 

In the outer part of the brush V(Z) =0 for z > z*, and 
p(z) reduces to w#( z); therefore, the free end distribution 
Eq. (2.12) as a function of total potential retains its un- 
perturbed form. This is valid for values of the total poten- 
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tial ranging from 0 at z= h to Q =p( z= z*+). Because all 
the chain ends lie outside the interaction range, we also 
have (by normalization) Q=Pc. Integrating Eq. (2.11) 
for the concentration profile in the inner part of the layer 
leads to 

(3.5) 

The potential is constant [R =p( z < 9)] inside the range 
of the external potential, and has a discontinuity at z*. We 
measure the discontinuity with the parameter q defined as 
q= R - Pa. For small interaction strength (e<Pe) Eq. 
(3.5) reduces to 

-22 
7+&+0(z). 

0 
(3.6) 

For large potential strengths (E< PO), we have q me, a 
result also valid for continuous but large applied-fields ob- 
served earlier in Eq. (2.23). 

The concentration profile in the outer region (z > z*) 
can now be calculated from the equal time constraint Eq. 
(2.6). Taking care to incorporate the discontinuity in the 
monomer density, we obtain 

1’2 
(3.7) 

For a weak external potential (7 <PO) the exterior profile 
is only modified in the region near to the potential well. 
For large external potentials (q > P - PO), the shape of the 
concentration profile outside the external potential is again 
a parabola with its maximum at z*, but with (slightly) 
larger curvature than in the weak-potential limit. The total 
layer height follows 

2 z* 
h=ho+- T 

and varies between h(e=O)=ho and h(e-+m)=ho+z*. 
We now calculate the transition line between the total 

and partially excluded regimes. To locate the partial-total 
transition line, we consider a chain with free end at z*+, just 
outside the exclusion zone. Across the discontinuity its 
tension dz/dn iumns from zero to the constant value 

L 

m. This ch& needs z*/ J2r1/3 steps to cross the ex- 
clusion zone and has thus N - z* 43/2~ monomers dan- 
gling just behind z*. Chains with different end locations 
are in equilibrium with each other (they have equal single- 
chain chemical potentials). The chains dangling behind z’;- 
have a chemical potential p = ,uo + z* &, where ,uo 
= PoN is the chemical potential of the chains in the un- 
perturbed brush. At the transition, the (very few) chains 
which have all their monomers inside the potential have a 
chemical potential r(l =po + NV. Equating the chemical po- 
tentials for both populations leads then to an equation for 
the transition line between the total and partial exclusion 
regimes 

(3.9) 

It can be checked from Eq. (3.9) that as u is increased 
from zero (as is considered for free energy calculation), if 
one is in the total exclusion regime for o=O, one remains 
in the total exclusion regime for larger (T. This follows from 
the fact that hqPo is a-independent, and since 77 increases 
as cr increases [see Eq. (3.5)], if the condition for total 
exclusion (z* < (r/4) ,/m) holds for o=O, it holds 
for all larger o. For o=O, Eq. (3.5) indicates that R=E, 
and thus, we can write this condition as 
z* < N @&given sufficiently long chains, small z?, or 
strong e, one has total exclusion at a=O. Under such cir- 
cumstances, a single grafted chain has lower free energy if 
it is stretched so that some of its end monomers “float” on 
top of the potential well, than if it stays near z=O. In this 
case, the free energy excess can be computed by integration 
of the chemical potential 

AF=z* 
s 

u da’ J6rl. (3.10) 
0 

Setting e/Po=g(q/Po> with g(y) given by Eq. (3.5), we 
have, 

where 

3x312 m  
f(x) =2 s 

fi dg 
g--‘(x) 

dy--- g (Y) dy 
(3.12) 

For large X, f(x) -t 1, whereas for small X, g(y) 
z 4 &/z- so that the integral in Eq. (3.12) is dominated by 
its lower bound and AF z $ ,/mcNez*/ho. 

