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Abstract. We study theoretically the effect of adsorbed homopolymer on surfactant bilayers,
restncting ourselves to homogeneous equilibrium adsorption of polymer on both sides of the
bilayer, with no penetration We formulate the energy of adsorption per unit area as a Taylor
senes m curvature for both sphencal and cylindrical surfaces In the limit of weak adsorption
analytic expressions for the polymenc contribution to the mean and Gaussian elastic moduli of the
bilayer are denved, using both a mean-field and a scaling functional approach For stronger
adsorption numencal calculations have been made, and m the limit of very strong adsorption,
asymptotic functional forms for the elastic moduli found In all cases the presence of the polymer
leads to a decrease m the mean curvature ngidity K and an increase m the Gaussian ngidity
k At the mean-field level these contnbutions are always small compared to the thermal energy
kB T However the scaling theory predicts qualitatively similar, but quantitatively larger effects,
thus the presence of adsorbed polymer can strongly influence the elasticity of surfactant bilayers

1. Introduction.

The physics of fluid membranes formed by reversible self-assembly of surfactant molecules is

of interest both in the biological realm (cell membranes, vesicles) and m the study of
surfactant systems The latter often form dilute smectic phases in which the local structural

unit is a bilayer or monolayer (depending on whether one or two solvents are present). In

both cases it is interesting to ask what happens when long flexible polymers are added to the

system. Clearly there are many possibilities, and fundamental theoretical and expenmental
studies remain at an early stage of development Industrially, m~xed systems of this kind are

used m many products ~pamts, lubricants, drug delivery, etc) often exploiting the special
rheological properties of these complex fluids.
Arguably the most basic and important parameters of a bilayer are the mean and Gaussian

elastic moduh (In the Case of a monolayer, a third parameter, the spontaneous curvature is

needed as well Indeed, there has been much progress made in studying the phase behaviour
and other properties m surfactant systems using the continuum elastic descnption of fluid
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films [1-12]. In this approach, the free energy of a bilayer is written as an harmonic expansion

m local curvatures, which should be valid when the principle radii of curvature are much
larger than the bilayer thickness or, if longer range forces are present, an effective interaction

range (such as the Debye length m charged systems). In this paper we consider the effect on

the elastic moduh of a surfactant bilayer upon addition of soluble, adsorbing polymer to the

external solvent, preliminary results were g~ven m [13] We anticipate that the harmonic

curvature expansion still applies for radii of curvature large enough compared to the (larger of
the) adsorbed layer thickness and the correlation length of the bulk polymer solution. (The
latter is the usual screening-length for polymer-mediated interactions). At shorter length-
scales one must instead consider directly the nonlocal effective interaction between pieces of
bilayer for simplicity we avoid this regime m the present study

Our investigation of the polymeric effect on the elastic moduh is motivated by the previous
work of Hone and Hong Ji [14] and de Gennes [15] Hone et al. considered reversible polymer
adsorption on curved surfaces, calculating the energy of adsorption as an expansion m

curvature to first order their results are thus appl~cable to a surfactant monolayer (a dividing
surface between oil and water), and descnbe the effect on the spontaneous curvature due to

adsorbed polymer m one phase. More recently de Gennes [15] considered the shift in the
elastic moduli of a surfactant bilayer upon addition of strongly adsorbing polymer to the

extemal phase His approach correctly determines the functional form for the polymenc
contributions to the elastic moduh, but g~ves no reliable indication as to their signs Our aim is

to consider fully the polymenc effect upon the elastic moduli of a bilayer It is possible to

envisage many scenanos for the adsorbing polymer and surfactant system, but we restrict our

attention to cases where the polymer homogeneously and reversibly adsorbs onto the
surfactant bilayer without penetrating it see figure I Our results indicate that the adsorption
of polymer always leads to a decrease m the mean curvature ngldity K and an increase in the

Gaussian ng~dity k. Although the assumption of reversible adsorption is not appropnate in
all expenmental situations (e.g. adsorption onto solid surfaces), it seems a reasonable starting
point for the discussion of polymer-surfactant systems. In these, the amount of adsorbed

Fig I Polymer adsorption on a bilayer
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polymer per unit area of bilayer can change not only by adsorption/desorption (a slow
process) but by varying the number of surfactant molecules in the film so as to change its area

at fixed adsorbed amount It is plausible, therefore, that full equihbnum is maintained in

systems where surfactant exchange is rapid, although this is less likely in (say) phospholipid
vesicles where such processes may be very slow.

