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We study theoretically the process of “end-evaporation” in living polymer systems, such as 
wormlike surfactant micelles. End-evaporation occurs when single monomers either break away 
from, or join onto, a chain end, the rates being described by the (mean-field) rate constants k 
and k’, respectively. Thus the chains can exchange material with one-another via a bath of free 
monomers. The relaxation of a system of living polymers after a small temperature jump 
(T-jump) is studied theoretically. The effect of a T-jump is to prepare the system with the wrong 
mean chain length, which relaxes to its equilibrium value z by end-evaporation. It is found that 
the number of free monomers in the system relaxes almost completely in a time of order l/k& 
while the weight-average chain length, which is the quantity measured in light scattering ex- 
periments, relaxes on a time scale TD=4L2/k, which is three powers of 1 longer. We also predict 
that the stress relaxation after a step strain is dominated by end-evaporation whenever rD 5 rreP, 
where rreP is the reptation (disengagement) time for a chain of length 1. In this case the stress 
relaxation is found to be “stretched exponential” for times smaller than rD and single exponen- 
tial for longer times. 

I. INTRODUCTION 

Living polymers are linear self-assemblies of mono- 
mers which can break and recombine. They are known to 
exist in a wide variety of systems, ranging from surfactant 
solutions to liquid sulphur and selenium.‘P2 The breakage- 
recombination process allow the macromolecules to ex- 
change material (length). This results in an intrinsic, an- 
nealed polydispersity of the chain lengths, which is 
exponential, with an average chain size e (Ref. 1 ), 

(1) 

In this expression c(L) is the number density of chains of 
length L and 4 is (in suitable units) the total volume frac- 
tion of monomers. These quantities are related by the con- 
servation equation 4= Jpj” Lc( L)dL. The two basic ingre- 
dients which give the exponential distribution of chain 
lengths are (i) the translational entropy of the chains, and 
(ii) the energy cost E of a pair_ of chain end-caps. The 
associated average chain-length L, 

.Z=~&exp -& 
( ) 

depends only on the equilibrium thermodynamic quantities 
of the system, being insensitive to the kinetic mechanism 
by which the chains exchange material. Although irrele- 
vant for the static properties of the living polymer system, 
the kinetic mechanism determines its dynamic behavior. In 
particular, the viscoelastic response of the polymer solution 
is significantly different under different kinetic mecha- 
nisms.3-7 In the past attention has been given to three dis- 
tinct mechanisms (i) the scission-recombination process in 
which two smaller chains may be created by breaking a 
chain, and the reverse process whereby a large chain may 

be created by the end-to-end combination of two smaller 
chains; (ii) the end-interchange reaction in which the end 
of one chain collides with a second chain at a random 
position along its length, forming a transient three-armed 
star which then decays into two new chains of different 
lengths; (iii) the bond-interchange mechanism whereby 
two chains collide at random positions along their arc 
lengths, forming a transient four-armed star which then 
decays into two new chains of different lengths. Each of 
these three reactions is characterized by a primitive rate 
constant, denoted k,, k,, and kb, respectively. The char- 
acteristic time r for a reaction to occur on a typical chain 
depends on these rate constants, the average length of the 
chains and on the monomer volume fraction. For these 
three mechanisms we have r,= l/( zk,), re= l/($k,) and 
rb= 1/(4Lkb), respectively. The terminal times of the vis- 
coelastic response for each of these mechanisms are com- 
binations of the reaction times Ti(i=s,e,b), and of the rep- 
tation time of the polymers.“4 In principle an independent, 
direct measurement of the reaction times 7,. can be made in 
a temperature-jump (T-jump) experiment. In this experi- 
ment one monitors the relaxation of the average length of 
the chain distribution, following a sudden change in tem- 
perature. However only reactions such as scission- 
recombination, which allow for a change in the chain num- 
ber, can contribute to the relaxation after T-jump.4 
Consequently only the reaction time for the scission- 
recombination process is measured in such experiments. 
The results agree remarkably well with the data for r, de- 
rived by analyzing the viscoelastic spectrum.* 