2. The partial exclusion regime 

The partial exclusion regime-the region in the phase 
diagram of Fig. 1, located above the transition line given by 
Eq. (3.9), corresponds to a situation where only a fraction 
of the brush chains have their ends excluded from the in- 
teraction range. By increasing the range of the potential at 
fixed interaction strength, we increase also the stretching 
energy of the chains. There must thus be a point where it 
is energetically less expensive for the chains to have all 
their monomers inside the repulsive well than to stretch. 
At this critical range value zz, the last few external, ex- 
cluded chains, are in equilibrium with the “parabolic” ones 
extending between z=O and ho. Equating again the chem- 
ical potentials of the two populations leads to the critical 
line separating the partially excluded and unperturbed re- 
gimes 

;=; (l+gi&an Jg+;. (3.13) 

We now give a detailed description of the partial ex- 
clusion regime corresponding, for a given interaction 
strength e, to the region delimited by the two critical range 
values, z*,< z* < zi. In this regime the brush consists of 
three different, distinct regions (a) the external region 
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h>z>z*,orO<p<Q; (b) theexclusionzonez*>z>z* 
-6, or p=R; (c) the parabolic zone z*--S>z>O, 
or R<p<P. 

Here P=p(O), R = p(z* - 6 < z < z?), and 
Q = p( 9+) are the total potential at the grafting surface, 
in the exclusion zone, and just above the exclusion zone, 
respectively. Equation (3.5) still holds for the exclusion 
zone, but now the external zone does not contain all the 
chain ends so that Q (to be determined) is smaller then the 
unperturbed value PO. The parameters to be determined 
are thus P, Q, v= R-Q and S. 

We first equate the chemical potential of the chains 
with ends at z; with the chemical potential from those 
with ends at z=O, 

- 

yarctan Jp-z-,‘d: y. (3.14) 

The chains with ends inside the range of the external po- 
tential move on a constant potential field over all their 
trajectory. The corresponding profile has thus a parabolic 
shape, with the unperturbed brush curvature, and P, the 
value of the total potential at the wall, is given by 

32 
P=Q+q+m (z*-S12. 

Since the potential in the parabolic zone is known, the 
chain-end distribution can also be calculated and then the 
conservation of chain number imposed. This leads to a 
fourth equation for the four unknown parameters, 

2(P3/2-Py2) = \ip-e-11( 34 @ ii) 

-; W ’+Q+rl) 

X Jm arctan 

4 -- p Q3’2 arctan 
J 

p-z-, 

4 
+- R3j2 arctan 

d 
v 

2-r Q(P-Q--rl)’ 
(3.16) 

Equations (3.5) and (3.14)-(3.16) allow for the de- 
termination of 7, P, Q, and 6. An instructive limiting case 
arises for weak values of the interaction strength. In this 
limit the total potential discontinuity ~7 is small compared 
both to the absolute value of the potential p* and to the 
potential difference between the wall and the edge of the 
external field, R-p* -v. The four parameters assume 
then the limiting forms 

6 7?(dPo)2 -= 
ho 48(1-e2/h;)(z*/ho) ’ 

(3.17) 

\ \ \ \ 
\ 
\ \ \ I / I $ 

om,, I”’ ““” ,‘.,, I- 
0.2 0.4 0.6 0.8 1 1.2 

(b) 
FIG. 2. (a) Monomer density qS( z) for a polymer brush immersed in a 
repulsive step potential (the thick bold line) for the case zs/h0=0.5, 
e/Pe=O.75. The dashed line corresponds to the monomer density of the 
unperturbed profile. (b) Free end distribution do/dt for a polymer brush 
immersed in the same repulsive step potential. The dashed line corre- 
sponds to the end distribution of the unperturbed profile. Distances are in 
units of ha, monomer density is normalized to 4(O) = Pdw for the brush 
without surface field, and the end distribution is in units of a/h,, . 

