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ABSTRACT We study theoretically the formation of dilute phases of spherical (micelles), cylindrical 
(vermicelles), and planar (lamellae) aggregates of copolymer chains in a selective solvent. In the case of 
diblock copolymer chains, micelles are formed for all values of the block asymmetry in the regime where dilute 
phaaes are predicted to occur (NA << Neal2, with NA and NB the polymerization indices of the A-collapsed 
and B-swollen blocks). For B-A-B triblock Copolymers we find that spherical or Cylindrical hollow structures 
might exist in the solvent in a metastable state with a long associated lifetime. 

I. Introduction 

Diblock copolymer chains in a selective solvent are the 
macromolecular analogs of low molecular weight surfac- 
tants. The nonsoluble A-block of the copolymer chain 
adopts a collapsed configuration, while the B-block is well 
swollen by the solvent. By assembling with other chains 
in a variety of geometries (spherical, cylindrical, planar, 
etc.), the collapsed blocks minimize contact with the 
solvent and thus reduce the enthalpy of the system. 
However, for entropic reasons, aggregation only occurs at 
finite-chain concentration: at very low concentrations only 
isolated chains are present in the solution.' The exact 
geometry of the aggregates depends primarily on the 
relative sizes of each of their blocks. It is, for instance, 
well established that chains with a small collapsed block 
adopt a spherical CoIlfiguration, forming spherical micelles 
with a dense molten core and a hairy corona,2 but little is 
known for diblock copolymers with arbitrary asymmetry, 
Le., chemical composition. In t&e next section we inves- 
tigate the possibility of the formation of dilute phases of 
spherical (micelles), cylindrical (vermicelles), or planar 
(lamellae) aggregates of diblock copolymer chains. In 
section I11 we study the aggregation of triblock copolymers 
in a selective solvent. The triblock copolymers considered 
here have a nonsoluble middle A-block and two soluble 
B-blocks at  both extremities of the chains. The main 
motivation for studying these types of polymers is that 
they are good candidates for the formation of hollow 
structures where the collapsed blocks form a molten 
spherical or cylindrical skin protected on both sides by 
two coronas of well-swollen polymers. In the last section 
we discuss the experimental relevance of our predictions. 

11. Polymer Structures in Solution 
In this section we compare the relative stability of three 

possible structures: spherical (micelles), cylindrical (ver- 
micelles), and planar (lamellae). Let c1 be the number 
density of free chains in solution, while c,@), c,@), and 
c1@) stand for the number density of spherical, cylindrical, 
and planar aggregates of p chains. Since we expect the 
aggregation process to occur at low concentrations, the 
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free-energy density of the solution can be written as 
m 

OD ID 

where Fi@) (i = 8, c, 1) are the free energies of several 
aggregates and FI is the free energy of the single chains. 
All free energies are measured in units where KBT = 1. 
The corresponding concentrations can be found by min- 
imizing the free-energy density under the constraint of 
conservation of the total number of chains 4 

leading to 

c1 = exp1-F' - 1 + pJ; 

pp), i = 8, C, 1 (11.3) 
where p is a Lagrange multiplier (or chemical potential) 
that ensures conservation of the total number of chains. 
The conservation constraint (eq 11.2) can be rewritten as 

1 + Cp[expt-n,@)) + expt-a,@>) + exp{-nl@))1 = 

ci@) = exp{-Fi@) - 1 + 

P'2 
exp{F, + 1 + In 4 - p )  (11.4) 

where Qi@) (i = 8, c, 1) are the grand potentials defined 
by Qi@) = Fi@) - F1- p@ - 1). Equation 11.2 shows that, 
for very low concentrations where the grand potentials Szi 
are strongly positive everywhere, the chemical potential 
p can be expressed as 

p = In 4 + F ,  + 1 (11.5) 
The chemical potential is thus an increasing function of 
the concentration, taking negative values for very low 
concentrations. Equation 11.5 ceases to be valid whenever 
one of the grand potentials i?j starts to contribute strongly 
to the conservation equation (eq 11.4). At this point 
aggregates of the type j will be formed in the solution, 
determining the value of the chemical potential. However, 
the criteria which determines how etrongly the grand 
potentials contribute to the conservation equation depend 
on the exact form of these potentials. It is thus instructive 