The outline of the paper is as follows. In section 2 we discuss the formulation of the

adsorption m mean-field, and go on to use th~s approach m section 3 to calculate the

renormalization of the elastic moduli m various adsorption regimes. In section 4 we discuss

the results obtained. In sections 5, 6 and 7 we repeat the procedure using the de Gennes

adsorption functional in place of the true mean-field functional (the mean-field exponents are

replaced with exponents corresponding to the observed scaling behaviour m good polymer
solvent). We find this leads to much larger shifts in the elastic moduh than found from the

mean-field approach We g~ve our conclusions in section 8

2. Formulation of adsorption in mean-field.

2.I RELATION BETWEEN INTERFACIAL ENERGY AND ELASTIC CONSTANTS Formally the

energy per unit area of a surfactant bilayer/monolayer can be written as [16, 17]

~
"
~0 + ~°(Cl + C2 ~ C0)~ + ~°Cl C2 (1)

where K and k
are the mean and Gaussian ng~dity moduli respectively, cj, c~ =

I/Ri,
I/R~ are the local curvatures (inverses radii of curvature), and co is the «spontaneous»
curvature (wh~ch vanishes for a bilayer).
If it is possible to calculate the energy associated with the polymer adsorption for both a

sphencal and cyhndncal surface then we can extract the polymeric contribution to K,
k, and co by use of equation (I) It should be noted that the appl~cation of equation (I)
requires the energy per unit area of adsorption to be a power series m curvature to,second
order, and thus we must consider sphencal (cyhndncal) surfaces with very large radii (large
with respect to the fundamental length in the problem, which is normally the bulk correlation
length of the polymer solution) In this paper we restrict ourselves to the case of adsorption on

bilayers where, by symmetry, the spontaneous curvature co remains zero even under the
addition of polymer (For a monolayer the shift m co was calculated by Hone and Ji [14] using
methods sim~lar to those adopted below.) The surfactant and polymer contributions are then
independent and purely additive In contrast for a system with a finite co, such as a monolayer,
addition of the polymer could cause co to be sh~fted enough that the surfactant contributions

to the elastic moduh would themselves be affected in a non-trivial way. We assume here that
the surface-monomer potential can be modelled as a contact potential, so that the adsorbing
boundary condition at the surface is independent of curvature when that is weak. Th~s choice

is made for simplicity, although it has been shown [18] that the use of more realistic
continuum potentials can lead to a curvature dependent boundary condition Likewise we

assume that the thickness of the bilayer is neglig~ble so that the area of each adsorbing surface

is independent of curvature In pnnciple it is straightforward to incorporate these effects
within the general framework laid out below
We wnte y~(R), y~(R) as the energy of adsorption per unit area on a large sphere and

cylinder (throughout we will use the subscnpts s and c to refer to sphencal and cylindncal
properties respectively)

,

R is the radius of the sphere (cyl~nder) and is taken as positive if the
adsorption is on the outside of the sphere (cylinder) The adsorption energy associated with a
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curved bilayer, by symmetry, is then just y(R) + y(- R), and use of equation (I) then

implies for the polymenc contributions AK, AR to the elastic constants

~f ~ ~~~'~~~~ ~ ~'~~ ~~ ~ ~'~~ (2)
2 AK+ AK

=
R jy~(R) + y~(- R) 2 y~j

where y~ is the adsorption energy per unit area of a corresponding flat surface. Since we are

assuming homogeneous adsorption of the polymer with no penetration into the surfactant
layer, we can calculate y~(R) and y~(R) within the standard Cahn-de Gennes framework [19,
20] which descnbes adsorption on impenetrable surfaces, and has been successful m

describing many adsorption problems [21-24]. We next bnefly outline this description of
adsorpt~on for a clear explanation see the introduction of reference [14]

2.2 THE INTERFACIAL FREE ENERGY FUNCTIONAL. Generally the surface energy assoc~a-

ted with the adsorption Of a solute from a dilute solution can be written m an obvious notation

as

U Uo
= y j

4 dS + [L (4 (V~b )~ + G (~b )] dv (3)

wiere the first integral represents the contact energy between the solute and surface the
second integral represents the contnbution from distortions of the concentration profile
decaying into the bulk. Uo is the surface energy of the pure solvent, 4 is the solute volume
fraction, yj is the solute sticking energy per unit area (yj

»
0 for adsorption), G (4 is an

osmotic free energy density, and L(4) describes the stiffness » of the solution to spatial
deformations m concentration

We assume the case of reversible adsorption of a homopolymer, which is m diffusive
equihbnum with a bulk reservoir. The corresponding Cahn-de Gennes energy, m units where

kB is unity, is g~ven by [25]

where T is the temperature, a is the monomer size, 4i~ is the volume fraction in the bulk, and v

is a dimensionless excluded volume parameter (u
=

2 x where x is the Flory interaction

parameter) As usual, the functional can be simplified by using the order parameter #~ defined

by #~~ =
4 Equation (4) then becomes

u- uo
= yj

4i2ds+ j ( (v4i)2 +
u(4i2- ii)2j

dv (5)

The equations govemmg the concentration profile are determined by m~nimising equa-
tion(5) resulting m the standard Euler-Lagrange equation and a logarithmic boundary
condition at the surface :

~2-V~#~-v#~3+u#~)#~ =0 (6)
6

l~
sur<

"
~ ~~~

where n indicates the norrnal to the surface, and k
=
6 yj a/T The boundary condition of

equation (7) defines an extrapolation length D, which we define by 2 D
=
k The length D
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characterizes the strength of the surface attraction to monomers For D
»
f
~ =

a/(3 u~ ~)~'~,
where f~ is the Edwards correlation length of the bulk solution, the monomer-monomer

interaction dominates the attraction to the surface, and this leads to weak adsorption,
whereas D

<
f
~
corresponds to strong adsorption For a qualitative picture of the adsorption

profile on a planar surface see figure 2.