z* 2 

10 

z* 
Q=Po I-- ho +(E/P~) z. , 1 

7? &PO 
’ =16 ( 1 - z*2/h;) * 

The above expansions apply for small values of e/PO, ex- 
cept in two small regions of size (.E/P~)~ close to the bor- 
der lines in the phase diagram of Fig. 1. In the general case 
Eqs. (3.5) and (3.14)-( 3.16) need to be solved numeri- 
cally, for each case (*/ho, e/PO). We present in Fig. 2 the 
concentration and free-ends profiles for a typical situation 
corresponding to the point (0.5,0.75) in the phase dia- 
gram. The external part of the profile has been obtained by 
inverting the equal flight time Eq. (2.6), 

+$=E+$ Earctan dx 

-z Earctan Jz 

z* 2 
+K; arctan QyP. 

J= 
(3.18) 
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The brush size follows from this equation by setting 
h=z(p=O). 

C. Effect of fluctuations and polydispersity 

We have so far neglected the effects of conformational 
fluctuations on the chains (which lead to finite corrections 
for N < M) ) and of polydispersity. As explained below, 
these contributions can both reduce the range of parame- 
ters over which an excluded zone is well defined. 
7.. Fluctuations due to finite N 

Consider a chain starting at the tip of the exclusion 
zone, with some of its monomers dangling just behind z*. 
Some of these monomers can penetrate the exclusion zone 
by fluctuations. A configuration with n monomers pene- 
trating the exclusion zone requires a free energy of order 
Ron. Since chain fluctuations have an energy kBT and will 
have Gaussian conformation, the typical penetration depth 
is of order ,/% z ho Jpo/rl( Rc/ho>2. In order for it to be 
well defined, the exclusion zone should be larger than this 
penetration depth! For small values of the interaction 
strength E (for which the penetration depth is largest) we 
lind a criterion for a well defined exclusion zone, 
dPo%- ( RG/h0)2’3, which can be easily satisfied for even a 
rather small e, since as mentioned in the introduction, PO is 
typically of order 0.01 k,T, while RG/ho is as small as l/5 
in current experiments. 

This criterion can also be written in terms of the ex- 
clusion zone depth [of order a/ho= (hdz*) ( E/P~)~ for 
small e] as S/ho% (hdz*) (R&ho) 4’3, which will likely be 
satisfied if z*/ho is not much less than 1. The distance 
ho( Who) 4’3 has been previously identified as the typical 
distance that chain ends will fluctuate vertically in an un- 
perturbed brush.i4 This criterion can be interpreted by say- 
ing that the exclusion zone will be destroyed by fluctua- 
tions if its width S is smaller than this characteristic 
fluctuation distance. 

In the regime of total exclusion (z* < zz), we must use 
the relation qzc?-/Po to obtain 3% PA12/~, which is rea- 
sonably easily satisfied (we can expect ~~0.1k~T and PO 
zO.OlkBT, which gives a fluctuation length of order one 
monomer length). We may alternately write this condition 
in terms of the potential range c at which the complete- 
partial exclusion transition occurs; z*e > R& For practi- 
cal values of the interaction range and strength, the effect 
of fluctuations only reduce the exclusion zone by a negli- 
gible amount. 

2. Effects of polydispersity 
If there is in the brush some distribution of chemical 

lengths N, the end of a chain with a given length will be 
associated with a given position in the brush; the grafted 
polymer layer segregates the chain ends according to the 
polymer contour length to which they belong.15 As a con- 
sequence, if one considers a polydisperse brush in the ab- 
sence of an external field, it is possible to associate some 
contour length N* to the interaction range z*. When the 
repulsive field is switched on, chains with a mass slightly 
smaller than N* will stretch to escape the potential and an 

exclusion zone is expected. To build up a large exclusion 
zone the shorter chains have to stretch up to z*; polydis- 
persity thus induces an extra energy cost if the exclusion 
zone is to be sustained. In order to estimate the effect of 
introducing polydispersity we consider now some (arbi- 
trary) length distribution of average size N and a lower 
cutoff Nti. A simple estimate of how much larger a po- 
tential discontinuity at the exclusion zone edge (accom- 
plished by, e.g., larger external field strength E) will be 
needed to achieve total exclusion follows from Eq. (3.9), 

(3.19) 

while relations (3.5), (3.6) between 77 and E still hold. The 
polydispersity shifts to larger e/PO the border line between 
the total and the partial exclusion regimes in the phase 
diagram (Fig. 1) by a numerical factor which might be of 
order unity for fairly polydisperse samples. 