1993 American Chemical Society 



7190 Izzo and Marques Macromolecules, Vol. 26, No. 26, 1993 

point, the conservation equation fixes the chemical PO- 
tential to the value p = Fmin - $-'I2 exp(-(Fend + 11/21. As 
the concentration increases, the chemical potential ap- 
proaches the upper bound F- fixed by the geometry of 
the aggregates. The micellization (we should say, the 
vermicellization) for cylinders is thus qualitatively dif- 
ferent from the micellization for spheres. In the case of 
micelles, aggregates with a well-defined aggregation num- 
ber will be formed at the cmc. In the case of cylinders, 
the aggregates slowly grow from the solution with a broad 
distribution of aggregation numbers. 

The formation of planar structures is rather different 
from the two precedent cases. A simple picture for the 
appearance of lamellae of aggregation number p would be 
provided by considering the formation of disks of finite 
size. The corresponding grand potential would have the 
asymptotic form 611 = (Fmin - p ) p  + F*$ll2. Similar to 
the cylindrical case, the main contribution to the free 
energy is linear in p .  However, because of the two- 
dimensional geometry, the contribution to the energy from 
the chains on the edge of the disks is p dependent. This 
implies that no finite amount of disks can be present in 
the solution for p I F-. For p > F- the number of 
aggregates with large p values diverges, suggesting a phase 
separation between a dilute solution of isolated chains 
and a dense lamellar phase. The usual conditions for 
thermodynamic equilibrium read 

/ 

Figure 1. Grand potential Q as a function of aggregation number 
p :  (a) micelles; (b) vermicelles; (c) lamellae. 

first to consider independently the formation of each 
structure. We sketch in Figure 1 the typical shapes of the 
grand potentials for different values of p. 

In the case of micelles the grand potential QB(p) has a 
minimum at an aggregation number p larger than unity. 
At  some value of the chemical potential pcmc (and therefore 
of the concentration) the minimum of Q, at p = pcmc tends 
asymptotically to zero, largely contributing to the sum on 
the left-hand side of eq 11.4. At this point (usually known 
as the critical micellar concentration, cmc) a finite (large) 
number of micelles of size close to Pcmc is to be observed 
in the solution, and any increase in concentration will not 
affect the value of the chemical potential which is bound 
by pmc. The polydispersity of aggregation numbers around 
Pcmc, which turns out to be extremely small for all the 
spherical cases considered below, is related to the curvature 
of the potential at the minimum and can be calculated 
from3 ~p = (a2Q/ap2)-1/2. 

For the cylindrical structures there is no minimum in 
the grand potential. For large aggregation numbers, the 
potential is a linear function of p, Q, = (F- - p)p + Fend; 
Fmin  is the free energy of a chain inside the cylinder, and 
Fend accounta for the difference in free energy for the chaina 
at the end caps of the cylinders. The corresponding size 
distribution is exponential with associated average size p 
= (Fmin - p1-l. AS the slope F m h  - p vanishes, the average 
aggregation number of the cylinders diverges. At this 

where PA, PB, FA, FB, 4 ~ ,  and 4~ are respectively the 
chemical potentials, free energies, and chain volume 
fractions in the dilute (A) and lamellar (B) phases. 
Equation 11.6 determines the chain volume fractions of 
the two phases. The relative amount of volume occupied 
by the lamellar phase X is then simply given by X = (4 

The aggregation process can thus be studied as follows. 
For a given structure we write the grand canonical function 
and determine the upper bound for the chemical potential, 
pa (a = cmc, cvc, and cfc). The stable structure to be 
formed at chain concentration 4, is roughly given by 

In 4, = p,-F, - 1 (11.7) 
where a is the structure corresponding to the smallest 
critical chemical potential. We proceed by studying the 
micellization of diblock copolymer chains and then the 
micellization of triblock copolymers. 

