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We study theoretically the dynamics of systems of elongated wormlike micelles which undergo “bond- 
interchange” reactions. Bond-interchange reactions may occur when two micelles come into contact at 
some point along their arc lengths. A transient structure resembling a four-armed star polymer is formed 
briefly, decaying to give two new micelles with each section of the fvet micelle fusingto one or other section 
of the second. First we consider the relaxation of the molecular weight distribution (MWD) of a system 
of wormlike micelles after an arbitrary (material conserving) perturbation to the MWD. We show that 
bond-interchange reactions do not provide a pathway for the relaxation of the MWD to equilibrium. 
Second we consider the dynamics of entangled systems of wormlike micelles. We calculate the scaling 
of the terminal time, viscosity, and monomer diffusion constant with the volume fraction of surfactant 
in the regime where micellar reactions are rapid on the time scale of reptation. These resulta may help 
in identifying systems in which bond-interchange reactions occur. Finally we discuss the validity of the 
“tube” model in these systems. We consider when a description based on the tube model is appropriate, 
given that bond-interchange reactions allow chains to pass through one another. 

1. Introduction 
“Living polymers” are polymers, or other chainlike 

objects, which can exchange material by reversible reac- 
tions. Living polymers are thought to exist in aqueous 
systems such as CTAB/KBr and CTACINaSall“ which, 
under appropriate conditions, are known to assemble 
reversibly into flexible wormlike  micelle^.^ These are, in 
favorable cases, extremely long (many thousand ang- 
stroms) and flexible and undergo reactions on a relatively 
rapid time scale. Simple mean field theories can be used 
to predict that the micelles have exponential polydisper- 
sitye6J Throughout this paper we use E to denote the 
mean micelle length. 

In the simplest case the micellar reactions consist of a 
forward (scission) reaction, where the micelle spontane- 
ously breaks at a random point along ita length, and the 
reverse (recombination) reaction, where one micelle com- 
bines end-bend with another. The dynamics of entangled 
polymers, which can undergo these “reversible scission” 
reactions, has received recent theoretical 
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However end-to-end reactions are not the only reactions 
possible, and in several other systems, such as CTAC/ 
NaSal -t NaC1, there is good evidencel4-17 to suggest that 
the dominant reactions are different. T w b  of the most 
obvious possible reactions, in addition to reversible 
scission, are “bond-interchange” and “end-interchange”, 
which we describe below. 

(i) Bond-Interchange Reactions. These reactions 
occur when two chains come into contact and react at  
some point along their arc lengths, chosen at  random. A 
transient structure resembling a four-armed star polymer 
is formed briefly, decaying to given two new chains with 
eachsection of the fiist chain fusingto one or other section 
of the second chain, chosen at random. This reaction is 
characterized by a rate constant kb, and the overall rate 
is proportional to the square of the arc length density. We 
define the time scale on which bond-interchange reactions 
occur to be Tb& = ( 4 L  kb)-’, where 4 is the volume fraction 
of micellar material and k b  the rate constant. 

(ii) End-Interchange Reactions. These reactions 
occur when the end of one chain “bites into” a second 
chain at a random position along ita length. A transient 
structure resembling a three-armed star polymer is formed 
briefly, which decays to give two new chains, the end of 
the first chain having fused to a section of the second 
chain, chosen at  random, the other section breaking off. 
This process is characterized by a rate constant k e  and the 
overall rate is proportional both to the arc length density 
and the density of chain ends. We define the time scale 
on which end-interchange reactions occur as Tbr& = (Ce 

he)-’ = (4 he)-’, where Ce is the density of chains, L is 
the mean chain length, and ke the rate constant. Thus the 
volume fraction of micellar material is, in suitable units, 
f$ = ce L. 
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For completeness we also define reversible scission 
reactions: 

(iii) Reversible Scission. This reaction scheme con- 
sists of a forward, unimolecular scission reaction and a 
reverse, bimolecular recombination reaction. The scission 
reaction is characterized by a rate constant k, per unit 
time per unit arc length and is assumed to be independent 
of chain length. We define % r e d  as the expected time for 
one break to occur on an average chain (which, by detailed 
balance, is comparable to the expected time for a recom- 
bination reaction to occur) 7bre& = (L k,)-l. 