IV. COMPETITION BETWEEN ADSORBED AND 
GRAFTED POLYMERS 

An alternative route to colloidal stabilization is pro- 
vided by polymer adsorption, which arises when all mono- 
mers are equally attracted by the surface. The interfacial 
layer formed via adsorption is a diffuse polymer “atmo- 
sphere,” which~ extends over a distance of the order of the 
correlation length in the bulk solution.‘6 In contrast to 
end-grafted polymers, adsorbed chains are not strongly 
stretched, and the behavior of the polymers in the adsorbed 
layer is dominated by fluctuations. Pictorially, the ad- 
sorbed layer can be described as a semidilute polymer so- 
lution with a z-dependent correlation length which must be 
just the distance to the wall, g[+( z)] = z. The exact depen- 
dence of the concentration profile with the distance from 
the wall is therefore fixed by the statistics assumed for the 
semidilute solution. For Gaussian chains (“mean field,” or 
marginal solvent conditions) 5~4~ 1’2, giving 4 z zv2, 
while in a go~od solvent, once concentration fluctuations are 
accounted for, ,$z+-~‘~, giving 4 =: z-4/3. This self-similar 
(i.e., power-law) profde holds out to distances comparable 
to the chain radius for layers adsorbed from a dilute solu- 
tion, and out to a distance comparable to the bulk screen- 
ing length for chains adsorbed from a semidilute solution. 

In this section, we discuss the behavior of such an 
adsorbed layer in the case where a polymer brush is at- 
tached to the surface; there will thus be competition be- 
tween adsorption energy, and brush elastic energy. There 
are two apparent reasons for which this is important. First, 
it may be useful to finely tune properties of a polymer 
brush by adsorbing at the same time another (typically 
shorter) polymer. Second, even without an ungrafted, ad- 
sorbing species present, there may be attractive interac- 
tions between the wall and monomers of the chains in a 
brush, causing some degree of adsorption of the grafted 
chains. We wish to describe such a hybrid system of 
grafted/adsorbed chains. We take some steps in this direc- 
tion, using the Cahn-de Gennes description of a polymer 
solution.” In Sets. IV A and IV B, we study these two 
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problems, assuming “marginal solvent” conditions in order 
to use mean-field theory. In Sec. IV C we briefly outline the 
extension of the results to the case of good solvent. 

A. Adsorption of free chains with a grafted layer 
present 

In order to study the interfacial structure resulting 
from the competition between an adsorbed layer of chains 
A and a grafted layer of chains B, we need to minimize the 
total free energy with respect to the two concentration 
profiles #A and 4B. At a mean-field level, minimization 
with respect to the grafted profile is equivalent to the de- 
termination of the brush structure under the external field 
WA&A, where WAB is the Flory interaction parameter be- 
tween the monomers on the A and B chains. For infinite 
chains, mean-field theory predicts segregation of A and B 
chains if w&) WAWB, where WA and WB are the A and B 
chain Flory excluded volume interactions, respectively. 

The grand-potential functional relevant for the ab- 
sorbed polymer layer is 

fl= 
L 

‘(4.1) 

where t,@A+A and ,u iS the chemical potential associated 
either with (a) the bulk chemical potential y= WA#AB 

= WA#A( co ) when the adsorbed layer is taken to be in 
equilibrium with a bulk solution [in this case an extra pres- 
sure term needs to be added to Eq. (4.1)], or with (b) a 
Lagrange multiplier used to enforce monomer conserva- 
tion when the polymer layer is taken to be irreversibly 
adsorbed. 