- $A)/('$B - 4A)- 

111. Self-Assembly of Diblock Copolymers in a 
Selective Solvent 

We consider a solution of diblock copolymer chains of 
type A-B. The nonsoluble A-block has degree of polym- 
erization N A  and adopta a collapsed configuration, occu- 
pying a volume V = NAU~, where a is the monomer size. 
Hereafter, we choose length units where a = 1. Blocks B 
are well swollen by the solvent and have degree of 
polymerizetionNB. For all thegeometries considered there 
are three main contributionsto the free energy: the elastic 
deformation of the A chains in the molten part, the corona 
osmotic energy, and the interfacial Gnsion betwen the A 
part and the solvent. We anticipate that, depending on 
the relative values of the polymerization indexes NA and 
NB, it is possible to define three different regimes: 

I. The starregime (NA << NB'~/"). In this regime495the 
size of the external corona of micelles and verimicelles is 
much larger than the core size, and the osmotic contri- 
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bution from the corona largely dominates the elastic 
contribution from the chains in the core. 

11. The intermediate regime ( N B ~ ~ / ~ ~  << NA << NB'*/"). 
Here the size of the external corona of micelles and 
vermicelles is much smaller than the core size, but the 
osmotic contribution from the corona is still much larger 
than the elastic contribution from the chains in the core. 

111. The ball regime (NB'~/" << NA). This corresponds 
to the regime where the size of the external corona of 
micelles and verimicelles is much smaller than the core 
size, and the elastic contribution from the chains in the 
core is much larger than the corona osmotic contribution. 

One may wonder at this point what is the maximum 
asymmetry of the diblock copolymers which still allows 
for solvency of the whole chain. If one considers single 
isolated chains, an upper bound asymmetry is simply given 
by comparing the reference chemical potentials of the well- 
solvated part (which is proportional to NB) and of the 
collapsed block which gives a contribution proportional 
to N A ~ / ~ .  This leads to an upper bound for the existence 
of dilute phases at NA = N B ~ / ~  = N B ~ ~ . ~ / ~ ~ ,  located at the 
center of the intermediate regime. However, the ball 
regime still needs to be considered because aggregates have 
a higher solvency than single chains. For instance, for 
micelles in the ball regime, the typical aggregation number 
is on the order of NA, shifting the upper solvency bound 
to much larger asymmetries (NA << NB~O/"). A complete 
discussion of the solvency effects needs to be postponed 
until the relative stability of the three phases has been 
established. We will return to this point in the final 
discussion of section 111. Next we describe the different 
structures in each of the three regimes. 

111.1. Spherical Structures. The spherical micelles 
have a dense spherical core of radius RA = (3/(4a)pN~)'/~ 
and a corona of size RB. In the star regime, a geometry 
first described by Daoud and Cotton: the corona is much 
larger than the core radius, and one has RB - N B ~ / ~ ~ ~ / ~ .  
The free-energy contribution from the corona can be 
written as Fcorona = Ap3l2, where A is a constant of order 
unity. The grand potential OB@) reads 

Q, = A@312 - 1) + 4~y[R2(4p) - R2(1)] - p@ - 1) 
(111.1) 

In the following we use the core radius RA as the runn_ing 
variable and adopt renormalizej quantities: p = 

these unities the different quantities to be calculated at 
the cmc reduce to an ensemble of numerical values (up to 
NA dependent corrections of order N A ~ / ~ ,  that we shall 
systematically neglect). These numerical valuts can be 
readily calculated from eq I1.7), by imposing dO/dr = fi 
= 0. This leads to 

f l ~ - ~ / ~ y ~ / ~ ,  r = R A N A ~ / ~ ~ - ~ / ~ ,  and 0, = naA4/5y-g/5. In 
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RANB6/11NA-1r4/11, and fi, = ~&12/11N~-2y-23/11. At the 
cmc these variables assume the following numerical values 

(111.2) 

In the intermediate regime the radius of the corona is 
much smaller than the core radius. The corona has thus 
the structure of a brush, and the dominant contribution 
to the free energy is of the form Fcorona = ~ ? ~ R A ~ B N B U ~ ~ / ~ ,  
where B is a constant of order unity and u is the density 
of chain ends u = p/(4dh2). The grand potential can be 
written as (up to ~(NA-') corrections): 