Factors such as the precise chemical components, 
salinity, and temperature will determine which of the three 
reaction mechanisms detailed above are present. On a 
microscopic scale we expect the attempt frequency for 
bond interchange to be very much greater than the attempt 
frequency for end interchange which in turn will be very 
much greater than the attempt frequency for recombi- 
nation. However each of the three reaction schemes will 
also have a different activation energy with the bond- and 
end-interchange reactions typically having a much higher 
activation energy than simple scission. 

Note that bond-interchange reactions allow one chain 
to cross through another via the four-armed intermediate 
state. This implies that chain entanglements are not 
always effective in constraining the lateral motion of the 
polymer. In section 6, we suggest that alarge regime exists 
where bond-interchange reactions can be detected, e.g. in 
the scaling results of section 4 or in the shape of the stress 
relaxation fdction,l3J4 without a total breakdown of the 
tube model. 

In the present work we assume all reactions are 
uncorrelated in time. This assumption should be valid 
for flexible chains at moderately high  concentration^.^ We 
also assume that the local reaction rate constants, k,, k,, 
and kb,  do not depend on chain length or surfactant 
(micelle) concentration. This assumption is appropriate 
in the entangled regime when reaction rates are determined 
by the local motion of subsections of chain and not the 
diffusion of polymers over distances which are large 
compared to their gyration radii. 

Recent experimental4@ and theoreticall2Jg work has 
focused on describing the effects of a temperature jump 
(T-jump) on systems of wormlike micelles. These previous 
theoretical studies have concentrated on systems of 
wormlike micelles which are able to undergo reversible 
scission or end-interchange reactions only. For the case 
of reversible scission reactions it was shown that, after a 
small T-jump, the molecular weight distribution (MWD) 
relaxes to equilibrium on a time scale ~ T J  = 7break/2. This 
result has been verified in recent experimental work on 
the system CTAB/KBL~ It was also shown that end- 
interchange reactions do not contribute to the relaxation 
of the MWD. In section 2 we will show that bond- 
interchange reactions are similar to end interchange in 
that they do not provide a pathway for the relaxation of 
the MWD. This is an important result since it confirms 
that 7TJgives a direct measurement of the rate of reversible 
scission reactions, unaffected by the presence of either 
end- or bond-interchange reactions. 

In section 4 we derive scaling results which predict how 
the viscosity 7, terminal stress relaxation time 7,  and 
monomer diffusion constant D,,, vary with the volume 
fraction of micellar material 4. We consider the limit in 
which micellar reactions are rapid on the time scale of 
reptation. This is when T b r d  << 7rep, with 7rep the reptation 
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time for an average micelle (the time required for the 
micelle to completely disengage from its original tube, 
assuming it undergoes no reactions in this time). We also 
consider the regime where the micellar reactions are 
sufficiently frequent that the dominant motion of a chain 
end is breathing (contour length fluctuations due to 
constrained Rouse motion). Our results for reversible 
scissiongJO and end-interchange in the reptative regime1’ 
are not new but are included here for comparison with the 
new results for bond interchange. 

2. Effect of a Material Conserving Perturbation 
to the MWD 

In this section we will show that bond-interchange 
reactions do not contribute to the relaxation of the MWD 
following a material conserving perturbation. A material 
conserving perturbation is one in which the total surfactant 
volume fraction 4 remains constant, an example of which 
is a T-jump. 
As has already been mentioned the MWD of micellar 

systems is predicted to have exponential polydispersity. 
We write the number density of micelles of length L as 
C(L) 

C(L) = A exp(-L/L) (1) 
The constant prefactor A can be determined by calculating 
the volume fraction of micelle arc length.5 We choose 
units so that this is equal to the surfactant volume fraction 
4, which requires A = 4/L2. 

We now proceed to write an equation describing the 
rate of change of C(L), written c(L). We will show that 
c(L) = 0 for any C(L) of the form of (1). 