In this paper we consider in detail a further kinetic 
mechanism which also allows the average chain length to 
relax after a T-jump, we call this end-evaporation kinetics. 
This reaction proceeds by the addition or removal of a 
single monomer from the extremity of a chain9 End- 
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evaporation *is thought to be an important reaction mech- 
anism in certain liquid sulphur systems’ and may also be 
present in surfactant systems containing wormlike micelles 
and/or self assembled aggregates of certain dyes.” In the 
next section we present analytical results for the evolution 
of the chain-length distribution under end-evaporation ki- 
netics, after a sudden small change in temperature. We 
present a tractable exact solution for the problem as a func- 
tion of frequency (the conjugated variable of time by a 
Laplace transformation). In Sec. III we solve numerically 
the kinetic equations and obtain the time evolution of sev- 
eral relevant quantities (number of free monomers, chain- 
number, and the weight average of the length). The last 
section is devoted to a discussion on the experimental rel- 
evance of the model. 

II. THE KINETIC MODEL FOR END-EVAPORATION 

In this section we study the response of a living poly- 
mer system to a temperature jump, assuming that mono- 
mer exchange in the system is exclusively due to end- 
evaporation reactions. There are two distinct reactions 
which modify the number of chains of length L (measured 
in units of the monomer size or micelle diameter). The first 
is evaporation of one monomer from the end of a chain, the 
second is condensation of one monomer onto a chain end. 
We introduce a rate constant k for the evaporation process 
(the probability per unit time of a given chain losing a 
monomer from either end) and a second rate constant k’ 
for condensation (the probability per unit free monomer 
density, per unit time of a given chain gaining a monomer 
at either of its two ends). Each of these reactions can con- 
tribute either to an increase or to a decrease in the number 
of chains of a given length L. At the mean-field level we 
write the following rate equation for c(L): 

de(L) 
-=k[c(L+l)-c(L)] dt 

+k’c(l)[c(L-1)-c(L)]. (3) 

The positive terms on the right-hand side of this equation 
refer to events that increase the number of chains of length 
L (evaporation of one monomer from a chain of size L + 1, 
or condensation of one monomer onto a chain of size 
L- 1 >, while negative terms correspond to the events 
which decrease the number of chains of size L (evapora- 
tion from, or condensation onto a chain of size L). This 
equation only applies to chains with two or more mono- 
mers (L>2). To see this note that (i) a monomer (chain 
of size 1) cannot break into two smaller chains; (ii) when 
a monomer is shed from a chain of size 2 two chains of size 
1 are formed; (iii) the number of free monomers can be 
reduced by recombination with chains of any length, and 
not only by reaction with other monomers; and (iv) when 
two free monomers combine the total number of mono- 
mers is reduced by 2. The kinetic equation for the free 
monomers thus reads 
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c(2)+ i c(L) -k’c( 1) 2c(l) 
L=2 1 [ 

This relation can also be directly obtained from Eq. (3) by 
imposing monomer conservation 

c(l)+ J2 Lc(L)=$. (5) 

The stationary solution of Eqs. (3) and (4) is the thermo- 
dynamic equilibrium distribution given by Eq. ( 1 ), pro- 
vided that detailed balance holds. Detailed balance actually 
implies that the evaporation and the condensation rates are 
not independent variables but are instead related by 
k’ = kz2/d. Note that for algebraic simplicity, all these 
results assume a large average length J?> 1. 

We now study the time evolution of the chain-length 
distribution for a sudden small change in temperature, oc- 
curing at (say) time t=O. For times prior to zero, the 
distribution has an average length Lo. For large times the 
chain distribution will tend asymptotically to the new equi- 
librium. distribution of average length J? that corresponds 
to the new temperature. We monitor the evolution of the 
difference A( L,t) =c( L,t) -c( L, CO ), a function which. 
has, for small temperature changes, the initial value5 

A(L,O)=s ($2)exp( -:) (6) 

and which vanishes in the limit of very long times. The 
magnitude of the change induced by T-jump can be char- 
acterized by the relative difference of the initial and the 
fmal average chain-lengths, E= ( ,? - zo)/,?. In the~limit of 
small E we can linearize Eqs. (3) and (4) which then read 

1 dA(L) 
----=A(L+l)-A(L)[ l+exp( -i)] 
k dt 

+[exp(-$)\ ML---l)+A(l) 

(7) 

h(l) 