(111.3) 

where the reduced variables are = pNB4l11y4ll1, r = 

Lac = (11/5)(5B/6)6'1' 
r,, = 3(5B/6)-s/'1 (111.4) 

In the ball regime the elastic energy of the polymers in 
the core of the micelle is much larger than the contribution 
from the corona Because the chains in the core are grafted 
to a convex surface, it is possible to compute exactly the 
free energy. Following ref 6, we write 

4a 3 O, - -r + 4ar2 - p y r  
3 - - *  5 

60 (111.5) 

(111.6) 

111.2. Cylindrical Structures. In order to compute 
the critical vermicellar concentration, we consider infiiite 
cylindrical aggregates; that is, we neglect end-cap effects 
which are only important to determine the average mass 
distribution. The chains are packed along the cylinder 
withdensity D1 = I~RA~/NA. In thestar regime the radius 
of the corona scales as RB - Ne3l4D'I4, and the free energy 
per chain is F,,,, = CNB~/'F/' ,  with C and D being 
constante of order unity. The grand potential reads 

(111.7) 

The _renormalized variables are r = 
and p = f l ~ ~ / ' ~ N ~ - ' / ~ y " / ~ .  The renormahation of fi/p 
is identical to that of i. At the cvc we have 

p,, = (18/5)(5Ca5/3/8)4'9 
(111.8) 

In the intermediate regime the corona radius is much 
smaller than the core radius but still dominates the 
contribution to the free energy, which is of the form FB 
= BNBU"/~, whereB is the same numerical constant which 
appears in the first term on the right-hand side of eq 111.3 
and the end density is now given by u = (a?r&D)-'. The 
grand potential can be written as 

I- r,, = (5Ca5/8/8)4/9 

(111.9) 

and the various quantities are renormalized as in the 
intermediate case of the spherical structures. Evaluating 
the values of the coefficients at the cvc, one obtains 

i,, = (11/5)(5B/6)6/11 
r,, = 2(5B/6)4/11 

(111.10) 

For the ball regime, where the elastic energy of the core 
dominates, one has6 

a 3  
a - u 2  2 - 
p 48 r - - r  + - - p  (III.11) 

with renormalized parameters as in the ball regime of 
micelles. At  the cvc we have 

(111.12) 

111.3. Planar Structures. For the lamellae we also 
consider infiiite isolated sheets of associated diblocke, as 
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potentials: the elastic energies of the core and the 
curvature corrections of the brush in the corona (note that 
since the areal density of B chains on the surface of the 
A cores is the same for the three structures, the entropy 
associated with the A-B junction points is not a relevant 
correction to the free energy). Because these contributions 
are small, the shift in the critical chemical potentials can 
be calculated perturbatively. This shift is given by the 
contribution of the additional free energy per chain, 
evaluated with the parameters calculated above from the 
main (noncorrected) contributions to the grand potentials. 
The elastic energy corrections can be computed from the 
expressions of the ball regime. The chemical potential 
shift Ap associated to the elastic corrections is 

p,,, = 91r2/80(5A/6)-12'11NANB12'11 
ApWc = 20/27Aclcmc (111.17) e AcL,~, = 10/27Ap,, 

The spontaneous curvature corrections are given by the 
f i s t  term in the expansion of the brush free energy in 
powers of the radius of curvature. These corrections lead 
to the following shifts in the chemical potential 

Figure 2. Isolated (infinite) sheet in the lamellar structure. 

sketched in Figure 2. It can be consistently checked a 
posteriori that such isolated sheets are responsible for the 
leading contributions to the energy of the local planar 
structure of the dense lamellar phase. The main neglected 
term is the van der Waals interaction7 which ensures the 
adhesion of adjacent bilayers; effectively, this interaction 
does not affect the equilibrium structure features, amount- 
ing only to a small reduction of the interfacial tension 
coefficient y. Note also that steric interactions* of 
fluctuating nature (Helfrich interactions) can be neglected 
in polymeric planar structures, because of the high bending 
moduli of the layers. Because the curvature radius is 
infinite, there are only two regimes for the lamellae: the 
intermediate and the ball regimes. The first one is 
described by a grand potential of the form 