>

#a

16

D f Z

Fig 2 Qualitative plot of the polymer concentration with distance from a planar surface. It should
be noted that D

<
f
E
and thus the plot is in the regime of strong adsorption Honzontal axJs distance

from the surface (z), vertical axis polymer volume fraction (4)

The profile equations (6) and (7) can be re-wntten as

il~0
=
2 0 (0~ 1) (8)

l~ ~~
=

I (9)
0 id surf

where 0 is the reduced mean-field order parameter defined by 0~= ~b/4i~. These two

equations have been written in dimensionless form, all lengths being measured m units of the

Edwards correlation length, f~
=
a/(3 u4i~)"~ (e.g. il~

=

f( V~) In terms of these parameters
the adsorption energy is given by

U- Uo
=

~~~ ~~ l- I 0~d§+ [(1l0)~
+
(0~-1)~] di~ (10)

6a

all variables inside the brackets ) now being dimensionless.

Finally, from equation (10), y~(ji) and y~(ji)
can be simply wntten down as

Yc(>) yo =

(
(-10j(1) + j~ 1(<0~)~ +

(0j-1)~i L dfl(12)
~fE R #

where the concentration profiles 0~(f) and 0~(f) by symmetry just depend upon the radial

distance f from the centre of the sphere or cylinder, and are solutions of equations (8) and (9)
in spherical and cylindncal co-ordinates respectively

JOLRNAL DE PHYSIQUE II T V 6 JUIN (WI j4
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3. Calculation in the mean-field approach.

31 PERTURBATION CALCULATION It is not possible m general to solve analytically the
profile equations, equations (8) and (9), m spherical (cylindrical) co-ordinates, and thus it is

necessary to turn to numencal methods. However, m the lim~t of weak adsorption,
I

=
f~/2 D « I, the attraction of the surface is much weaker than the monomer-monomer

interaction allowing a perturbative solution to be found [14]. Using I
as a perturbation

parameter we can write to first order

HIT)
m +

iHj(I) (I m
#) (13)

Again all lengths are measured m units of the Edwards correlation length f~ Since we are

always considering large bends (i.e adsorption on large sphencal and cylindncal surfaces of

radius R) it is possible to expand 0j(f) as a power series m ? (?
=

Ilk) g~ving

0 (7)
= +

I[0jo(f)
+ 0

ii
(f) f + 0 j~(f) P~] if m

# ). (14)

Substitution of equation (14) into the profile equations (8) and (9) now g~ves a set of coupled
linear differential equations which govern the 0's. Solution of these gives the following results
for the concentration profiles

0~ =1+ ~e~~P (1- + p ?+ +
i+ p~) f~j (15)

2 2 4 2

0~=1+~e~~P(1- +
~ ?+

~
+
~~

+

~~~ ~j
(16)

2 4 2 32 16 8

where p =
7 ji. Companng with the flat case (f

=
0) we see that to first order m curvature

the effect of bending is to decrease the monomer concentration in the region of the surface
To calculate the corresponding energies of adsorption we substitute equations (15) and (16)
into equations (11) and (12) respectively to find

T~b~1- (2 j~2 ~2
y~(?)-yo=- ~-k--~+-?--f~ (17)

~~~E 2 4 8

y~(?)-yo=( (~-i-~ +~?-~~f~j. (18)
afE 2 8 64

To first order in curvature the effect on the energy of adsorption is a decrease if the surface is

bent towards the solution, whilst bending the surface away causes an increase. It should be
noted that m the sphencal case the first order curvature term is always twice that of the

cylinder, this is a geometncal result of the fact that for a g~ven radius the mean curvature of
the sphere is twice that of the cylinder
As previously stated our formulation is really intended for bilayers, but in this limit of weak

adsorption, where the presence of the polymer is only a small perturbation, we can consider

the effect on the spontaneous curvature of a surfactant monolayer (a dividing surface between

oil and water). Assuming the monolayer has an initial co =
0, addition of the polymer would

cause a finite spontaneous curvature which can be calculated from equation (18) by use of

equation (I). giving

~~ ~ 64

barc I I ~
~~~~
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where K~~~~ is the bare surfactant mean modulus and the negative sign indicates that the
preferred bend is towards the adsorbed polymer
Returning to the elastic moduh of a bilayer, we may use equations (17) and (18) m

equation (2) to find the following polymer-induced shifts in the elastic constants for the
perturbative regime

We see that the polymer causes a decrease m the mean curvature ng~dity of the bilayer,
accompanied by an increase m the Gaussian rigidity It should be emphasized that the
perturbation results are stnctly valid for the limit D » f~ and thus the effect upon K and
k

is very small m the reg~me where equation (20) applies. In terms of the sticking energy
yj and the bulk polymer volume fraction 4i~ these polymeric contnbutions to the elastic
moduh scale as y ~ p ~'~.

