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Abstract. We present the complete (nonlinear) solution for the response of a system of l1vlng
polymers to an arbitrary thermodynamic perturbation of its equilibrium polymer size distribution.

Our results are relevant for the interpretation of T-jump experiments on wormhke mlcelles m the

concentrated regime, where very large perturbations to the equilibrium Size distribution can be easily
obtained.

In a recent work lbmer and Cates [I] analyzed the linear relaxation spectrum of the polymer
lengtlt distribution of a system of "living" polymers [2]. These polymers can break and recombine

reversibly; well studied examples arise in viscoelastic surfactants phases. According to simple
tlteory, the polymers or micelles have an equilibrium eTponential length distribution (in suitable

unfits)

Co(L)
=

(exP I-L/Lol (1)

characterized by an average length Lo which depend on rite thermodynamic variables of the system
such the temperature, rite pressure and the volume fraction of monomers, # In a simple model

[2] Lo
~

4"~exp (-E/(2kT)) where E is the energy to create two end-caps. Under a sudden

modification of one of the thermodynamic variables (most commonly, of the temperature) the

distribution co(L) relaxes to a new equilibrium exponential distribution c(L), characterized by a

new average length L The characteristic ttrne and the functional form of the relaxation of the size

distribution provides information about the microscopic factors which control the kinetics of the

system.

The simplest description of living polymer kinetics assumes that a chain can only change mass

either by breaking in two new shorter chains or by recombining with anotlter to form a new larger
chain. This scission-recombination scheme provides a integro-dit§erential equation for the time
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evolution of c(t, L)

d(t, L)
=

kLc(t, L) + 2k
/~ c(t, L')dL'+

+ k~ /2 /~ c(t,

')~t,
L L')dL~ k'c(t, L) /~ c(t, L')dL'

~~~

o o

where k and k' are respectively rite mission and recombination rate constants. At equilibrium
these two parameters are not independent since the prindple of detailed balance impose a con-

straint on their ratio. This can easily be checked by noting that the distribution (I) is indeed the

~,
stationary solution of the evolution equation (2), only under the condition #~

=
L(.

2
If an instantaneous perturbation (a step-change in the thermodynamic conditions) is imposed

on the system, the rate constants k and k' assume new equillrium values which obey

~,
#-

=
L~ (3)

where # is the volume fraction after the perturbation and I is the new equilibrium length. As-

suming the modification is such that the final average length I only differs slightly from the initial

average length Lo IL Lo < Lo)
,

lbmer and Cates Ill showed that c(t, L) remains exponentially
distributed with an average length which relaxes exponentially in time:

L(t)
=

I + (Lo I) eTp (-t IT) (4)

where r
is given by

~ 2~l ~~~

As eTpected, the relaxation time of the average length gives a measure of rite microscopic break-

ing rate k, if an independent measure of the average length is available. The single exponential
dependence, equation (4) has been well confirmed experimentally [3] by monitoring the time evo-

lution of a light-scattering signal which probes the average length of the polymer size distribution

[3,4].
It is however of experimental interest (and in fact easier from the point of view of monitoring

the relaxation) to provoke rather large changes m the average length distribution. For example
one can perform a large amplitude T-jump experiment on viscoelastic micellar solutions in the

concentrated regime [3,5]. The challenge, from a theoretical point of view, Is then to describe the

complete nonlinear response of the size distrlution of living polymers to an arbitrary large jump
in thermodynamic parameters.

In the present work we show that c(t, L) remains eTponentially distributed for any amplitude
of a sudden variation of the thermodynamic parameters and that this gives rise to an interesting
and unusual time evolution of the average chain length. More generally, we also show that c(t, L

remains exponentially distributed for any perturbation which conserves the total volume fraction

of monomers (for instance, a temperature modification having an arbitrary time-dependence).
Our central observation, in considering nonlinear perturbations, is that the function

c(L)
=

#f~(t) exp j-L f(t)j (6)

is a non-linear eigenfunction of equation (2) with a (time-indexed) eigenvalue f(t) that obeys

~
~ ~~~~~~l~~~
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Fig. I. Time evolution of the average length for a l1vlng polymer system under a temperature, pressure
or concentration jump. a) The initial average length Lo is larger than final average length L, b) the reverse

case where Lo < I Each experimental jump amplitude corresponds m this diagram to a particular initial

time to It is also clear from the picture that for amplitudes such that to > 2r only the exponential tail of the
decay curve is accessible to the expenment.

This may be checked by direct substitution.

In particular, the time evolution of c(t, L) for a thermodynamic jump will be the solution of (7)
with the initial condition f(t

=
0)

=
1/Lo. Making use of (3,5) we get

f(t) =

l~~tanh
lfij

if Lo >
L

f(t)
=

l~~coth
(~j

if Lo <
1