Consider two general chains, one of length LA = L1 + 
LZ and the other of length LB = L3 + L4. They undergo 
a bond interchange reaction at a point which is L1 from 
a certain end of the A chain and a distance L3 from a 
certain end of the B chain. By including the appropriate 
rate constant kb,  recalling that the rate is proportional to 
the product of chain densities, and restricting the values 
of (L1, Lz, LB, L4) to those for which a chain of length L 
will be created (or destroyed), we can write the following 
equation for QL): 

(L, + L, - L)C(L, + L,)C(L, + L4) dL, dL, dL3 dL4 (2) 

The f i i t  of the integrals in (2) describes the rate of creation 
of chains of length L and the other integral describes the 
rate of destruction of chains of this length. It now only 
remains to note that for any C of the form of (1) we have 
C(x + y )  0: C(x)C(y) and so c(L) = 0 by inspection. This 
result demonstrates that bond-interchange reactions alone 
can have no effect on any exponential length distribution. 
The equilibrium MWD (prior to a perturbation) is just 
such a distribution. For the case of a T-jump, which has 
the effect of shifting the equilibrium value of &T), it has 
already been shown that the size distribution remains 
exponential at all subsequent times, even in the presence 
of reversible scission and/or end-interchange reactions.12 
For this reason the relaxation of the MWD after a T-jump, 
in systems where a mixture of all three reaction schemes 
is present, is unaffected by the presence of bond-inter- 
change reactions. 

This result can be argued in the following alternative 
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way.2o Bond-interchange reactions (in common with end- 
interchange) preserve the total number of micelles in the 
system; two micelles are present both before and after any 
single reaction. A T-jump has the effect of changing the 
preferred number of chains in the system, via a change in 
L .  However bond-interchange reactions have no way of 
changing the total chain number and therefore cannot 
provide a pathway to equilibrium. 

3. Stress Relaxation in the Presence of Micelle 
Reactions 

In this section we consider how T ,  the stress relaxation 
time for the system, varies with 7bre&, T ~ ~ ~ ,  and the 
dimensionless parameter a! ZdL, where Ze is the mean 
curvilinear length between entanglement points. We treat 
separately the cases when each of the three reaction 
schemes (bond interchange, reversible scission, and end 
interchange) are present. 

In section 4 we will use these results to make predictions 
for the scaling of the stress relaxation time 7, the viscosity 
7, and the monomer diffusion constant with surfac- 
tant volume fraction for eachof the three reaction schemes. 
With this aim in mind we look first at the process of stress 
relaxation in entangled systems of micelles. 

3.1. Stress Relaxation: The Reptative Regime. We 
consider here the regime where the dominant motion on 
the lifetime of a chain end Tend is reptation. We are mainly 
interested in the limit of rapid micellar reactions, Tbre& << 
7rep.21 This is the limit in which chain reactions occur 
many times before the average chain would have reptated 
out of its original tube. 

In the entangled (semidilute) regime, each polymer 
(micelle) is constrained by a “tube”, consisting of the 
entanglements of the polymer with its neighbors.22 We 
consider first the imposition of a small step strain on the 
system, which is initially at equilibrium. The effect of 
this small strain is to constrain the polymer to a non- 
equilibrium conformation. The stress associated with this 
is relaxed by curvilinear diffusion (reptation) of the chain 
out of its initial tube and into a new tube, which is at 
equilibrium. We can include the effects of the micelle 
reactions by using the stress relaxation model of refs 9 
and 10, which can be modified to include bond- and end- 
interchange reactions and can be cast as a one-dimensional 
process in the following way. 

The curvilinear diffusion constant of a chain of length 
L in its tube DJL)  varies as L-I. Since stress is associated 
with the deformation of tube segments, it is easier to 
imagine the chain stationary and the tube diffusing relative 
to it. In this case, a given tube segment relaxes when it 
reaches the end of the chain. We consider the motion of 
a hypothetical “particle” (representing a tube segment) of 
diffusivity D,(L) on a line of length L (representing the 
chain) with absorbing boundary conditions at the chain 
ends. We may include the effects of the chain reactions 
by allowing the absorbing ends of the line segment to make 
random jumps with appropriate transition probabilities. 
By considering an average chain, one obtains the expected 
time for the relaxation of an average tube segment? which 
is the terminal stress relaxation time 7. 

