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ABSTRACT: In this paper we study the conditions under which comicellization occurs for a bimodal 
distribution of diblock copolymers in a selective solvent. The formation of pure micelles or comicelles depends 
on the relative concentration of the two species of diblock copolymers in solution. Regions of pure micelles 
in equilibrium with the free chains belonging to the two species exist in the phase diagram at low concentrations 
of one or other species, but for high enough concentrations of both species, comicelles may be present depending 
on the interaction parameter of the bimodal core. We consider the effects of varying this interaction parameter. 
We also discuss the interfacial behavior of mixed copolymer systems, and the conditions under which mon- 
odisperse or bimodal “brushes” of adsorbed polymer will form on an attractive surface. 

I. Introduction 
The macromolecular analogues of micelle-forming sur- 

factants, amphiphilic diblock copolymers AC in a selective 
solvent, have been extensively studied.l+ Various the- 
oretical models have been put forward to gain a better 
understanding of these micelle-forming diblock copolymers 
and have been used to explain some of the experimental 
observations.10 

We consider the case of a highly selective solvent in 
which one of the blocks, say A, is incompatible with the 
solvent and with the C block and forms a near-molten 
core, excluding most of the solvent and the C polymer. 
The other block C solubilizes preferentially in the solvent 
and forms a “corona* fanning outward from the core. This 
region is analogous to a set of terminally attached polymers 
on the molten core/corona interface. 

The asymmetry of the diblock copolymer is character- 
ized by the parameter PAC = Nc~/~NA-’ /~ .  This is simply 
the ratio of the sizes in the solvent of the two blocks making 
up the diblock copolymer. (We assume that the statistical 
lengths of A and C species are equal and choose units so 
that this length 1 = 1.) In most practical cases where the 
diblock copolymer is in selective solvent, j3 # 1. 

Diblock copolymers are also used to study the physical 
properties of polymer-coated particles.11 They impart 
stability on colloidal particles and prevent the particles 
from coagulating or flocculating in a dispersion. The block 
that has a high affinity for the surface and interacts 
unfavorably with the solvent precipitates onto the colloid 
surface and the block that has a lower surface affinity 
then forms the solvated corona, which acts as a stabilizing 
layer. If the thickness of the solvated layer is much smaller 
than the radius of the colloidal particle, then the stabilizing 
layer can be modeled as a grafted layer on a flat surface. 
This has been extensively studied by many authors.l2-19 
This approximation is not unreasonable and provides the 
route for calculating the interaction between colloidal 
particles.11 

These two problems-formation of micelles and ad- 
sorption-have been previously addressed by Marques et 
a1.l who assumed a monodisperse distribution of diblock 
copolymer chains in solution. In many experimental 
situations it is of some interest to modulate the micelles 
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and adsorbed layer characteristics-for instance, the mi- 
celle aggregation number or the thickness of the adsorbed 
layer-by mixing molecules of different types. 

In this paper we present an extension of the model of 
ref 1 to a bimodal distribution of diblock copolymers. We 
consider two species of diblock copolymers AC and BC 
with asymmetry parameter j3~c and BBC, respectively. Their 
degrees of polymerization (DP) are (NA + NJ and (NB + 
N2), respectively. For simplicity we restrict our attention 
to the case N A  = NB = N. Both A and B are in bad solvent 
and hence in a collapsed state, while for C the solvent is 
good; each C block forms a dangling tail attached to a 
molten head of A or B. The objectives of this paper are 
to consider situations under which composite micelles 
(“comicelles”) can arise from the two different species. 
This represents the simplest case of a more general problem 
involving the statistics of micelle formation from a 
distribution of diblock copolymers in a selective solvent. 
There is a close analogy with the theory of competitive 
adsorption by different species and we will consider this 
problem within the same framework. Diblock copolymers 
make good theoretical models for studying micellization 
(even though their critical micellization concentrations are 
small). This is because polymeric interactions and free 
energies are more universal and better understood than 
the forces between smaller molecules. Strictly speaking 
our results apply only for asymptotically long chains, but 
many of the qualitative aspects should hold for short chains 
also. With this in mind, we deliberately use rather small 
values of the DP when illustrating our results with 
numerical phase diagrams. 