+AW+[ l--exp( -i)] j2ACt). 
(8) 

The initial decay rates of the quantities of interest can be 
directly obtained by inserting the initial values of A(L) 
into expressions (7) and (8). One gets, in the limit of large 

J. Chem. Phys., Vol. 99, No. 9, 1 November 1993 
Downloaded 18 Nov 2003 to 130.79.133.119. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



7262 Marques, Turner, and Cates: Living-polymer systems 

average chain lengths z, the following values for the excess 
free monomer number A( 1 >, the excess chain density 
A(L), the excess total chain number n =A( 1) 
+-Z&A(L) and the mass averaged length of the excess 
chains, L2=(L2)=A(l)+ZZz2L2A(L), the following 
results: 

1 dA(1) 

A(l) dt t=O 
=-k& 

1 dA(L) 2L -I 
A(L) dt t=o =-kz z-2 ’ i I 
ldn 
- =-kz, 
ndt t=o 

(9) 
1 dL2 

I 

2k 
L, dt f=O= -T’ 

The larger initial decay rate is the monomer decay rate; 
after one time step t-k-’ almost all the chains have lost or 
gained at least one monomer. Since there are $/I chains 
reacting (compare to +/I2 monomers) the rate is given by 
kL. It is important to stress that the monomer population 
behaves very differently from the population of any other 
chain length. For instance there are twoVpowers of L’ be- 
tween the initial relaxation rates of unimers and of dimers. 
The density of chains of characteristic size 1 decays ini- 
tially with a rate which is also two powers of z slower than 
the monomer decay rate. The initial decay rate of the chain - 
number n is kL because at this stage the variation of the 
number of the chains is dominated by the variation of the 
number of monomers. 

Equations (7) and (8) represent an infinite set of cou- 
pled linear differential equations which can be solved by 
performing a Laplace transformation in time coordinates 
and then solving the resulting recurrence equations. The 
solution has the form 

A(L) =a(w,L)X(o,~)L+p(o,~) exp --i 
( ) 

E 1L 
+s;--exp (10) 

where X is the physical solution of the quadratic equation 

X2-[ti+l+exp( -@]X+exp( -i)=O (11) 

and B is given by 

b=-$t( 2+-$ [ I-exp( -+)I) 

-A(l) d [ 1-exp( -+)I. (12) 

Both the frequency o and the jump amplitude E are here 
expressed in units of k. Inserting expression ( 10) into Eqs. 
(7) and (8) gives two equations for a: and A( 1). In prin- 

co 

FIG. 1. The frequency response of the unimer concentration A( 1) after a 
rjump. The frequency and the concentration are normalized by the char- 
acteristic frequency I/T,. 

ciple the evaluation of these coefficients can be straightfor- 
wardly performed, although the number of algebraic trans- 
formations is quite large. We have found it convenient to 
use a symbolic computation package for calculating the 
quantities of interest. Details of this, and the numerical 
routine used in Sec. III, can be provided on request 
(marquesBjanus.u-strasbg.fr). We plot in Figs. l-3 the 
frequency response for the excess monomer number A ( 1 ), 
the excess chain-number n, and the mass averaged length 
of excess chains L2. 

Ins principle the time dependence of these quantities 
can be obtained by performing a numerical inverse Laplace 
transform. However there is no single characteristic fre- 
quency in the expressions for A( 1 >, n or L, and a better 
insight into the relaxation mechanism is provided by the 
continuous version of Eqs. (5) and (7). In these equations 
we take the limit of large z and expand to second order in 
l/E, 

dA(L) a2A(L) k aA 
-= k- 

dt 
aL2 +-- 

L aL 

+ (%+G)A(O)exp( -s) (13) 

03 
I n I 1Q 20 30 40 50 

FIG. 2. The frequency response of the chain-number density n after a 
T-jump. The frequency and the concentration are normalized by the char- 
acteristic frequency l/~~. Moreover the concentration is also normalized 
by an extra factor z. 
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FIG. 3. The frequency response of the average chain-length L., after a 
T-jump. The frequency and the concentration are normalized by the char- 
acteristic frequency l/rD. Moreover the concentration is also normalized 
by an extra factor z3. Dots correspond to the numerical results of Sec. III 
(L;), while the continuous line represents the analytical results of Sec. II. 