(111.13) 

with renormalized parameters as in the intermediate cases 
of the spherical and cyclindricalgeometries. At  the critical 
lamellar concentration we have 

pclc = (1 1/5)(5B/6)6'1' 
(111.14) { -  rclc = (5B/6)4''' 

The ball regime (where the elastic energy from the molten 
layer is dominant) is described by 

(111.15) 

with a renormalization identical to the ball regimes of the 
precedent geometries. At  the clc one has 

(111.16) 

111.4. Discussion. We can discuss the formation of 
the different structures by comparing the respective 
chemical potentials of each of the regimes considered. In 
the star regime (NA << NB'~/~'), where the dimension of 
the collapsed blocks is much shorter than the dimension 
of the swollen blocks, it is clear that the preferred structures 
are the spherical micelles (compare eqs 111.2, 111.8, and 
111.14). On the other hand, in the ball regime (NA >> 
NB'"''), where the diblock copolymers have a collapsed 
block much larger than the swollen block, the lamellar 
dense phase always has a chemical potential lower than 
the two other phases (eqs 111.6, 111.12, and 111.16). 

In the intermediate regime (Ng15/11 << NA << Nd8I1'), 
the critical chemical potentials of the three phases have 
the same value (eqs 111.4,111.10, and 111.14). In order to 
decide which phase is preferred in this regime, one needs 
to take into account the leading corrections7 to the grand 

bpmc = - 2 C 1 N 2 P / R A  -2Cl/3(5B/6)-""N~1'1'N A -' 
IApmc = -ClNB2~1'6/RA = 3/4ApC,, 

(111.18) 

where u is the density of junction points and C1 is a 
numerical constant of order unity. Note that, by sym- 
metry, there is no spontaneous curvature correction to 
the lamellar structure where the chains are packed in 
bilayers. The minus signs in the corrections to the chemical 
potential show that, for the same junction point densities, 
the chains in the curved corona are less stretched than 
those in the corresponding planar structure. 

Equations 111.17 and 111.18 show that for asymmetries 
where the curvature corrections are dominant (NB"/'' << 
N A  << N B ~ ~ . ~ / ~ ~ ) ,  the spherical structures are preferred. On 
the other hand, for asymmetries where the elastic con- 
tribution is the leading corrective term ( N B ~ ~ . ~ / ~ ~  << N A  << 
NB'~/'') ,  the lamellar structure is preferred. 

Our approach leads to the conclusion that there is no 
value of asymmetry for which vermicelles are the ther- 
modynamically stable aggregates. When the chemical 
composition (asymmetry) is in the range NA << N B ~ / ~ ,  only 
micelles are predicted to form. Above this threshold, the 
lamellar phase has the lowest critical chemical potential 
of the three phases, ruling out the possibility of dilute 
phases of micelles or vermicelles with a large collapsed 
core. It is interesting to note that the critical value of the 
asymmetry which has been obtained here (by comparing 
the relative magnitudes of the elastic and spontaneous 
curvature corrections in the intermediate regime) coincides 
with the simple arguments invoked before when one 
studied the solubility of single chains in solution. Thie 
leads to a simple picture of micelle formation: for 
asymmetries such that solvency of single chains is verified 
(NA << sphericalmicelles are formed in the solution, 
while for larger asymmetries, a dense phase is formed. We 
have only studied the formation of a lamellar dense phase. 
However, other mesophases should be considered, for 
instance, the formation of hexagonal or cubic mesophases 
with a liquid core of well swollen small B chains and a 
majority molten phase of the A blocks. We wil l  address 
this issue in a forthcoming paper. 
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Figure 3. Geometry of the compact core structure in the case 
of triblock copolymers. We show the case of a micelle with generic 
asymmetry. 