The paper is organized as follows. In section I1 we 
present the theory of comicellization. We determine the 
grand canonical free energy of a comicelle in equilibrium 
with its unassociated bulk components. We show how 
comicelles can form for three different cases; xm negative, 
zero, and slightly positive. Here XAB is the usual Flory 
interaction parameter between the A and B chains. We 
present our results in the form of a schematic phase 
diagram showing concentration regimes where comicelles 
and/or pure micelles arise. In section I11 we formulate 
the problem of coadsorption when the two species are in 
the presence of an attractive wall. The results are again 
summarized on a schematic phase diagram. In section IV 
we present possible variations to the problem below and 
summarize the results of section I1 and I11 on a combined 
schematic phase diagram plot. 
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11. Theory 
11.1. Comicellization. At  extremely low bulk chain 

concentrations c1 and c2 of the two species AC and BC, 
referred to as type 1 and type 2 henceforth, the diblock 
copolymers do not aggregate and the chains behave 
independently of each other. Each of the two species has 
an insoluble block A or B with DP N, attached to a C block 
of DP N1 or N2,  respectively, for which the solvent is good. 
In this section we restrict ourselves to PBC > PAC > 1; this 
requires N2 > N1 >> N .  For simplicity we also assume 
below that the interfacial tension with the solvent is the 
same for A and B. Clearly for different A and B, this 
constraint may seem somewhat unrealistic but nevertheless 
provides an insight into the process of micellization/comi- 
cellization where the interfacial tensions are a significant 
component in their behavior. Different surface tensions 
can easily be incorporated into the theory for more detail 
study of particular systems. 

We construct below the grand canonical free energy D 
of a comicelle in equilibrium with the bulk species 1 and 
2. The comicelle is made up of p = p1 + p2 chains with 
p1 chains of type 1 and p2 of type 2 (see Figure 1). We can 
think of the comicelle as follows. If we consider the core 
and the inner corona only we can imagine this as a micelle 
consisting of p chains with the core radius3 R, - (p191/3 
and the corona size R1- p1/5N13/5. We then consider this 
as a new "core" and add a second outer corona with width 
R2 - (p21/3AN + p'/3N1)3/5 - p1/5N13/5, where AN = (N2 
- N1). We can now write the grand canonical free energy 
as 

where Ap = p2 - p1. 
The first term F, is the effective interfacial energy 

between the molten core of the comicelle and the solvent, 
which has the form 

where Teff is the effective interfacial tension between the 
core surface and the solvent calculated below. 

The corona energy Fcorone consists of two terms, one of 
the inner corona and the other of the outer corona. They 
have the form 

where 

and 

This form for the corona energy is derived from the Daoud 
and Cotton model for star polymers.3 

The mean-field interaction energy between the species 
in the bimodal core is given by 

( 2 4  
Finally p1 and w2 are respectively the chemical potential 

of unassociated type 1 and 2 chains in the bulk. Assuming 
as usual that the translational entropy of the aggregates 
is negligible' compared to that of unassociated species, 
these are given for i = 1, 2 as 

(3) 
The first term is the usual translational entropy term where 

Fcore = x - N ~  - P ~ ) P ~ / P  

pi = log ci + mi 

\ ii 
? 

Figure 1. Spherical comicelle made up of two species of diblock 
copolymer, one short and the other long. 

ci is the concentration of unassociated chains of type i. 
(Here and below, we work in units where ~ B T  = 1 and 
assume the size of a monomer unit u = 1 for all three chain 
species.) To avoid an unphysical self-energy term, we have 
introduced AFi as the extrapolation to p = pi = 1 of the 
free energy estimated above for a pure micelle containing 
pi chains. This gives 

AFl = 4ryA0r2 + log (N' /3N13/5)  ( 4 4  

and 

aF, = 4ryB0r2 + log (N'f3N,3/5)  (4b) 

where r = (3/41r)'/~W/~ is the radius of the molten head 
of an unassociated diblock copolymer and YAO and YBO 
are the interfacial tension between the polymers A and B 
and the solvent (O), respectively. For simplicity of 
calculations we set ( 3 6 ~ ) ' / ~ y ~ o  = ( 3 6 ~ ) ' / ~ y ~ o  = yen (see 
eq 2a). The first term of eqs 4a and 4b is the surface 
energy of the collapsed head of the diblock copolymer. 
The second terms are excluded-volume self-energies and 
are small compared to the interfacial terms, which are of 
order IW3. These terms ensure that on extrapolation to 
small aggregation numbers we arrive a t  Q(p=l,pz=O) - -log c1 and D(p=p2,p2=1) - -log c2 as required on the 
basis of our assumption that the micelles/comicelles in 
solution have negligible translational entropy. 