3.2 NUMERICAL MEAN-FIELD CALCULATIONS To investigate the effects of stronger
adsorption we have made numencal calculations of y~(?) and y~(?) as denved w~thin the

mean-field theory m section 2.2 The method adopted is Outlined as follows

(a) A strength of adsorption, namely I, is chosen

(b) The profile equations, equations (7) and (8), are solved using a standard relaxation
method [26] for a large sphere and cylinder (f~ 0.001).
(c) From the numencally calculated profile the energ~es y~(?) and y~(?), at fixed

?, are calculated via equations (11) and (12)
(d) Steps b) and c) are repeated for several different sphere and cylinder radii

ji, allowing a data set at fixed I to be obtained.
(e) The data is fitted to a quadratic m curvature, ?, to obtain an expansion of the form

y~ (e) yo m

~~~ jA~(I) +
B~(I) e+ c~(I) e2j (21)

where the subscript i = s (sphere), c (cylinder)

Using this procedure the expansion m curvature of y~(?) and y~(?) was calculated for

various adsorption strengths, from weak adsorption (I
=
0.001), to strong (I

=
100) The

resulting data are shown in figures 3a, 3b and 3c

The relaxation technique adopted used a fixed step-length, chosen for ease m applying
standard numencal integration formulae. For weak adsorption the numencal results are m

exact agreement w~th the analytic results. For stronger adsorption it is possible to check the

accuracy of the numencal results by looking at the zeroth order term m the curvature

expansion This term is known analytically and companson with the numencal value gives an

estimate of the maximum numencal error as 0.06 ifi

Figure 3a shows the variation of B~ with I, and indicates that throughout the range of

adsorption this contnbution is positive (we have om~tted a plot of the cyhndncal
B~ since this is just a half of B~) However, for bilayers with equal adsorption on both sides this

spontaneous curvature contribution cancels out Figures 3b and 3c show the vanation of AK

and AR respectively, w~th I. The data shows that the polymenc contribution to the mean

curvature ng~dity AK is always negative, whereas the increment of Gaussian rigidity
AR

is always positive
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log[B~]
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log[k]

Fig 3a The sphencal linear curvature coefficient B~, calculated using mean-field theory. Honzontal

scale. log [fi] vertical scale log [B~].

log[-AK]

2

-4
log[k]

-7

Fig. 3b The mean curvature ngidity AK, calculated using mean-field theory Honzontal scale

--
T4~f~

log [k], vertical scale log [- AK]
m
log AK/ ~

a

log[W]

-4 -2
ioglkl
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Fig. 3c.- The Gaussian ngidity AR, calculated using mean-field theory. Hornontal scale : log [I]

vertical scale log [Ak]
m
log Ak/ ~~~

~~
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3.3 ASYMPTOTIC LIMIT oF VERY STRONG ADSORPTION In the limit of very strong
adsorption on a flat surface it is well known that the effect of the bulk concentration upon the

profile (and hence the adsorption energy) becomes neghg~ble [20, 25] The adsorption energy

is then independent of the Edwards correlation length, the fundamental length m the

problem is instead the extrapolation length D We assume that this remains true for bent
surfaces m the Emit D « f~, and use this to predict the asymptotic scaling behaviour for
y~(?). In our formulation the adsorption energy has the form given in equation (21), where

A~, B~, and C~ are always dimensionless functions of the adsorption parameter I. Wnting
4i~ m terms of f~ reduces equation (21) to the form

y~(F) yo m

~~[~ iA~(I)
+
B,(I)(<~ c) +

c~(I)(<~ c)21 (22)

We now assume that asymptotically A~, B~ and C~ approach simple powers laws of
I. To determine the corresponding exponents for A~, B~ and C~ we demand that the

adsorption energy is independent of f~ at high adsorption. This gives the following results

A~~fl, B,~~, C~~i (23)

These I dependences were tested by fitting to numencal data obtained for strong
adsorption (I 100) The fits obtained using the predicted power laws are good, and g~ve the

follow~ng numerical results

y~(?) yo m

~~~
[- 0 33 fl

+ 0 67 P ? 0.24 I?~] (24)
6 afE

y~(?) yo m

~~
~ [- 0.33 P

+ 0.33 ~ f 0.22 I?~] (25)
6 afE

It should be noted that the first term, that corresponding to the flat plane, is known
analytically, the exact numerical coefficient being -1/3. Use of equations (24) and (25) m

equation (2) then g~ves

AK
»

0 024
,

AK
»
0.036 (26)

In the li~r~t of max~mum adsorption, D~a, and assuming good solvent conditions,

u =
I, we can wnte

AK 0 02 T, A K
~

+ 0.036 T. (27)

These results are quite small in companson with surfactant elastic moduli which are of the

order T, although in view of the u dependence m equation (26) larger shifts can be expected in
the case of a poor solvent. poote however that as u becomes small three-body and higher
many-body terms become more dominant and the validity of equation (26) fails.] These

relatively small shifts m the elastic moduli at strong adsorption contrast with those found by a

scaling approach m section 6 below.