If the micelles were Unbreakable, we would be able to 
ignore the effects of the reactions and each chain would 
simply have to diffuse, on average, a curvilinear distance 
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L to disengage completely from its tube. This process 
would occur after a time of order 7rep. The mean-squared 
curvilinear displacement s2 traveled by the chainz3 in a 
time TR 5 t 5 Trep is proportional to t. This inequality 
restricts us to time scales longer than TR, which is the time 
scale on which breathing motion becomes important (see 
section 3.2 below). Hence s2 is given by 

s(t l2 L2(t/Trep) (3) 
We consider first the process of stress relaxation in the 

presence of bond-interchange reactions, for which the 
stress relaxation time T scales according to T - 7;{:& 

7:; in the limit Tbre& << Trep. To see this we assume that 
the stress relaxation time for a typical tube segment, 
initially not close to the end of the chain, is the time it 
takes for a chain end to appear within a distance X of the 
tube segment, where Xis the distance that the tube segment 
can be expected to diffuse before the newly formed chain 
end is lost through another chain reaction. We note that 
a newly formed chain end (which is a distance X from the 
tube segment) is lost when another bond-interchange 
reaction takes place on the piece of chain of length A 
(substituting, on average, a piece of length L). This 
happens after a time Tend = (L/h)Tbre&. Thus = S(7end) 
is determined from (3) 

X N L p 3  (4) 

where we have introduced the definition r E 7 b r e d T r e p .  
The stress relaxation time T is then merely the waiting 
time for a chain end to appear within a distance X of our 
typical tube segment. We must wait, not only for a bond 
interchange reaction to occur within a length of order X 
but also for one such reaction to substitute a short piece 
of chain with length less than X. Only a proportion X/L 
of all bond-interchange reactions satisfy this last condition. 
Thus the waiting time for stress relaxation is (L/X)27bre&, 
where the time for a bond-interchange reaction to occur 
on a length X is (L/h)7bre& and the extra factor L/X comes 
from the proportion of these reactions which are “suc- 
cessful” in substituting a short piece of chain of length less 
than A. Using (4) we find 

These results apply whenever 7 R  5 rend 5 Trep. In this case 
the dominant motion on the time scale Tend is reptation 
and the “reptation-reaction” model described above is 
appropriate. Using (41, our definition of Tend = (L/X)Tbre& 
and the fact= that TR 
as a!3/2 5 r 5 1, where we recall our definition of a! E le/{ 

We now give, for comparison, the corresponding results 
for 7 in the presence of reversible scission or end- 
interchange reactions? in the same limit Tbre& << 7 r e p  Our 
model for stress relaxation is the same: We must wait for 
an end to appear within a distance X of a typical tube 
segment, where X is the distance that the chain can be 
expected to diffuse in the time Tend = Tbre& before the 
newly formed end is lost in another reaction.24 In this 
case X is given by 

A N j y ’ 2  (6) 
Now T is merely the waiting time for a break to appear 
within a distance A. This is larger than Tbr& (which is the 

cwrep we may rewrite this inequalit 

(23) Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; 
Clarendon, Oxford, 1986. 
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end. In either case the time scale on which the chain end is lost is Tbreak. 
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waiting time for an end to appear anywhere on thechainZ5)- 
by the factor L/X. Using (6) we haveg 

7 (L/X)Tbreak f1/2Trep (7) 
These results apply whenever TR S Tend S Trep, 88 before. 
Using (6) we write this as a S f S 1. Note that this 
inequality does not coincide with the one for the case of 
bond-interchange reactions, introduced earlier in this 
section. This is due to the different scaling of Tend in the 
two cases. 

We may compare the two resultsfor the stress relaxation 
time (7) when reversible scission or end-interchange 
reactions are present and (5) when bond-interchange 
reactions are present, with the results of an earlier 
numerical study.14 The power laws are both in good 
agreement with the results of this earlier study. We note 
also that the stress relaxation time is longer for the case 
of bond-interchange reactions by a factor $1/6 >> 1. Thus 
bond-interchange reactions are much less efficient at 
relaxing stress, as found in the earlier study.14 

3.2. StressRelaxation: TheBreathing w e .  The 
constrained Rouse-like motion of a chain in its tube is 
known as “breathing” motion.23y26*27 This motion leads to 
fluctuations in the total tube length of order AL N (1J)1/2 
= on a time scale TR H ffTrep. The mean-squared 
curvilinear distance, s2, traveled by the chain end (or any 
other segment) in a time Te S t S T R  (where Te a37reep 
is the time scale on which Rouse motion becomes impor- 
tantZ3) is proportional to N 2 .  Hence 

s ( t ) 2  * L2ff(t/TR)1/2 (8) 
We wish to calculate the stress relaxation time T ,  in the 
regime where the dominant motion of a chain end is 
breathing. We retain the model used in section 3.1 above 
although now the chain end need not reptate to the position 
of the chosen tube segment, but may get there much faster 
by way of breathing fluctuations. 