In this construction we have neglected the elastic energy 
contribution of the micelle core, which is always very small. 
As appropriate near the micellization threshold, we assume 
a dilute solution of diblock copolymers and so neglect the 
exterior osmotic pressure acting on the coronas.1 Another 
neglected term consists of the entropic contribution due 
to mixing of the junction points a t  the interface of the 
micelle. We have found in general that adding this 
contribution shifts only slightly the equilibrium values of 
p1 and p2 and their respective comicellization chemical 
potentials. An exception is in the range where we predict 
pure micelles of one species, in which case the entropy of 
mixing term ensures that an exponentially small proportion 
of the micelles will contain a chain of the other type. With 
this provision, we neglect this term in what follows. 
(Likewise, neglect of the translational entropy of micel- 
lized species means that we predict no dispersion in 
aggregation numbers.) This also allows for more direct 
comparison with the calculations of ref 1 for the case of 
a single species. 
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Minimization of eq 1 with respect to p and p2 leads to 

(5) a 
$Fy + Fcorona + Fcore) 

and 
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Critical comicellization occurs when we have Q N 0 giving 

I 

after eliminating f i1 and A p  using eqs 5 and 6. 
We note from eq 7 that for a given aggregation number 

p ,  the relative amounts of each speciespl(p) andpz(p) are 
independent of the interaction parameter XAB between 
the A and B blocks. Instead the role of xm is to alter the 
value of p a t  which comicellization occurs, as we shall see 
below. To study the comicellization process we may 
attempt the following. Suppose initially we start with a 
solution of unassociated type 1 and 2 species in bulk 
solution such that the ratio of their total volume fraction 
01 and 0 2  is given by K = 02/01. We now increase the 
volume fraction of types 1 and 2, while keeping K constant 
until micellization or comicellization occurs. Repeating 
this process for different values of K, we can build up a 
phase diagram separating regions of unassociated chains, 
monodisperse micelles with free chains, and comicelles 
with free chains. We will refer to the two chain concen- 
trations at  which comicellization occurs as the critical comi- 
cellization concentrations (ccc), which are simply related 
to the total volume fraction at  comicellization by aiccc = 
Nicp .  The locus of these points on the phase diagram 
defines the comicellization boundary. Similarly we have 
the micellization boundary, which separate regions of free 
chains and monodisperse micelles with unassociated 
chains. In these regions only one of the type attains its 
cmc. We also define mixing lines as the lines in the phase 
diagram separating regions of monodisperse micelles in 
equilibrium with free chains from comicelles in equilib- 
rium with free chains. In particular we will study the 
effect of varying XAB on the comicellization boundary. 

To study quantitatively the evolution of p1 andp2 along 
the comicellization boundary, we may envisage the fol- 
lowing. We begin with pure solution of type 1 with 01 
just above Olcmc. The micellization for this solution occurs 
for p1 = plcmc, where ppmC is given by 

- 4 . 5 .  

-5- 

and p f m c  is the equilibrium number of chains in the mi- 
celle given by the solution to the equation below 

Both eqs 8 and 9 are derivable from the model of eq 1. 
Next we add species 2 into the pure solution of type 1 

until mixing occurs. (By this we mean the incorporation 
of type 2 chains into micelles of type 1.) Equations 8 and 
9 and similar ones for type 2 are used to determine the two 
end points of the comicellization boundary, where dis- 
placement of one type of chain, making up the monodis- 
perse micelles, by the other occurs. This in principle also 
determines the maximum chemical potential attainable 
for each species. To determine how p1 and p2 vary along 
the comicellization boundary, we use eq 7, and we use eqs 

n 
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Figure 3. Effect of varying the interaction parameter xm on 
the comicellization boundary. X-Y-, XY, and X+Y+ are for xm 
= -0.1, 0, and +0.1 respectively. 