Functional minimization of Eq. (4.1) with respect to 
$A leads t0 
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= 11 ds which is of order of the mean-field brush 
“blob” size (T- 1’3 when ~4 WAB P . This decay is not pre- 0 

cisely exponential as the brush concentration profile will 
vary somewhat over the adsorption region. However, the 
results of Sec. II B indicate that 4s will be small in the 
region where the external field WA&A exceeds the scale of 
the brush chemical potential PO= (w~)~‘~, which will be 
true at z=O for D-l% w;;‘~( wg) 1’3. Beyond the range 
of the absorption layer, the brush profile will extend a 
distance of order ho= (we) 1’3N. For long grafted poly- 
mers at low coverages, the brush profile will be approxi- 
mately constant over the region where the second term in 
the right-hand side of Eq. (4.2) dominates. 

Qualitatively the adsorption of a polymer inside the 
brush can be thus viewed as adsorption from a semidilute 
solution with a correlation length of the order of the brush 
blob size. Comparison of the last two terms on the right- 
hand side of Eq. (4.2) indicates that the z--t CO boundary 
condition presuming a vanishing tail of the adsorbed pro- 
file is valid for an equilibrium situation where the adsorp- 
tion is from semidilute solution, as long as the concentra- 
tion of the solution remains smaller than the average 
concentration of polymers B in the brush. Geometrically, 
this is equivalent to recognizing that this boundary condi- 
tion is appropriate when the screening length for bulk poly- 
mer concentration fluctuations is large compared to the 
brush blob size. If the bulk concentration is larger than the 
brush concentration, the adsorption is insensitive to. the 
presence of the grafted layer; the self-similar profile holds 
over a distance of the order of the bulk blob size, which is 
then smaller than the distance between grafting points. 

6. Adsorption of grafted chains 

This equation needs to be solved subject to the two bound- 
ary conditions 

1 d+A 
I 

1 

+A dz =cO= -z’- 

lim$A(z)=o. 
z-m 

The first of these conditions relates the logarithmic slope of 
the potential to the strength of the attraction, represented 
here by an extrapolation length D. For strong attractions, 
D is of order unity. The second condition only holds ex- 
actly for irreversibly adsorbed chains, but it is also a good 
approximation for chains in equilibrium with a not too 
concentrated polymer solution-how small the concentra- 
tion needs to be will become clear shortly. 

The solution to Eq. (4.2) possesses two main regimes. 
First, close to the wall (where the tirst term on the right- 
hand side dominates) we find an unperturbed (mean-field) 
adsorbed layer profile, $A= l/g. Further away from z=O, 
we observe a second regime where there is a roughly 
exponential decay of (p A with a decay length g 

We now use the preceding ideas to describe a brush 
whose monomers are attracted by the surface. In order to 
do so, we first note that the attraction will create a zone 
close to the wall of higher density then the average density 
in the brush. The monomers in this zone will belong to 
chain loops which have at least one of their monomers in 
contact with the-wall; in these regions, monomers feel the 
imluence of the adsorbing wall. By contrast, monomers 
close to the outer edge of the brush do not experience any 
effect of the adsorption. Chains in the adsorbed-grafted 
layer may be divided into two classes. The iirst class, mak- 
ing up (pi of the total coverage a, are “adsorbed” chains, 
with free ends in the zone where attraction from the wall is 
important (a criterion to be developed below). The second 
class, “nonadsorbed chains” of graft density u2, is made up 
of the remaining chains that have free ends outside this 
zone. The chains in this latter class may be regarded as 
making up a brush immersed in an “external potential” 
near the grafting surface that is due to interactions with the 
dense portion adsorption layer near z=O. Naturally, o1 
+ 0, = o, the total brush graft density. 