We first consider the case of bond-interchange reactions. 
In this case the curvilinear distance X = 8(Tend), within 
which a chain end must appear in order to relax a given 
tube segment, is determined from (81, where Tend = (L/ 
X)Tbre& is chosen to be the lifetime of a piece of chain of 
length X in the presence of bond-interchange reactions. 
Rearranging we obtain the following expression for X 

X = E(ff!31/5 (9) 
where we recall the definition f E T b r e d T r e p .  In analogy 
with (5) the stress relaxation time is identified with the 
waiting time for a chain end to appear within a distance 
X of a given tube segment. 
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These results apply whenever Te 5 Tend S TR. This 
inequality can be rewritten as a4 5 { 5 a3l2 using our 
definition of Tend and (9). 

For comparison we again consider the case when 
reversible scission or end-interchange reactions are present. 
In this case the length X = S(T& is determined from (81, 
as before, but in this case Tend = Tbreak is the lifetime of a 
chain end. 

(25) A chain end can be formed either by a simple scission reaction or 
by an end-interchange reaction which ‘snips” off a portion of the chain, 
leaving a new chain end. In either caae the time scale on which these 
events occur, somewhere on a portion of length A, is ibrsa&X. 
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1983,21, 667. 

X €(ar!3’/4 (11) 
In analogy with (7) T is merely the waiting time for a chain 
end to appear within a distance X of the tube ~egment .~ 

These results apply throughout the breathing regime 78 

6 Tend S TR. Using Tend Tbre& this inequality translates 
to ff3 S fS ff. 

3.3. Stress Relaxation: Summary. Todescribe stress 
relaxation for larger values of r than those considered 
above, we note that when f 2 1 the chains are essentially 
unbreakable and the stress relaxation time is merely the 
reptation time T~~~ 

We can therefore summarize our results, for bond 
interchange, as follows: 

for C 2 1, ”unbreakable” chains 

for am d C s 1, reptative regime (13) 

aaC ss, for a4 s 5 s am, breathing regime 

Finally we note that bond-interchange reactions allow 
chains to pass through one another. This leads to a process 
that we call “tube evaporation”, which modifies the result 
given above for the breathing regime. This effect is 
discussed fully in section 6 below. 

For the case when reversible scission or end-interchange 
reactions are present, we have insteadg 

for 5 2 1, “unbreakable” chains 

s = 5 %, for a 5 5 5 1, reptative regime ( 14) { l 4 C S 4 s w  for a’ d 5 5 a, breathing regime 

4. Scaling of the Stress Relaxation Time 7 and 
Viscosity q with Surfactant Volume Fraction 4 
In this section we calculate the scaling of T and q with 

4 for each of the three reaction schemes. We proceed by 
estimating first the scaling of Tbr&(4) and Trep(4), we then 
use the results (13 or 14) in order to determine the scaling 
of T with 9. We also predict the scaling of 7. 

Simple mean field theories,6t7 which ignore excluded 
volume effects, suggest that L - (this can be seen 
directly from the discussion following (11, assuming that 
the constant A is independent of 4). This mean field theory 
has been extendedlo to a semidilute solution where the 
chain “monomer” is replaced by a “blob” of size I ,  which 
is the length over which excluded volume interactions are 
screened.10v28*22 This scaling approach has the effect of 
altering the scaling of L 

f, N 40.6 (15) 
We recall that our model for bond-interchange reactions 
(section 1) implies Tbre& Q: (9 E)-’. Thus Tbra.& is given by 