5 and 6 to determine @lC" and 02m. The evolution of p1 
and p2 depends on the physical and chemical character- 
istics of the two type of chains. In the next section we 
present case studies for certain types of chains with 
different interaction parameters xm. 

11.2. Phase Diagram. Experimentally the simplest 
control variables are 01 and 0 2 ,  the volume fractions of 
the two species of diblock copolymers. Some typical results 
are summarized in Figures 2 and 3 in the form of a phase 
diagram. These figures are for specific values of N, N1, 
N2, and Teff; broadly similar results are obtained for a 
wide range of these parameters. Figure 2 is for XAB = 0 
and in Figure 3 we show the effect of varying the interaction 
parameter x u  on the comicellization boundary. We 
discuss them in turn. 

Case 1: x- = 0. It is instructive to consider first the 
case when the entire core is made of the same species (A 
= B). By setting XAB = 0, Le., Fcom = 0 in eq 1, we see that 
for comicellization to occur, we require Ap > 0 as one of 
the conditions. 

The phase diagram of Figure 2 was calculated numer- 
ically from eqs 5-7, where the following physical and 
chemical parameters were used: N = 15, N1 = 500, N2 = 
4000, and Yen = 8. With these parameters we find, O f m c  
= 5.87 X 10-8, p f m c  = 26.4, 02cmc = 3.26 X 106, and p2CmC 
= 14.7. The solid lines WX and YZ represent the mi- 
cellization boundaries while X Y is the comicellization 
boundary. The dashed lines XX' and YY' represent the 
mixing lines. 

For the above parameters we find from eq 7 the total 
number of chains making up the comicelle to decrease 
monotonically from p = plcmc to p = p!fmc along the 
comicellization boundary in the direction X to Y. It can 
be shown perturbatively that in general bp = - ( 6 ~ 2 ) ~  for 
small departures away from X along the comicellization 
boundary. In our example p1 decreases monotonically 
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from plmC at  X to 0 at  Y. This allows us to predict @’I, 
the value of @ I  at Y, via eq 6 by setting p2 = p2cmc and @2 
= 92cmc. This reduces eq 6 to 

and 9‘1 follows. 
Referring to Figure 2, we may predict the effects of 

increasing the volume fractions of both species a t  fixed 
ratio K = @ 2 / 9 1 .  Suppose we start with unassociated 
chains of both types 1 and 2 in a ratio such that K < 
(N2/N#/b. This is obtained by setting A p  < 0. Increasing 
the volume fractions at fixed K causes the shorter of the 
two species to micellize when @ I =  9fmC, i.e., upon crossing 
the micellization boundary WX. The addition of more 
materials leads to the incorporation of free long chains so 
as to form comicelles upon crossing the mixing line XX’ 
(which corresponds to = @1cmc(N2/N1)2/5). Similarly 
for K > ( @ f m C / @ ’ l )  we pass through regions of free chains, 
monodisperse long micelles with free chains, and then 
comicelles with free chains. For intermediate K, ( N ~ / N I ) ~ / ~  
< K < ( @ 2 c m c / @ ’ l ) ,  we cross only the comicellization 
boundary XU, and the system jumps from a state of un- 
aggregated species directly to comicelles (containing 
comparable p1, p2) coexisting with free chains. 

In a monodisperse solution of diblock copolymer, the 
driving force to micellization is the reduction in the high 
surface energy of the molten head blocks, which overcomes 
the loss of translational entropy, and the increased 
excluded-volume energy from the corona layer. The same 
driving force that micellizes pure species will also comi- 
cellize mixed species. We can qualitatively explain what 
happens a t  the two ends of the comicellization boundary. 
In the situation where we started initially with small mi- 
celles, the addition of a longer chain into the micelle 
decreases the inner corona energy since the addition is 
normally associated with the ejection of shorter chains 
from the micelle. Hence this counteracts the loss of 
translational entropy of the long chains. The gain in the 
outer corona energy is counteracted by the loss in effective 
surface energy of the B heads of the diblock, which leads 
to a net lowering in the free energy. In the other case, 
where we started with pure long micelles, the ejection of 
a single long chain is associated with the addition of more 
than one short chains. The increase in the inner corona 
energy is counteracted by the decrease in outer corona 
energy and the loss of interfacial energy of the short chains 
resulting again in a net lowering of the free energy. The 
interplay among these factors determines how the comi- 
celles evolve along the comicellization boundary. 