4~ Discussion of the mean-field results.

To re-iterate, it was found above for both the sphere and the cylinder that the linear

coefficient B~ m equation (21) is always positive, whilst the quadratic coefficient C~ is always
negative. At first glance the positive B~ seems rather surprising, but the situation can be
clarified by considenng the three separate contnbutions to the adsorption energy that arise
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with~n the Cahn-de Gennes descnption. These are (i) the surface contact term, (ii) the

(V~b)~ term wh~ch represents the local stretching of the chains, and (iii) the osmotic term

arising from the monomer-monomer interaction. It is possible to calculate these contnbutions

individually, for both the cylinder and the sphere, using the numerical and perturbative
methods descnbed in section 3. We find that the osmotic contnbution is negative, the surface

term is almost exactly twice the osmotic term and is positive, whilst the stretching term is

negligible throughout the range of adsorption strengths. The negative sign of the osmotic

contribution can be understood by realizing that bending the surface away from the solution

(I.e ji positive) «frees» excluded volume. Simultaneously a decrease m the surface

concentration g~ves a positive shift m the surface contnbution wh~ch, it tums out, outweighs
the osmotic term

Performing a sim~lar analysis of the three contnbutions to C~, for both the cylinder and the

sphere, indicates that m the limit of weak adsorption the surface term is dominant, whilst in

the strong adsorption limit all three terms are comparable m magnitude, the surface and

stretch~ng terms are negative, whilst the osmotic term is positive. Since they correspond to

second order coefficients m the curvature expansion it is difficult to find a simple physical
explanation for the signs and magnitudes of the contnbutions to the elastic constants

calculated m mean-field theory. Nonetheless we have found that the increments AK and

AR
are respectively negative and positive, but rather small m most cases of interest (with the

possible exception of strong adsorption from poor solvent, small u m equation (26)).
All our calculations have been made with the constraint of diffusive equihbnum, and it is

also interesting to consider the effect upon the energy expansion by applying the constraint of

fixed surface coverage [23]. This can be achieved expenmentally by allowing the adsorption
profile to build up, and then washing out the solution with pure solvent. Bending the surface

with this constrained » equilibrium must result m an adsorption energy which is larger than

the diffusive case (this can be seen from simple thermodynamics)
Since for a surface bent m either a positive or a negative sense the constraint must give an

increase m the energy, its lowest order effect must be an increase m the quadratic coefficient

C~ Analytic calculations in the weak adsorption limit indicate that the sign of C~ remains

negative, but at higher adsorption it is possible that constrained equihbnum could lead to a

positive polymer contnbution AK.

S. Forraulafion of adsorption in scaring theory.

The mean-field theory of homopolymer adsorption often g~ves good qualitative results, but it

does not take into account correctly the concentration correlations induced by the excluded

volume For example, m mean-field the adsorption energy per unit area has units of
aT/f~ which scales incorrectly w~th the correlation length f, since the adsorption is essentially
a 2-dimensional problem the correct scaling is T/f~ [25] It was shown by de Gennes [20] that

an amended adsorption functional could be made to g~ve the correct scaling results, where it is

assumed that the polymer concentration profile is regular m the prox~mal reg~on The

ex~stence of a proximal singularity [27] has been shown to have little effect m the reg~me of

strong adsorption, which is of most interest, and thus we use the usual de Gennes functional

which (m units where k~ is unity) takes the form [28]

U-Uo=-Yj l~bds+ ~jx
a

x

~~~
~ ~~

(V4 )~ + p ~b
~'~

~
p ~b ll~ ~b +

~
p ~b

'~ld
v (28)

6 4 ~'~(~b + ~b b) ' 4 4
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where the variables are the same as defined previously in section 2, and a and p are two
unknown numencal constants As m the mean-field case this can be m~nimised to obtain the
profile equations which can be wntten m dimensionless form using ~b = 4~~b~

2 @~4~ @4~ j~
~
4~~ +

( (l + 4~ )~ '
=

~ (4~~/~- 1) 4~~'~(1 + 4~ )~'~° (29)

4~ ~~'~(l + 4~ )~~'~°
~~

=

I (30)
it surf

3 ay,
~~where 3

=
f~ ~~

,

and all lengths are measured in units of the bulk correlation length
a T

f~=a $ ~p~/~. The vanable I characterizes the strength of the adsorption, but
/~

3 is now not the extrapolation length D as was the case m mean-field However, a suitable

extrapolation length can still be defined for the planar case by ~~
=

,
g~ving

~b in su~ D

l$~
=

i[d~p "~(l + 4~~)~'~°]~~~r. (31)

In general this now depends upon the surface concentration, and m pnncipal there is a

corresponding vanation of the extrapolation length with curvature, but this effect is always
small. For convenience we choose to write I

=

l$~ (note that this differs from the mean-field
definition by a factor of 1/2).
The adsorption energy per unit area on a sphere and a cylinder is now g~ven, in terms of the

radial density profile 4~(F), by

a T~b('~~~~~~ ~° 6 af~
~ ~ ~~~~~ ~

+ j~ fPj~'~(I + fP~)~~/~° (QfP~)~ +
fP)/~- ~ fP~ +

~ ( ~
dF (32)

R 4 4 ji

~ j~@ 3/4
~~~~~ ~° 6 af) ~ ~~~~~~ ~