Tbre& - 4-1’6 (16) 
Simple scaling arguments22 predict that for semidilute 

Trep N a-39 (17) 
where 7t is the relaxation timtof a single blob (containing 
a length of chain 1,) and a = l$L as before. Thus an average 

polymer solutions the reptation time scales as 

~~ 

(28) Safran, S. A., Turkevich, L. and Pincus, P. J. Phys. (Paris), Lett. 
1984, 45, L19. 
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chain consists of a-l blobs; the curvilinear friction increases 
like the number of blobs, as does the curvilinear distance 
that the chain must diffuse to escape completely from the 
tube. Since the mean squared curvilinear displacement 
increases linearly with time, Trep varies like If we 
assume that hydrodynamic effects are only screened for 
distances greater than [,we may estimate T€ by the Zimm 
time of a single blob, which variesz3 as the cube of the blob 
size [. We note that 5 and le are related by the usual 
exchded-volume random walk statistics 1, N [ l / u .  Hence 
Trep can be written in terms o f t  and 5 only 
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Combining this result with (20), we find f - d4*0. Using 
(21) and (14), we determine the scaling of T (and thus 7) 
with 4 for reversible scission reactions 

4"' for 5s 1, "unbreakable" chains 

4"' for a 5 5 S 1, reptative regime (26) 

for as 5 5 5 a, breathing regime 

Scaling argumentsz2 predict the following dependence for 
5 (with Y = 0.588) 

5 4~/(1-3~) (19) 
which is in close agreement with a variety of experiments 
on systems of wormlike micelle5.l Using this result and 
(15) we fiid, from (la), that Trep scales as follows: 

7rep - 43'4 (20) 

Q! N 4-1.9 (21) 

We note that the scaling of a with 4 can also be calculated 
using (15), (19), and the relationship 1, - [l/v. 

Combining (16) and (20) we find { N ~ J - ~ . O .  This result, 
together with (21) above, allows us to use (13) to determine 
the scaling of T with 4 for bond-interchange reactions 

#".' for 52  1, "unbreakable" chains 

4'.' for am s 5 s 1, reptative regime (22) 

for a' 5 5 s aw, breathing regime 

In order to calculate the scaling of the zero-shear viscosity 
7 with 4, we use the following relationshipz3 between q, T ,  

and the plateau modulus Go 

7 e G,T (23) 
The plateau modulus is predict to scale like the density 
of entanglementsz2 

Go N E3 N 42.3 (24) 
which is in close agreement with various experiments on 
micellar systems.2 Using these results, and with T - 4', 
the zero-shear viscosity is given by q - 4x+2.3. 

We now compare these results with those for end- 
interchange and reversible scission. First we recall that 
our model for end-interchange reactions (section 1) implies 
Tb=& a 4-l. Combining this with (20) we find f - 44.4 
which, together with (21) above, allows us to use (14) to 
determine the scaling of T (and hence 7) with 4 for end- 
interchange reactions 

$'.' for 52 1, "unbreakable" chains 

$'.' for a S 5 s 1, reptative regime (25) 

$'"." for as s < s a, breathing regime 

We recall that our model for reve_rsible scission reactions 
(Section 1) implies that Tbre& a 1/L. Hence Tbr& - (b-'.6, 
which is in rough agreement with recent experiments, 
where Tbre& is estimated via T-jump  measurement^.^ 

5. Monomer Diffusion in the Regime of Rapid 
Micelle Reactions 

In the regime of rapid reactions Tbre& << Trep the micelles 
only have transient identity and it is meaningless to discuss 
their center of mass diffusion. However, we may consider 
the spatial motion of a single labeled monomer. 

In order to calculate the monomer displacement in the 
breathing and reptative regimes, we fiist introduce a length 

which is the length of tube along which the chain travels 
before a reaction occurs somewhere on this same length. 
The time for the chain to move the curvilinear distance 

is equivalent to the yaiting time for a reaction to occur 
on f, and is defined as T .  When such a reaction occurs, the 
monomer we are tracing will be diverted alocpg another 
tube uncorrelated with the first.29 For TR S T S Trep the 
chain motion is reptative, with the following expression 
for L (3) 

(27) 
while for re 6 ; S TR the chain motion is dominated by 
breathing modes and, according to (a), L obeys 

L2 L2Q!(;/T~)1'2 (28) 