The monomer coverage r due to the “adsorbed” 
chains is determined by the attraction strength D, and in 
mean-field theory is l? = (pi N=: l/D. For strong adsorption 
one has I?= 1. There is thus a relative fraction al/a~ I?/ 
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No of chains in the adsorbed zone, the brush thickness 
being now given by h =: he( 1 -P/No) 1’3 +,-l/3 or for 
small I?, h z ho- I’/&3; the attraction reduces the overall 
brush thickness. 

perturbed by monomer-surface interactions or by a thin 
wetting layer of some sort that forms at the grafting sur- 
face. 

One may wonder about the accuracy of our partition of 
the grafted-adsorbed layer into two different classes. To 
observe the validity of this idea, consider (as before) the 
total layer to be a grafted layer immersed in an adsorbed 
layer, but now allow each chain to contribute an arbitrary 
number ( < N) of its monomers to the brush layer, and the 
remainder of its monomers to the adsorbed region. This 
picture allows for polydispersity of the chain lengths in the 
brush portion of the system. In the strong adsorption limit 
the total surface coverage in the adsorbed layer is imposed 
by the adsorption strength, I?= l/D= 1; the remaining ma- 
terial is stored in the brush. In this limit the energy of the 
adsorbed layer is also fairly independent of the polydisper- 
sity (neither the chain length nor the chain tension should 
be important since the adsorption energy scale dominates). 
The polydispersity can be determined by the minimization 
of the free energy Fbr of a polydisperse brushI with a fixed 
surface coverage No-l?, 

Chakrabarti, Nelson, and Toral18 have recently carried 
out computer simulations of self- and mutually-avoiding 
lattice polymers in external potential fields; they chose to 
study the repulsive and attractive step potentials discussed 
in Sec. III. In the attractive case, they found that the scal- 
ing formula Eq. (2.16) quantitatively describes the layer 
height. Since the self-avoidance parameter w was previ- 
ously measured for this type of simulation, there are no 
adjustable parameters. 

N 
Fbr= A 

s 
dn[u+(n)]5’3, (4.4) 

0 

where u+ (n) is the density of chains of contour lengths 
larger than n and A is a numerical constant. For simplicity, 
the upper bound of the distribution is set to the total chain 
length N. Minimization of the free-energy with total cov- 
erage constrained [Jtdnu+( n) =u-l-‘/N] yields u+(n) 
=constant. This shows that the only allowed values for the 
mass distribution are either 0 or N. The chains are there- 
fore either “fully stretched” or “fully adsorbed,” justifying 
the assumption of a two-class layer. 

The same authors studied a brush in a wide (half the 
brush height) repulsive square potential barrier, with a 
strength well into the total exclusion regime. They observe 
complete exclusion of polymer free ends from the potential 
region, with only a small depression in the monomer den- 
sity inside the well, all in good quantitative agreement with 
the theory. This result is the first unequivocal observation 
of a free-end-exclusion zone in a simulation of a polymer 
brush. It is very encouraging that the mean-field theory 
describes these rather subtle aspects of the full many-body 
statistical mechanics. It would be interesting to simulate 
weaker repulsive wells in order to study chain fluctuations 
into the exclusion zone. 

C. Good solvent conditions 

The preceding description for the competition between 
adsorbed and grafted chains can be simply extended to 
good-solvent, by replacing the mean-field blob size u- 1’3 
with the corresponding good-solvent value of u-l/2, and 
the mean-field brush chemical potential W&B by the good- 
solvent chemical potential $T4. The geometrical picture 
explained above still holds. The structure of the adsorbed 
layer inside the brush is given, close to the wall, by the 
unperturbed concentration profile in good-solvent $A 
~z-“~; for distances larger than u-“~ the profile then 
decays to a very small value, with the characteristic decay 
length u- . *‘2 The only difference, which is a small one for 
strong adsorptions, is that the total coverage now depends 
on the extrapolation length as I= D’“. 