A(O)+ om LA(L)dL=O, 
I 

(14) 

where A(0) denotes the free monomer density which is in 
general diierent from lim,,,A( L). To first order in l/x 
the two p_receding equations give A(O,t)=A(O,t=O) 
X exp( - kLt) as an approximation for the initial time- 
evolution of the number of free monomers, which holds for 
times t(log( z)/(kz). However, for longer times, one 
needs to proceed to second order in l/z. The structure of 
the 0( zd2) terms in Eq. ( 14) reveals the two main relax- 
ation mechanisms of the excess chain density. The first 
term on the right-hand side of Eq. ( 14) is a dilfusive term 
and it would correspond to a purely random evaporation/ 
condensation of free monomers from/into the chain ends 
(the diffusion constant is k in our units where the size of 
the monomer is taken to be unity). However, because the 
equilibrium chain length distribution is exponential, the 
diffusion is biased towards the small chainiengths. The 
second term on the right-hand side of Eq. ( 14) is the man- 
ifestation of this bias, and has the structure of a convective 
term with a drift velocity k/z. The O( Le2> correction to 
the source term of the rate equation can be neglected. 
Equation (13) has a green function of the form 
,/m exp[’ - (L + kt/L>2/(4kt>]. The decay pro- 

cess of this function fo_r a given length L is predominantly 
diffusive for times t< LL/k and predominantly convective 
for times t> EL/k. In any case one can detine a charac- 
teristic decay time for the typical chain as 

E2 
rD=4 - . k (15) 

However, due to the presence of the source term on the 
right-hand side of Eq. (13) and of the constraint (14), the 
overall decaying process cannot be described only by a 
single decay time. In particular the source term which is 
proportional to the free monomer density, varies on a 
much smaller time scale. This mixture of frequencies re- 
sults in a rather complicated time-evolution which we now 
study numerically by solving the rate equations. 

III. NUMERICAL STUDY 

In this section we will discuss the results of a numer- 
ical study of the kinetics of end-evaporation. This involves 
solving Eqs. (3) and (4) numerically, subject to the 
boundary condition (5). We choose $= 1 without loss of 
generality. 

We suppose, as before, that the length distribution 
c(L) is prepared with the “wrong” mean length z. at 
t=O. The distribution c(L) then relaxes to the final distri- 
bution. which will have a mean length E. Our numerical 
routine employs a discrete version of c(L) and calculates 
solutions to the equations iteratively in time. A record is 
kept of c(L) for all integer values of L<vL, where v>l 
(we take v=40 below). This array is repeatedly updated 
after time steps of duration St, chosen so that the proba- 
bility of any given monomer reacting in one time step is not 
too large. This probability is roughly given by p= kzSt 
(we explicitly choose p, not St). The routine calculates the 
array c at time t+St given the values at t by expanding c as 
a Taylor series in time using Eqs. (3) and (4) and keeping 
only terms to order St. One cannot apply the kinetic Eq. 
(3) for the largest L-value stored since, for this element, 
the contribution from breaking chains of length L+ 1 is 
unknown. We choose arbitrarily a scheme for updating this 
element; for large enough v any sensible choice should 
suffice. Finally at each time step various moments of the 
distribution arecalculated and stored. We checked explic- 
itly that an exponential length distribution provides a 
steady-state solution, that the routine conserves total ma- 
terial 4 and that the results are relatively insensitive to the 
precise choice of v. 

The routine was initially implemented on a PC over 
1000 time steps using the following parameter values 
~?=5, E= ,O.Ol,- v=40, and p=l (hence St=rd500). 
The computational time required for this routine scales like 
z3 (at.fixed p); for L =5, 1000 time steps corresponds to a 
real time of only 2rD. When the results are transformed to 
frequency space they are reliable only for frequencies that 
probe this time scale, i.e., in the present case o $ wd2. The 
mass averaged length of the excess chains is defined as 
L;(t) T I (Jw2> - (&d2>/(L(o)2) - (UC9 >2> 1 
with similar definitions for n’ and A’ ( 1) , ( * - - ) denoting an 
average over all chains. In the limit of small perturbations 
these expressions coincide with the definitions L,, n, and 
A( 1) given earlier [this identification neglects 0( 8) 
terms]. Results are shown in Figs. 4( a)-6( a). The quantity 
Li( t) can be transformed to frequency space via a Laplace 
transform and the resulting z;(o) compared with the an- 
alytical prediction of Sec. II, see Fig. 3. The modest pa- 
rameter values taken here do seem to be adequate to give 
excellent agreement with the analytical results of Sec. II. 