; 1! (L/L)Tbre& (29) 
These relationships are independent of which reaction 
scheme is present. We can thus view the motion of the 
monomer as a series of random steps with a root mean 
squared spatial extent given by the usual random walk 
statistics for a string of blobsz2 

R2 (L/le)[2 (30) 
We note that for times t 2 ; the mean-squared spatial 
displacement of a monomer R(tP obeys the diffusion 
relation 

R(t)' e Dmon t (31) 
This equation defines the monomer diffusion constant 
D,,, which is independent of the reFction scheme present. 
We may now solve for Dmon at t = T ,  R = 8, using_(27) or 
(28), (291, and (30). For the reptative regime TR 5 T 5 Trep, 
corresponding to a3I2 5 t 5 1, we find9 

(32) 
while for the breathing regime Te S ; 5 T R ,  a' S P S a3I2, 
we find 

In both cases ; is given by 

Q!-l 1/3 2 -1 Dmon - r 5 Trep 

D,,, N- ((Yf)-3/5[2Trep1 (33) 
For ; 2 T~~~ the chains are essentially unbreakable. In 

this case the chain takes random steps of mean squared 
extent a-lt2 on a time scale T~~~ and we obtain 
_ _ _ _ _ _ _ _ _ _ ~ ~ ~ ~ ~  ~~~ 

(29) Strictly speaking one requires some number of reactions, of order 
1, to occur before the new tube is completely uncorrelatd with the first. 
This factor is unimportant here since we are interested only in scaling 
results and not the associated numerical prefactors. 
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Table I. Scaling of the Stress Relaxation Time T ,  the 
Zero-Shear Viscosity q, and the Monomer Diffusion 

Constant Dmon with ba 

z $3.4 
interchange $5.7 
Bond- 

rl 

Turner et al. 

$1.7 $0.3 (*) 

$4.0 $2.6 (*) 

Unbreakable Reptative Breathmg I chains I regime I regime' I 

Dmon 

Reversible 
Scission 

End- 

Bond- interchange (p-3.0 4)-1.4 $-0.8 

Scission 
Reversible $-3.0 q-1.7 $-1.4 

I interchange I 
V I  

The results for each of the three reaction schemes are shown, in 
all three regimes. An asterisk indicates the scaling due to  tube 
evaporation (see section 6). 

(34) 
The scaling of D,,, with $ is given in Table I. 

These results for the diffusion constant are, in effect, 
based on a mean-field picture which assumes that the 
transport of individual monomers is not dominated by 
rare events. This assumption breaks down, leading to 
anomalous diffusion phenomena,30 if the diffusion constant 
of an unbreakable chain has too strong a dependence on 
chain length (D(L) N L-K > 2) ,  in which case the weight 
average diffusion constant is unbounded. The reptation 
theory in fact corresponds to the marginal case ( K  = 2) for 
which the anomaly can be ignored provided the chain 
length is s~ f f i c i en t .~~  

-1 
D,,, = Dchain cv Trep 

6. Validity of the Tube Model 
A polymer undergoing diffusive motion in a concentrated 

solution has ita lateral motion restricted by the steric 
constraints of the neighboring chains. The entanglements 
of a chain with its neighbors can be thought of as providing 
the tube along which the chain moves. This is the well- 
known tube As has already been mentioned 
bond-interchange reactions allow chains to pass through 
one-another via the four-armed intermediate state. This 
process leads to "tube evaporation" (entanglement re- 
moval) in a way which cannot occur in other polymer-like 
systems, even those in which reversible scission or end- 
interchange reactions are present. In this section we 
suggest that the stress relaxation model of section 3, based 
on the idea of permanent entanglements, may be retained 
for system where f is larger than some critical value fc. 
In order to see this, we assume that the tube model remains 
appropriate up to the point when one bond-interchange 
reaction has taken place per entanglement length; this 
occurs after a time 7tube 

(30) Bouchaud, J. P.; Ott, A.; Langevin, D.; Urbach, W. J.  Phys. ZI 
1991,1, 1465. 