Case 2: xm < 0. We adopt the same procedures as 
above to determine the comicellization chemical potentials 
of the two species via eqs 5 and 6. 

In this case there is mutual attraction between the two 
insoluble blocks of the diblock copolymers, causing a 
further lowering in the free energy of the comicelle on 
comicellization in addition to that caused by the reduction 
in the interfacial energy. A study of eq 1 reveals that 
comicellization can now occur for A p  < 0. 

Using all the above parameters but setting xm = -0.1 
we perform similar calculations and summarize our results 
in Figure 3. Figure 3 shows the effect of varying the 
interaction parameter on the comicellization boundary 
XY. We find that with xm negative, the comicellization 
boundary now extends over a wider range of 91 and @2. 
This of course means that the range over which mono- 
disperse micelles can form in coexistence with free chains 
becomes narrower. For this particular value of xm, p 

Layer 

Adsorbing W a l l  

Figure 4. Bimodal brush on an attractive wall. 

decreases monotonically from plcmc to p2cmc as we traverse 
along the comicellization curve from X- to Y-, with p2 
increasing monotonically from 0 at X- to pfmC at  Y-. 

Case 3: xm > 0. For slightly positive XAB we can still 
get comicellization between the two species, but the range 
over which this occurs is now very much reduced as can 
be seen from Figure 3. Provided that the effective surface 
energy is high, this still provides a lowering in the free 
energy of the comicelle despite the mutual repulsion of 
the two species in the core. We of course assume that the 
solvent is still expelled from the core. This approximation 
is valid provided the repulsion is of weak order compared 
to the interfacial energy, i.e., ~ ~ f f  >> x # / ~ .  For greater 
incompatibility between the A and B blocks we may expect 
solvent to interpenetrate into the core, invalidating our 
initial assumptions. 

Again for illustrative purposes we now set xm = +0.1. 
In Figure 3 we find the comicellization boundary now 
extends over a narrower range of and @2. We now find, 
as we traverse from X+ to Y+ along the comicellization 
boundary, p2 to increase monotonically from 0 to about 
13 at Y+ (11% lower than pfmc). There is also a finite 
jump in p1 at  Y+ of about 5.4. This finite jump in p1 
provides a greater reduction in surface energy to counteract 
the repulsive interaction of the bimodal core species; 
qualitatively one can distinguish this first-order transition 
on crossing the mixing line from the second-order behavior, 
in which p1 goes smoothly to zero, described above. 
However, we should note that the behavior will always be 
continuous when entropy of mixing effects are included 
(see section 11.1). 

We have found numerically that first-order behavior 
a t  the mixing line YY’ can occur even for x- = 0 if the 
molecular weight of the longer chain is increased sub- 
stantially from that used above. The same behavior is 
not, however, found along the XX’ line for any reasonable 
parameter values. 

111. Coadsorption at an Impenetrable Wall 
We now address the problem of competitive adsorption 

onto an impenetrable wall (see Figure 4) and determine 
the concentrations and conditions required for coadsorp- 
tion to occur. We again assume that A and B have the 
same interfacial properties with the solvent and the wall 
but not with each other. In the presence of a wall W 
attractive to the blocks A and B, the system may lower its 
free energy by adsorbing to the wall. We assume complete 
wetting, that is to say the entire surface is covered with 
the anchor blocks. The precipitation of the insoluble 
blocks onto the wall reduces the molten core surface energy 
of the diblock in solution, but by adsorbing onto the wall 
it pays the penalty for loss of translational entropy and 
increase in excluded-volume interaction of the C blocks, 
which are also stretched away from the wall. The balance 
of these factors determines whether the diblock copolymer 
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will precipitate onto the surface or not. With a bimodal 
distribution of diblock copolymers, we find that a bimodal 
brush may form for @ I <  @lac and @Z < @ p C  (cac, critical 
adsorption concentration).' In other words, a mixed brush 
may arise in a concentration regime where neither of the 
species would adsorb in the absence of the other. 

