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Abstract. — We present the complete (nonlinear) solution for the response of a system of living
polymers to an arbitrary thermodynamic perturbation of its equilibrium polymer size distribution.
Our results are relevant for the interpretation of T-jump experiments on wormilke mucelles m the
concentrated regime, where very large perturbations to the equilibrium size distribution can be easily
obtained.

In a recent work Turner and Cates [1] analyzed the linear relaxation spectrum of the polymer
length distribution of a system of “living” polymers [2]. These polymers can break and recombine
reversibly; well studied examples anise in viscoelastic surfactants phases. According to simple
theory, the polymers or micelles have an equilibrium exponential length distribution (in suitable
units)

eo(L) = L%exp {~L/Lo} (1)

characterized by an average length Lo which depend on the thermodynamic variables of the system
such the temperature, the pressure and the volume fraction of monomers, ¢ In a simple model
2] Ly ~ ¢Y/%exp {~E/(2kT)} where E is the energy to create two end-caps. Under a sudden
modification of one of the thermodynamic variables (most commonly, of the temperature) the
distribution co(L) relaxes to a new equilibrium exponential distribution ¢(L), characterized by a
new average length L The characteristic ume and the functional form of the relaxation of the size
distribution provides information about the microscopic factors which control the kinetics of the
system.

The simplest description of living polymer kinetics assumes that a chain can only change mass
either by breaking in two new shorter chains or by recombining with another to form a new larger
chain. This scission-recombination scheme provides a integro-differential equation for the time
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evolution of ¢(¢, L)

oo
¢(t,L) = —kLe(t,L) + Zk/ e(t, L)AL +
L

L co (2)
+ k’/Z/ c(t,L)e(t,L — L)AL — k' c(t, L)/ e(t,L")dL’
0 0
where k and k' are respectively the scission and recombination rate constants. At equilibrium
these two parameters are not independent since the principle of detailed balance imposes a con-
straint on their ratio. This can easily be checked by noting that the distribution (1) is indeed the
/

stationary solution of the evolution equation (2), only under the condition ¢k—k = L3.

If an instantaneous perturbation (a step-change in the thermodynamic conditions) is imposed
on the system, the rate constants k& and &’ assume new equilibrium values which obey
Koo,

d’ﬁ =L (3)
where ¢ is the volume fraction after the perturbation and L is the new equilibrium length. As-
suming the modification is such that the final average length L only differs slightly from the initial
average length Lo (L — Lo < Lo) , Turner and Cates [1] showed that c(¢, L) remains exponentially
distributed with an average length which relaxes exponentially in time:

L(t) = L+ (Lo — L) exp {-t/7} (4)
where T is given by
1
"= %L ®)

As expected, the relaxation time of the average length gives a measure of the microscopic break-
ing rate k, if an independent measure of the average length is available. The single exponential
dependence, equation (4) has been well confirmed experimentally [3] by monitoring the time evo-
lution of a light-scattering signal which probes the average length of the polymer size distribution
[3,4].

It is however of experimental interest (and in fact easier from the point of view of monitoring
the relaxation) to provoke rather large changes 1n the average length distribution. For example
one can perform a large amplitude T-jump experiment on viscoelastic micellar solutions in the
concentrated regime [3,5]. The challenge, from a theoretical point of view, 1s then to describe the
complete nonlinear response of the size distribution of living polymers to an arbitrary large jump
in thermodynamic parameters.

In the present work we show that ¢(¢, L) remains exponentially distributed for any amplitude
of a sudden variation of the thermodynamic parameters and that this gives rise to an interesting
and unusual time evolution of the average chain length. More generally, we also show that ¢(z, L)
remains exponentially distributed for any perturbation which conserves the total volume fraction
of monomers (for instance, a temperature modification having an arbitrary time-dependence).

Our central observation, in considering nonlinear perturbations, is that the function

(L) = ¢f2(t) exp {—Lf(1)} (6)

is a non-linear eigenfunction of equation (2) with a (time-indexed) eigenvalue f(t) that obeys
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Fig. 1. — Time evolution of the average length for a iving polymer system under a temperature, pressure
or concentration jump. a) The 1mtial average length Ly 1s larger than final average length L, b) the reverse
case where Ly < L Each expenmental jump amphtude corresponds in this diagram to a particular imtial
time ¢y It1s also clear from the picture that for amplitudes such that ¢5 > 2r only the exponential tail of the
decay curve 1s accessible to the experiment.

This may be checked by direct substitution.
In particular, the time evolution of ¢(t, L) for a thermodynamic jump will be the solution of (7)
with the initial condition f(¢t = 0) = 1/Lo. Making use of (3,5) we get

£(t) = I-'tanh [t +t°] if Lo > L
2r
i £ 4t i (8)
F(t) = L~ tcoth [ °] if Lo<L
27
where the constant ¢ is given by
to=2rtanh™' [L/Lo) if Lo > L ©)
to = 2r coth™! [L/Lo] if Lo < L

These equations fully describe the recovery following a sudden change in temperature, pressure
or volume fraction. We see that the response at intermediate times ¢y < t < 27 to a large jump
does not follow an exponential decay in time. Instead the average chain length decays (or grows)
like a power law in time:

1 -

f(t)~=—forLy>L
27

2T (10)

f(t) ~ 5 forLo< L

At long times (¢ > 7) one recovers the exponential decay of equation (4) obtained in the linear

response approximation. Likewise one can check directly from equations (8,9) that, when the
imposed perturbation is small (large 7o), the decay is exponential over all timescales (see Fig. 1).
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We would like to note as well that for thermodynamic perturbations of a more complicated
time-dependent form the differenual equation (7) still holds provided the volume fraction of
monomers is constant in time. Under these conditions ¢(t, L) remains exponentially distributed
with a time dependent average length L(t) = 1/f(¢). To calculate this in the general case from
equation (7) one would require a microscopic model for the dependence of the breaking and re-
combination rate constants k, k' on thermodynamic conditions. The detailed balance condition
(3) relates the ratio of these to the thermodynamic parameters through the equilibrium average
length but to find the response to a general perturbation the two are required separately. For the
simplest case of a step-function change, the rate constant k, £’ are time independent and so this
complication doesn’t arise.

We stress finally that these results are well adapted to probe the time relaxation of living poly-
mers in concentrated solutions of surfactant micelles [3]. In the concentrated regime the light-
scattering intensity vares very hittle with the temperature; its time evolution can thus in principle
be monitored more easily when a large temperature jump is applied to the system. At any instant
we expect the scattered signal to be related to the time-dependent average length by

1 B
m:A-*-I:—(B (11)

where the second term can be thought of as a correction arising from chain-end effects (or alter-
natively the translational entropy of mixing of chains). We expect then our nonlinear relaxation
analysis, which predicts L(¢), to be useful under these conditions. It is important to remark that
the result (11) is fundamentally different from the dilute regime where A vanishes and hence
1(t) ~ $L(2) [3,6)-
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