+ j~ fPp~'~(I + fP~)~~/~° (QfP~)~ +
fP('~- ~

fP~ +
~ ( dfl(33)

R 4 4 ji

6. [alculafion in the scaling approach.

61PERTURBATION CALCULATION IN SCALING. In the limit of weak adsorption,
I

=
3f~ «1, the profile equations, equations (29) and (30), can be solved using the same

method as was done previously in mean-field The resulting concentration profiles and
adsorption energ~es are qualitatively the same as in the mean-field case I') The resulting

(~) The adsorption energies calculated within the perturbative regime using the scaling functional

are
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effect upon the elastic moduli of a bilayer is found as before. We obtain within the

perturbative reg~me :

3 &T~('~f~ f~ 2 &Ti§("f~ f~ 2
~~ i 6 a

b '

~ ~
6 a D

~~~~

where a
=

~~ ~~~
2~ ~@

a In terms of the sticking energy yi and the bulk polymer volume
45

fraction 4i~ these polymeric contributions to the elastic moduli scale as
y) 4P '.

6.2 NUMERICAL CALCULATIONS IN SCALING Numencal calculations were performed, the
method adopted being that described in section 3.2, with the data being acquired at fixed
I From I

a value of the extrapolation length l$
is calculated as described in section 5

allowing the data to be expressed m a sim~lar form to the mean-field case. The expansion of
the adsorption energy in curvature now has the form :

y, (F) yo m
(((~~ iA,(i) + Bj (i) F +

c,(I) e21 (35)

where i = s or c The data is shown m figures 4a, 4b and 4c. Figure 4a shows the variation of

the linear coefficient B~ with I and indicates that throughout the range of adsorption the

contnbution is always positive (qualitatively the same the as the mean-field result). Figures 4b

and 4c show the vanation of AK and AR respectively with I. Again the data is qualitatively
the same as mean-field, AK is always negative and AR is always positive.

6.3 ASYMPTOTIC LIMIT oF STRONG ADSORPTION IN SCALING. In the limit of strong
adsorption the adsorption energy m a flat geometry is independent of the correlation length,
as m the mean-field case [20]. Assuming that this still holds for curved surfaces in the limit
D « f~ we can consider the scaling behaviour for y,(?) Re-wnting ~~ in terms of the

correlation length, enables equation (35) to be expressed as

y,(e) Yom
f jjA~(i)

+
B~(i)(f~ c) + c, (i)(f~ c)2j (36j

6 f~ P

A, and B~ are now assumed to be simple power laws of the parameter I, and the exponents
fixed by demanding that the adsorption energy is independent of f~. C~ can no longer be a

simple power law (formally the exponent is zero), but must be a dimensionless function of
I The functional form of C~ is suggested to be loganthm~c by de Gennes [15] (See Sect. 7).
The expected coefficients can thus be wntten as

A f
,

B i
,

C log ~k] (37)

where ~ is an unknown numencal prefactor.
These predictions were tested by fitting to numencal data obtained for the strong

adsorption case
(I

~

35 ). The fits obtained using the predicted functional forms are good, and

g~ve the follow~ng numencal results :

y~(?) yo m

j~~~
[- 0 67 ~

+ 3.I I if
+ 64 log [0.02 ii ?~] (38)

f~~

y~(?) yo m

~ ~~~~ [- 0.67 ~
+ l.56 if 0.65 log [0.86 ii ?~] (39)

6

f~~
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log[B.]

~~ log((]

Fig 4a.-The sphencal linear curvature coefficient B~, calculated using scaling theory Honzontal

scale log iii vertical scale : log [B~].

log[-AK]

log((]

Fig. 4b -The mean curvature ngldity AK, calculated using scaling theory Hornontal scale

--

aT4(~f~
log [k]

,

vertical scale log [- AK]
m
log AK/

~ ~

~

iogjaj

~~
log[$]

Fig 4c The Gaussian ngldity AK, calculated using scaling theory Honzontal scale. log ii]
fi

a T4 ('~ f~
vertical scale. log [AK]

m
log AK/

~ a
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The above result for the cylinder is qualitatively the same as the mean-field result, the

coefficient B~ increases with increasing I (strength of adsorption), whilst C~ decreases (always
remaining negative) The sphere is qualitatively the same as the mean-field case for the

B~ coefficient only. The numerical calculations reveal that as
I

increases C~ follows the

expected trend and decreases, but m the reg~on of I 8, C~ reaches a local minimum. As

I increases further C~ begins to increase and tend towards the logarithmic asymptote

Figures 5a and 5b show the vanation of C, with I for the cylinder and sphere respectively.

k

-1

~2
Cc

3

Fig 5a. The cylindncal quadratic curvature coefficient C~, calculated using scaling theory, in the

regime of strong adsorption (solid curve) Dashed curve loganthmlc asymptote Hornontal scale :

I
,

vertical scale C~

k

,

-i
,' C.

-2
/

/
-3

Fig 5b The sphencal quadratic curvature coefficient C~, calculated using scaling theory, in the

regime of strong adsorption (solid curve) Dashed curve loganthmlc asymptote. Horizontal scale
fi; vertical scale : C~

The use of equation (38) and (39) m equation (2) gives for the strong adsorption limit in

scaling, the following polymenc contnbution to the elastic moduli of a bilayer

j~ j086f j~ j020fAK
m

0.43 a T $ log ~

,

AR
m