The numerical routine provides verification of other 
features predicted in Sec. II, such as the extremely rapid 
equilibration of monomers. In order to study this process 
the routine was prepared with p=O.Ol (all other parame- 
ters unchanged). The number of excess monomers in the 
system was observed to fall by 80%-90% within roughly 
p-l time steps, corresponding to a real time of l/k& see 
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FIG. 4. The normalize_d change in the second moment L; as a function of FIG. 5. The normalized change in the total chain number n’ as a function 
time, in units of l/kL, for L=5, e=--0.01, v=40, and p=l (a) or .of time, in units of l/k& for ~?=5, E=-0.01, v=40, andp=l (a) or 
p=O.Ol (b). In these units the monomer relaxation time is predicted to be p=O.Ol (b). In these units the monomer relaxation time is predicted to be 
of order 1 and ~,=500. of order 1 and ~,=500. 

Fig. 6 (b) . This is the time taken for the average number of 
reactions per monomer to reach of order 1. As predicted in 
Sec. II this initial rapid relaxation shows up strongly in the 
variation of the excess chain number n’ (t) with time, but 
much more weakly in the higher moment LG( t), see Figs. 
5(b) and 4(b), respectively. 

IV. VISCOELASTIC RESPONSE 

We now study the viscoclastic properties of a semidi- 
lute living polymer system, in which the dynamics is dom- 
inated by end-evaporation reactions. Assuming that this is 
the only reaction present, we find that the evaporation pro- 
cess dominates over reptation whenever r&~~~r, where 
rreP is the reptation time for a polymer of length z (the 
time taken for a polymer of this length to disengage com- 
pletely from its initial tube by curvilinear diffusion). Here 
rD is the characteristic time for evaporation defined earlier. 

When a step strain is applied to a semidilute polymer 
solution (at t=O) each deformed into a new, nonequilib- 
rium, conformation. Each chain is modeled as confined 
within a tube made up of the entanglements with neigh- 
boring chains.” In a classical polymer solution (containing 
unbreakable chains) the stress associated with the “un- 
happy” polymer conformations relaxes as the polymers dif- 
fuse out of their original tubes and into a new equilibrium 
tube. Such stress relaxation due to reptation results in” 

1.0 
n’ 

0.8 
I 

200 400 600 800 1000 

(b) 
t 

n’ 

0.6 .. 

P(t) a C -&d’/‘“s 
pmdd Y .“ 

where p(t) is the fraction of stress remaining at time t. It 
is known that the presence of chain reactions, such as re- 
versible scission, end-interchange or bond-interchange, can 
significantly alter the stress relaxation, leading to single 
exponential stress relaxation in the limit of rapid chain 
reactions.3 

We now wish to estimate the stress relaxation function 
in the presence of end-evaporation reactions. We first ne- 
glect the reptative motion of the chains (we will later de- 
termine just how slow reptation must be for end- 
evaporation to dominate the stress relaxation). End- 
evaporation reactions allow ‘%tressed” monomers to be 
shed from the end of a chain. These monomers then later 
combine onto another chain end, creating a new (un- 
stressed) piece of chain. The stress remaining at some later 
time is proportional to the number of “original” monomers 
(those that have not been shed from a chain end) that still 
exist. In what follows we are interested only in scaling 
results and neglect all numerical prefactors. 