We conclude from the above that many-body effects 
(correlations due to good solvent) do not change the basic 
conclusions of our analysis of brush response to an external 
field. Now we wish to estimate the effects of potentials due 
to various sorts of inter-facial phenomena at the grafting 
surface, on a brush. Milner6 has discussed typical brush 
experiments of Taunton et al. I9 on PS chains in toluene 
(good solvent) anchored to a mica surface. The chains had 
a molecular weight of 1.4 x lo’, corresponding to 
N~lOOO. The graft density was u= 1.3X 10V48Lm2, and 
the observed layer thickness- was ho = 600 A. Assuming a 
monomer size of 5 A, we have a dimensionless grafting 
density of u=0.0033, and we estimate a dimensionless 
excluded volume of w =: 1.3. We thus expect a volume 
fraction near the grafting surface of 40= (272/32) 1’3 
W  -1’3o2/3 ~0.04, consistent with the experimental results. 
The free energy per monomer was of order 0.01 kBT. 

V. DISCUSSION 

We have developed a mean-field description of poly- 
mer brushes subjected to external potentials. In this section 
we discuss recent simulation results relevant to our con- 
clusions, and estimate the typical parameters for brushes 

We now can estimate the characteristic surface energy 
A, needed to appreciably perturb the brush using Eq. 
(2.16); we find that there will be a brush height change of 
order Ah z ho&/( 3 wuN). If As~0.5 (correspondmg to a 
surface energy difference between pure monomer and pure 
solvent of 8 dyn/cm) we have Ah==2 nm. This kind of 
shift might be expected in the case that there are chemical 
differences between solvent and monomer favoring adsorp- 
tion of monomer at the grafting surface. One expects in 
this case to observe a strong enhancement of the monomer 
density profile near the grafting surface, since such surface 
interactions correspond to contact energies per monomer 
greatly in excess of 0.01 kBT. For this example, we expect 
a fraction As/( wuN) -0.12 of the ends to be found near 
the surface. Since in the absence of such interactions, the 
end distribution is strongly quenched near the grafting sur- 
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face, a peak in du/dz near z=O would suggest attraction 
of the monomers to the surface. 

For a repulsive surface energy originating from short- 
range interactions, the layer height will not be appreciably 
altered, but strong depletion of the monomer density pro- 
file near the grafting surface would be expected whenever 
monomer-surface contact energies exceed 0.01 k,T. 

In the event that a wetting layer of a minority solvent 
is adsorbed at the grafting surface these effects can be am- 
plified due to the potential long-range nature of the effec- 
tive surface field. We suppose a 10 nm thick wetting layer 
(20 monomer lengths) that is adsorbed onto the grafting 
surface, with a weak chemical potential difference of 
0.1 kBT between monomers immersed in the two solvents. 
Clearly the monomer potential (and the monomer density) 
will be strongly modified by the wetting layer potential. In 
the attractive case, we now estimate a dimensionless pa- 
rameter A s~2. As a result (using the parameters from 
above), A,/( wuN)~O.5 of the ends are confined inside 
the wetting layer; the layer height will be reduced by 
s20%. 

In the repulsive case we have z*/h,+ 16 and 
m  z 3; we thus expect to be far into the total exclusion 

regime. One might keep in mind that the repulsive energy 
per chain might exceed the tethering energy-or even the 
backbone bond energy-in our prototype example, we 
imagine of order 100 monomers to be immersed in our 
0.1 kBT potential, leading to a lOk,T of repulsive energy, 
while energies of chemical bonds are of order 5Ok,T. 

The exclusion zones that arise in response to such ex- 
ternal fields will be robust compared to those that arise in 
the theory of brushes on curved surfacesI because the dis- 
continuity in the potential at the zone boundary is an ex- 
ternally controlled, typically large energy scale. Without 
careful tuning, we have argued (e.g., wetting layer dis- 
cussed above) that external potentials will be of order 
0.1 kBT> Po~O.O1 k,T; fluctuation of chain segments into 

this potential will thus be strongly suppressed. By compar- 
ison, in the curved surface problem, the potentials that 
maintain the exclusion zone are only of order PO (they 
arise from monomer-monomer interactions); fluctuations 
are only supressed for N+ CO. 
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