41 a T $ log ~ (40)
6fl D 6fl D

In the above analysis the ratio f~/D can be infinite, so that there is m principle no limit to the

magnitude of AK and AR at strong adsorption This result of the scal~ng theory contrasts
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strongly with the mean-field predictions of section 3, m which AK and AR always remain

small. Physically, however, the finite length of the polymer chains provides a lim~t to the
magnitudes of the logarithm~c factors m equation (40) We now assume chains of finite length
and consider the largest possible value of the ratio f~/D, and hence AK and AR. The

correlation length must reach its maximum value at R~, the Flory radius of a chain, and D can

be no smaller than the monomer dimension a leading to a maximum value of f~/D
=

AN )~'~
where N is the degree of polymenzation and is of order unity. Substitution into

equation (40) gives AK and AR at maximum adsorption as

AK 0.26 a T
J$

log (0.8 AN
,

AR
~
+ 0.85 a T $ log (0.07 AN (41)

6 fl

/~
The coefficients

a
and p are unknown, but it seems likely that the logarithm~c dependence

upon the degree of polymenzation can result m AK and AR being reasonably large compared
to T, in contrast to the rather small values predicted by mean-field theory (Sect. 3).

7. Discussion of the scaring results.

In the li~r~t of weak adsorption the scal~ng results are qual~tatively the same as the mean-field
results for both the sphere and the cylinder, and hence the same functional form for the

perturbation expressions of AK and AR,
i e AK T(f/D)~ and AR T(f/D)~ where the

prefactors obviously differ m mean-field and m scal~ng However, m the strong adsorption
limit the scaling results are quite different from the mean-field results, and we thus focus our

discussion on this region.
An analysis of the three contributions to the adsorption energy (surface term, osmotic

term, and stretching term) can be carved out as described m section 4. For the linear

coefficient B, this reveals, for both the sphere and cylinder, that the scaling case is

qualitatively the same as mean-field, the osmotic term is negative, the surface term is almost

twice the osmotic term and is positive, whilst the stretching term is neglig~ble. The quadratic
coefficient C~ in mean-field was similar for both the sphere and the cylinder, but m scaling the

sphere and cylinder produce very different results Qualitative plots of the scaling results for

the three individual contnbutions to the quadratic coefficients C~ and C~ are shown in

figures 6a and 6b respectively, and demonstrate ii the scaling approach an unexpected
difference between sphencal and cyhndncal bends m the limit of strong adsorption.

Cc

I

Fig 6a Qualitative plot of the three individual contnbutions to the cyhndncal quadratic curvature
coefficient C~, calculated using scaling theory The curves represent the stretching, surface, and osmotic
contributions, these are respectively the lower, middle, and upper curves at the nght-hand edge of the

plot Honzontal scale I vertical scale. C~
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C~

I

Fig. 6b Qualitative plot of the three individual contributions to the sphencal quadratic curvature

coefficient C~, calculated using scaling theory The curves represent the stretching, surface, and osmotic

contnbutions
,

these are respectively the lower, upper, and middle curves at the nght-hand edge of the

plot Honzontal scale. I vertical scale C~

For the elastic moduh results we found, as m mean-field, that AK is always negative and

AK is always positive, our results in the strong adsorption limit approaching a logarithm~c
asymptote. The marked difference m the functional forms for AK and AR between the mean-

field and scaling result is a direct result of the importance in the scaling description of the
polymer far from the surface, the adsorption cloud », and we now outline an argument for
the ongin of the logarithm~c form of the elastic moduli
In our approach we calculate the mterfacial energy associated with the polymer on a curved

surface directly Since we are only really interested m changes m the adsorption energy w~th

respect to surface curvature, we could have equally well evaluated the work required to bend

a flat surface into a curved surface This approach would be extremely complex in our system
and would involve non-trivial stress tensors, but for a system where only the osmotic term is

dom~nant (e g a grafted polymer brush) it has been shown by Helfnch [29], and MiIner and
Witten [30] that the elastic moduli can be expressed m terms of simple integrals over moments

of the osmotic pressure

AKosmotc
= z

~~ll' ~

~ ~

dz
,

A Kosmotc
=

z~ lI(z) dz (42)

where lT(z) is the osmotic pressure, z is the distance from the surface, and c is the curvature.

The osmotic contnbution to the elastic moduli in the adsorbing homopolymer system has

been calculated by de Gennes using the above approach [15]. In strong adsorption the

polymer concentration profile near the surface is self similar [20], and the local osmotic