Crudely speaking the contour length of “or$inal” 
polymer which has evaporated from each chain L(t) is 
determined by the extent of a simple one-dimensional bi- 
ased random walk, corresponding to the evaporation and 
condensation of monomers. Thus chains with a contour 
length ;S i will h_ave completely evaporated; longer chains 
will have lost -L of their original monomers. On average 
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FIG. 6. The normalized change in the number of monomers A’( 1) as a 
function of time, in units of l/L?, for ,?=5, E= -0.01, v&O, and p= 1 
(a) or p=O.Ol (b). In these units the monomer relaxation time is pre- 
dicted to be of order 1 and ~~=500. 

each chain undergoes an evaporation reaction in a time l/k 
and a condensation reaction in a time exp(l/L)/k. This is 
a diffusion-convection process with a small bias towards 
small chain lengths. Hence 

Jc(t)2, I L2t/TD for t<,7, L2(t/Qd2 for t2rD’ (17) 

The stress is proportional to the number of “original” 
monomers remaining at time t, which scales like 

P.(t) - s,ZEi (L--it)cwi;dL , (18) 

where we have neglected numerical factors of order unity. 
Hence 

p(t) 4.0 I exp[ -y(t/7D)*‘2] for t67, 
exp [ - y’ thD] for t2rD , (19) 

where y and y’ are constants of order unity. We see that 
the stress relaxation is “stretched exponential” for times 
smaller than rD with a characteristic time scale of order 
rD=4L2/k, the same as that predicted in Sec. II for relax- 
ation fOllOWing a T-jUmp. For times much larger than rD 
the stress relaxation approaches a single exponential with 
the same characteristic decay rate. Whenever rD 5 rreP we 
expect stress relaxation by way of end-evaporation to dom- 
inate over that resulting from reptative motion, and vice 
versa. For intermediate times we expect some smooth in- 
terpolation between the two limiting cases ( 16) and (19). 

We also remark that rdrrep- l/L and so for long enough 
chains end-evaporation reactions (if present) will domi- 
nate the process of stress relaxation. The difference of one 
power of z merely arises from the fact that the curvilinear 
diffusion constant for reptation scales as DC-z, whereas 
individual end-evaporation reactions lead to an effective 
diffusion constant of chain ends (relative to the tube) that 
is insensitive to chain length. 

V. CONCLUSIONS 

We have studied the relaxation of a system of living 
polymers after a small temperature jump (T-jump) assum- 
ing that these polymers exchange material by end- 
evaporation. We find that the number of monomers in the 
system relaxes almost completely in a time of order l/k& 
while the weight-average chain length, which is the quan- 
tity measured in light scattering experiments, relaxes on a 
time scale rD=4z2/k, which is longer by three powers 
of Z. 

We also predict that, in semidilute polymer systems 
undergoing end-evaporation, the stress relaxation after a 
step strain is dominated by end-evaporation whenever 
7D<" Trep, where rreP is the reptation (disengagement) time 
for a chain of length z. In this case the stress relaxation is 
“stretched exponential” for times smaller than rD and sin- 
gle exponential for longer times. 

The end-evaporation reaction considered here takes 
into account the evaporation and condensation of single 
unimers from the chain ends. The exact size of the unimer 
(i.e., the number of surftictant molecules shed) is ac- 
counted for in the theory by the lower cutoff length of the 
chains. There may be some variation in the size of unimers 
between shedding events but this merely means that we 
must choose an “effective” unimer size (an average of the 
distribution of unimer sizes). The important point is that 
the unimer size is small compared to the chain length. 
Large shedding events, involving a significant fraction of 
the total chain length, are unlikely to be distinct from the 
random scission-recombination scheme, where the chain 
randomly breaks anywhere along its length and recom- 
bines with its neighbors. 3-7 This is because all points along 
the chain, other than the ends are equivalent. In other 
words we expect breaking-recombination reactions to oc- 
cur either very close to the chain ends, leading to end- 
evaporation, or everywhere along the chains, leading to 
random scission-recombination; noting that both of these 
two reaction schemes may be present in a single sample. 

End-evaporation reactions may be important in sys- 
tems other than liquid sulphur, where crown shape S8 rings 
(the free monomers) coexist with a broad distribution of 
large polymerized chains.’ Though not the general case, 
there are also certain’ systems containing living wormlike 
micelles where evidence suggests that macromolecular 
scission-recombination reactions, as distinct from end- 
evaporation, are absent or at least highly suppressed.1513 
This is important since it leaves end-evaporation as a pos- 
sible reaction scheme for relaxation following a T-jump. 
Moreover, end-evaporation is also a candidate mechanism 
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to describe self-assembled aggregates of rigid, polarizable 
polyaromatic compounds in water,” such as certain dyes. 
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