T t u b  = Cahl-lT,ep (35) 
At this point most of the original entanglements will have 
disappeared. We assume that the stress relaxation model 
used in section 3 remains appropriate whenever TtUb R T. 
Using (13) and (35) we find that this is the case for f d 
fc, with fc = a3f2. Tube evaporation is therefore predicted 
to be unimportant throughout the reptative regime. This 
verifies our results in that regime, and also the validity of 
recent numerical work on stress relaxation in such 
5y~tems.l~ However the process of tube evaporation may 
dominate stress relaxation throughout the breathing 
regime. In this case we argue that the effective stress 
relaxation time scales like TtUb. This is because after a 
time Ttube each entanglement length has undergone one 
reaction and has been able to adopt an equilibrium 
conformation. 

Finally we consider the process of "tube renewal" which 
arises from the fact that each entanglement point disap- 
pears when the end of the polymer providing the entan- 
glement passes by. Hence the tube itself evolves in time 
as these constraints di~appear.l~*~l-33 Tube renewal occurs 
regardless of the reaction scheme present while tube 
evaporation can only occur in the presence of bond- 
interchange reactions. We assume that each entanglement 
point disappears when the end of the polymer providing 
it passes by.34 Thus each entanglement (and therefore 
the original tube itself) has the same average lifetime T as 
the original tube segment introduced in section 3. We 
now assume that the stress associated with each tube 
segment can disappear according to one of two processes: 
(i) The end of the chain passes through the tube segment 
(the mechanism considered in section 3) or (ii) the 
entanglement(@ providing the tube segment dissappear 
by an exactly similar process. Since both of these events 
take place on the same time scale T ,  the effective stress 
relaxation time must itself scale like T and the scaling 
results of sections 3 and 4 above are unaffected by tube 
renewal considerations. 

In summary, for the case of bond interchange reactions 
only, there is a second relevant time scale for stress 
relaxation 'Ttube which only becomes important when f S 
Cc. This is due to the effect we call tube evaporation. Using 
(35) and the earlier scaling results for [ (19) and a (21), 
we have 

Ttube $0'3 (36) 
If we assume that this time scale dominates stress 
relaxation, then (23) and (24) give the following scaling 
for q 

q N $2.6 (37) 
These results are quoted in Table I, where an asterisk is 
used to denote the fact that they arise from tube 
evaporation and not from the stress relaxation model of 
section 3. We note that there exists a large regime f R fc 
(corresponding to the reptative regime) where the effects 
of bond-interchange reactions can be detectedin the scaling 
results of section 4 or in the shape of the stress relaxation 
function,13J4 without a total breakdown of the tube model. 

(31) Viovy, J. L.; Monnerie, L.; T w i n ,  J. F. J. Polym. Sci., Polym. 
Phys. Ed.  1983,21,2427. Viovy, J .  L. J. Polym. Sci., Polym. Phys. Ed.  
1985,23,2423. 

(32) Marucci, G. J. Polm. Sci., Polym. Phys. Ed.  1985, 23, 159. 
(33) Des Cloizeaux, J. Europhys. Lett. 1988,5, 437. 
(34) We know that (a) new entanglements appear on roughly the same 

time scale as old ones disappear and (b) entanglements consist of more 
than one chain. However these factors do not affect our scaling predictions, 
only the associated prefactors. 
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Finally we remark that our expressions for D,,,, derived 
in section 5 above, should remain unaffected by tube 
evaporation and renewal. The basic diffusive step occurs 
when any reaction takes place-within the characteristic 
length f, >> 1,; the time scale T for this is always much 
shorter than Ttube defined above. 

7. Conclusions 
We have shown that bond-interchange reactions cannot 

modify the MWD after an arbitrary material conserving 
perturbation. This result is important since it allows one 
to ignore the effect of bond-interchange reactions in 
experiments which measure the relaxation of the MWD 
after such a perturbation, e.g. T-jump. 

We have derived new results for the scaling of T ,  7, and 
D,,, in the presence of bond- and end-interchange 
reactions in the limit of rapid chain reactions. These 
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results, along with the corresponding results for reversible 
scission, are summarized in Table I. They provide, in 
principle, a method for identifying which reaction scheme 
is present in a given system. 

Finally the validity of the tube model was discussed 
Tube evaporation arises from the fact that bond-inter- 
change reactions allow chains to pass through one another. 
Wesuggest that this only becomes important for very rapid 
reactions, when the chain motion is no longer reptative on 
the lifetime of the chain end. 
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