pressure scales like T/z~. Since the osmotic pressure is a power law it can be shown that
ilT~(z, c )

~T/z Substitution of these quantities into equation (42) with suitable limits
ic c=o

now g~ves

AK~~~~~~ T log ( p f ~/D
,

A k~~~~~~ T log v f ID (43)

where p and v are unknown prefactors. Since all three terms, stretching, surface, and osmotic

are in balance we may expect each to have the same functional form, since a sum of

loganthms is itself a loganthm, this explains the asymptotic formula (41) for AK and

AR
m the strong adsorption limit. This type of analysis obviously gives no indication as to the
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signs of the final results, and for this there is no altemative to calculations such as those
presented here

8. Conclusions.

The simple adsorption approach has provided some very interesting, and somewhat
unexpected results for the effects of homopolymer adsorption upon bilayers Analytic and

numerical calculations reveal that adsorption of the polymer leads to a reduction m K and

increase m
R. The polymer has greatest effect in the limit of strong adsorption, in which

numencal results and a dimensional argument enabled us to determine the sign and functional
form for the polymenc contnbution to the elastic moduh In this limit the scaling and mean-

field approaches give significantly different results : the latter predicts (for a good solvent)
max~mum shifts m the elastic constants that are small fractions of kB T, whereas the scaling

approach gives contnbutions that can be (m principle) arbitranly large and (m practice) at

least comparable to the thermal energy
It must be emphasized that all our results were obtained w~thin the Cahn-de Gennes

descnption of adsorption where the polymer is flexible, is m diffusive equilibnum vith the

bulk solution, and homogeneously adsorbs onto the surface. This leads to the three individual
contributions to the adsorption energy, surface, osmotic, and stretching. The reduction in K

and increase m
R depend delicately upon the interplay of all three individual contributions

we have found no simple argument to explain the signs of these effects.

Of some expenmental interest, for example m the study of polymer/vesicle interactions

[15], is the effect of non-equilibrium adsorption
,
it was argued (Sect. 4) that the constraint of

fixed surface coverage must lead to the polymeric contributions AK being less negative and

AR being less positive than the calculated equilibnum values. This resulted from simple
thermodynamics, the same argument being equally true when any property of the surface is

constrained to remain fixed as a bend imposed Quantitatively the effect of a constraint could

be considered by inclusion of the appropriate Lagrange multiplier m the Cahn-de Gennes free

energy functional, and then adopting a method sim~lar to that used m the equ~libnum case to

calculate the resulting adsorption energy [21].
In our formulation we descnbed the surface-monomer potential as a contact potential,

resulting m the boundary condition at the surface being independent of curvature Ball et al.

[18] showed that the use of continuum surface-monomer potentials results in a curvature

dependent value off (strength of adsorption). In pnnciple the effect of curvature dependence
m the boundary condition could be constructed from our numencal results by follow~ng
suitable contours m

I(?) space. A similar remark applies if one is interested m the effects of

vanation in surface area under bending that result from a finite thickness to the bilayer.
As mentioned m the introduction, we expect equilibnum adsorption conditions to be

relevant m determing phase equihbna of polymer-surfactant systems, for example m a

lamellar stack. A discussion of this involves not only the renormahsation of the elastic moduh,
but also direct polymer-induced surface forces between bilayers The latter should be

relatively unimportant if the mean spacing between adjacent bilayers d is much greater than

the correlation length of the bulk polymer solution f~. Limiting ourselves to d » f
~ we expect

the reduction m K, due to the adsorption of polymer, to increase the flexibility of the bilayers,
leading to an increase in the relative stability of the sponge (L~) phase with respect to the

lamellar phase [3]. Turning to the Gaussian rigidity R, it is well known that this couples to the

topology of the surface; K»0 favours more handles and fewer components, whilst

K
<
0 favours more components and fewer handles. The increase m

R, due to the adsorption
of polymer, would favour the formation of more handles, increasing the stability not only of
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the L~ phase but also penodic ~r~nimal surface phases (cubic phases) w~th respect to the

lamellar state

Our conclusions concerning the incremental elastic moduh may be altered if the polymer is,
m practice, in constrained equ~hbdum. We hope to retum to this issue of non-equ~librium
adsorption, and detailed consideration of polymer-induced surface forces, m future work.
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