~~~

2T

where the constant to is given by

to
=

2r tanh~~ [L/Loj if Lo > I

to
"

2r coth~~ [L/Loj if Lo < L
~~~

These equations fully describe the recovery following a sudden change in temperature, pressure
or volume fraction. We see that the response at intermediate times to < t < 2r to a large jump
does not follow an eTponential decay in time. Instead the average chain length decays (or grows)
Jike a power law in time:

~~~~ "

)
~°~ ~° ~

~

(lo)
f(t)

~-

for Lo < L
t

At long times (t > r) one recovers the eTponential decay of equation (4) obtained in rite linear

response approximation. Likewtse one can check dkectly from equations (8,9) that, when the
imposed perturbation is small (large to), the decay is exponential over all timescales (see Fig. I).
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We would like to note as well that for thermodynamic perturbations of a more complicated
time-dependent form the dilierent~l equation (7) still holds provided the volume fraction of

monomers is constant in time. Under these conditions c(t, L) remains exponentially distributed

with a time dependent average length L(t)
=

II f(t). lb calculate this in the general case from

equation (7) one would require a microscopic model for the dependence of the breaking and re-

combination rate constants k, k' on thermodynamic conditions. The detailed balance condition

(3) relates the ratio of these to the thermodynamic parameters through the equilibrium average
length but to find the response to a general perturbation the two are required separately. For the

simplest case of a step-function change, the rate constant k, k' are time independent and so this

complication doesn't arise.

We stress finally that these results are well adapted to probe the time relaxation of living poly-

mers in concentrated solutions of surfactant micelles [3]. In the concentrated regime the light-
scattering intensity varies very little with the temperature; its time evolution can thus in principle

be monitored more easily when a large temperature jump is applied to the system. At any instant

we expect the scattered signal to be related to the time-dependent average length by

where the second term can be thought of as a correction arising from chain-end effects (or alter-

natively rite translational entropy of mixing of chains). We expect then our nonlinear relaxation

analysis, which predicts lit ), to be useful under these conditions. It is important to remark that

the result (II) is fundamentally different from the dilute regime where A vanbhes and hence

1(~)
"

4L(~) 13'61'

Acknowledgements.

We thank S-J- Candau and M. Turner for very helpful comments. Finandal support from the

Brithh French joint research program Alliance is gratefully acknowledged- This work was funded

in part by EEC grant No SO 0288 C.

References

[1] TURNER M-S-, CAT& M.E., I Phys France Sl (1990) 307.

[2] CATU M.E
,

CANDAU SJ., J Phys Cond Matter 2 (1990) 6869.

[3] CANDAU S-J-, MERIKHI F, WATON G
,

LEMARECHAL P, I Phys. France Sl (1990) 977.

[4] CATU M-E-, MARQUES C M
,

BOUCHAUD J.-P, submitted to J Chem Phys.
[~ HOFFMANN H., LOBL H., REHAGE H., WUNDERLICH I., finstde Detelgents 22 (1985) 293.

[fl des CLcizEAuX J., JANNINK G
,

Les Polymdres en Solution, Les Editions de Physique, Les Ulis (1987).