IV. Self-Assembly of Triblock Copolymers in a 
Selective Solvent 

We consider in this section the formation of micelles, 
vermicelles, and lamellae from dilute solutions of triblock 
copolymers of the type B-A-B. The nonsoluble A-block 
has degree of polymerization N A  and adopta a collapsed 
configuration. Blocks B are well swollen by the solvent 
and have degrees of polymerization N B ~  and NBZ. In 
addition to the three structures studied in the case of 
diblock copolymers, in the triblock copolymer case there 
is a new interesting possibility to be considered: the 
formation of hollow structures where the collapsed blocks 
form a molten spherical or cylindrical skin carpeted on 
both sides by a brush of the B blocks. Note that there are 
at least two important differences between the case of 
asymmetric triblocks and mixtures of diblock copolymers 
with Nd2's but with different NB's. The first is that the 
relative composition of lhge and small chains is fixed at 
half. The other differences is the impossibility for the 
triblocks to laterally phase separate between smaller and 
larger chains. We expect thus the behavior of asymmetric 
triblocks to be somewhat simpler than the behavior of 
diblock mixtures. In the following we start  by studying 
structures with a compact core formed by the triblocks 
and then analyze the hollow structures. 
IV.1. Aggmgata witha Compact Core. We sketched 

in Figure 3 the geometry of the compact core structures 
for triblock copolymers. The geometry of the core is quite 
similar to that of the diblock chains, except that in the 
present situation the two ends of the A blocks are bound 
to lie at the interface between the collapsed chains and 
the solvent. The core can thus be regarded as composed 
of twice as many chains, each of them having degree of 
polymerization N d 2 .  In the ball regime, where the 
contribution from the external corona is not important, 
this similarity results in a very simple rule to derive the 
critical chemical potentials for triblock copolymers from 
the resulta obtained in the diblock case: 

2/3 di. p? = 2&N~/2)  = 2 ha,  CY = CmC, CVC, ClC (Iv.1) 
In the intermediate regime, where both NBI and NBZ 

obey the inequality Nsi15/11 << N A  << N ~ i ' ~ / l '  (i = 1,2), the 
corona can be viewed as a bidisperse brush.g We take 
without loss of generality N B ~  < NBZ. The free-energy 
density for the polydisperse brush can be written as F = 
B [ N B I ( ~ u ) ~ ' / ' ~  -t ( N B z - N B ~ ) u ~ ~ / ~ ] ,  and theresultinggrand 
potential for the spherical structures is 

where we defined p = N B ~ N B Z  I 1. By comparing eqs 111.3 
and IV.2, it can been seen that all the results from the 

82 
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molten skin - 

Figure 4. Geometry of a hollow structure in the case of triblock 
copolymers. We show the case of a micelle with generic 
asymmetry. 

diblock copolymers are readily transposable to the triblock 
case by replacing the constant B by an effective constant 
B[1 + p ( 2 1 / 6  - 111. It can be easily checked that this 
replacement also holds for the other structures, leading to 
the critical chemical potentials 

Aa in the diblock copolymer case, the main contributions 
to the free energy result in identical critical chemical 
potentials; the degeneracy can only be resolved if corrective 
contributions from the elasticity of the chains in the core 
or the spontaneous curvature are taken into account. The 
contributions from the elasticity of the chains in the core 
can be calculated as in the diblock case. On general 
grounds we expect that the spontaneous curvature con- 
tributions to the free energy of the cylindrical phase is 
twice as large as that of the spherical phase. Thus, as far 
as compact core structures of B-A-B triblock copolymers 
are concerned, the phase formation of aggregates is similar 
to the phase formation for A-B diblock copolymers: the 
various parameters and phase boundaries are only shifted 
by numerical constants determined by the asymmetry of 
the two soluble blocks. 
IV.2. Hollow Structures. B-A-B copolymers may 

also assemble as spherical and cylindrical structures where 
the collapeed A-blocks form a thin skin of molten polymers, 
protected by a double layer of swollen chains (see Figure 
4). We can build these structures by a through experiment 
where we start from a planar symmetric layer and gradually 
reduce the number of monomers of the swollen blocks on 
one of its sides. Clearly the layer will bend to reduce the 
stretching energy of the larger chains, resulting in an 
optimal radius of curvature for the hollow structure. 

In order to produce two asymmetric coronas, the A chains 
need to have each of their A-B connection points at 
opposite surfaces. In the ball regime this results in a high- 
energy penalty associated with the formation of curved 
structures (we recall that in this regime the elastic 
contribution from the A chains is dominant). In the 
opposite asymmetry limit, i.e., the star regime, the energy 
penalty to form near planar structures is very high so that 
double hair micelles are to be formed. The only regime 
where hollow structures might be found is the intermediate 
regime where the polymerization indices of both blocks B 
obey the inequality Ngi15/11 << NA << NBil'/" (i = 1, 2) .  
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(for instance, by peeling out pieces of membranes which 
always exist close to the surface-a preparation method 
well-known for the formation of lipid vesicles), it can 
survive for a very long time in the metastable state, due 
to the very high potential barriers which separate the 
hollow from the compact structures.1o Indeed, the mech- 
anism of extracting a chain from a hollow structure involves 
an intermediate state where one of the B-blocks (say, the 
smallest) needs to cross the molten region of blocks B, 
leading to an energy barrier proportional to N B ~ .  

V. Conclusions 
In this work we have studied the micelliiation of diblock 

and triblock copolymer chains in a selective solvent. We 
investigated the possible formation of dilute spherical or 
cylindrical phases and the appearance of dense lamellar 
phases. We find that, in the diblock copolymer w e ,  only 
dilute spherical structures wil l  be formed for NA << N$I2; 
above this limit, the dense lamellar structure is predicted 
to have the lowest chemical potential. Nevertheless, this 
does not rule out the existence of other dense geometries, 
a possibility that we hope to address in a forthcoming 
paper. 

The micellization of triblock copolymer chains follows 
a similar scenario. However, an interesting new possibility 
may arise: due to the very long lifetime associated with 
polymeric micelles, metastable hollow structures may also 
be observed in the solution. This will, of course, depend 
crucially on the preparation method. 

It is also worth noting that, for diblock copolymers in 
a selective solvent of high molecular weight (say, for 
instance, A-B diblock copolymers in a melt of large B 
homopolymers), there is a range of chemical composition 
for which the Cylindrical phase is stable.lO This raises 
another interesting issue related to the existence of a 
critical molecular weight of the solvent for which the 
cylinders cease to be thermodynamically stable. 
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Figure 5. Critical chemical potential of spherical and cylindrical 
aggregates as a function of the asymmetry: (a) compact core 
structures; (b) hollow structures. 

Let RA be as above the external radius of the micelle 
and Ri ita internal radius. These two radii are related to 
the aggregation numberp by the incompressibility relation 
~ N A  = ~ / ~ T ( R A ~  - R?). The grand potential for the 
spherical hollow structures 

i 5 r 3 ( l  - a3) (IV.4) 

where we have set a = RJRA and all quantities have been 
renormalized as in the corresponding diblock case. As 
before we minimize the grand potential with respect to 
the internal variables (rand a in this case) and obtain the 
critical chemical potential by setting the potential equal 
to zero. This leads to 

6/11 LLZC = r: . , ( l+ p 1 
RF' = R f / (  1 - p9/11) (IV.5) 

A similar calculation for the cylindrical hollow structures 
gives 

{ Ly = p3'11 

tri di 
PcVC = LLcVc (1 + P 6 / 9  
RF R f / ( l -  p12'") (IV.6) 

with the same renormalization factors. Equations IV.5 
and IV.6 present similar features: identical chemical 
potentials and equilibrium external radii which tend (not 
surprisingly!) to infinity when p - 1: lamellae are the 
equilibrium structures when both B-blocks have the same 
size. In Figure 5 we compare the stability of hollow and 
compact structures by sketching the corresponding critical 
chemical potentials as functions of the asymmetry (eqs 
IV.3, IV.5, and 111.14). The figure shows that, at ther- 
modynamic equilibrium, hollow structures are always 
unstable against compact core ones: they can only exist 
as metastable states. It is, however, important to stress 
that, if any hollow structure is formed out of equilibrium 

= p6'1' 