Using again the model of Marques et al.' and following 
analogous steps to those given above for the comicelli- 
zation case, we construct the grand canonical free energy 
Q per unit area of surface, which has the following form: 

Q(u,uz) - -s + c/o2 + N1u11/6 + ( N ,  - N1)uz"/6 + 
X"(D- ~ ~ ) U Z / ~ - C ~ ~ U - A P ~ Z  (11) 

where S is the spreading powerla defined as S = ywo - YAO 
- YWA = ywo - YBO - y w .  We consider the case when S 
> 0, which tends to flatten the molten A and B anchor 
layer. The term c/u2 is the van der Waals contribution 
to the moltenlayer withc = H/12dP,Hbeing themodulus 
of the negative Hamaker constant, which has the effect of 
thickening the layer. The next two terms are the so-called 
buoy energy formed by the C blocks calculated in a scaling 
"blob" description.12 The inner and the other buoy have 
size of order Nlu1l3 and ANu&/~ ,  respectively. The term 
in XAB is the mean-field result for the interaction of the 
two core species. The p's are the usual chemical potentials 
of the two species. As in the comicellization case, we ignore 
the entropy of mixing of type 1 and 2 chains within the 
layer; these yield exponentially small corrections to the 
partial coverages whenever the model, treated here, 
predicts the formation of a monodisperse brush of a single 
species. These entropy terms also yield corrections when 
both partial coverages (u1, uz) are very small-a regime in 
which the scaling description of the brush, on which our 
model is based, ceases to be valid. In principle eq 11 is 
valid for u1,uz > (H/47rSW)1/2; at  lower coverages the van 
der Waals term is inaccurate.' 

Minimization of Q ,  eq 11, with respect to u and uz leads 
respectively to equations for the chemical potentials 

(12) pl(u,uz) = -2c/u3 + ( 1 1 / 6 ) N , c ~ ~ / ~  + x ~ ~ N ~ ~ / u ~  
and 

Ap(u,uz) = ( l l / 6 ) (N2  - N , ) C ; / ~  + xABN(1- 2uz/u) (13) 

To find the onset of adsorption of one or both of the two 
species, we set Q N 0 to give 

3c/a2 - (5/6)N1u"/6 = S + (5/6)(Nz - Nl)az"/6 (14) 
after eliminating p1 and AP using eqs 12 and 13. 

We adopt the same procedures as used in section I1 for 
the comicellization case to determine the chemical po- 
tentials required for adsorption and coadsorption. We 
again fix K = @z/@l and start a t  concentrations such that 

< @fat and @Z C @zaC. We keep adding more types 1 
and 2 until either adsorption or coadsorption onto the 
wall occurs. Alternatively we can fix @I C @ l a c  and imagine 
adding type 2 chains until both species or one of the species 
adsorbs onto the wall. Therefore for a given +I, eqs 12 
and 14 determine u and u2 at  the minimum of Q(u,uz) at 
coadsorption. Equation 13 is used to calculate the amount 
of type 2 required in solution for coadsorption. The two 
concentrations at  which coadsorption takes place are 
referred to as critical coadsorption concentrations (ccac). 
The locus of these points on the phase diagram defines 
the coadsorption boundary. As before we define the mixing 
lines across which the character of the adsorbed layer 
changes from a single species to a mixed brush. 
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Figure 5. Plot of log versus log 31 for xm = 0 showing the 
coadsorption boundary QR, adsorption boundaries PQ and RT, 
and the mixing lines QX and RY. 
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Figure 6. Effect of varying the interaction parameter xm on 
the adsorption boundary. QR-, QR, and Q+R+ are for xm = -0.1, 
0, and +0.1, respectively. 

Phase Diagram. We consider the case when both @lac 
C @lcmc and @zCac < @zcmc; Le., both pure species in solution 
will adsorb onto the wall well before the critical concen- 
tration for micellization is attained. 

The equilibrium coverage uiac at  which critical adsorp- 
tion occurs for each of the pure species i in solution is 
given by solving the equation 

S - 3c/a? + (5/6)Nic~~"/~ = 0 (15) 
and the critical chemical potential is given by 

p? = - 2 c / ( ~ ~ " ) ~  + (ll/6)Ni(uimc)6/6 (16) 
As before we consider three cases where XAB is zero, 
negative, and slightly positive. Typical results are sum- 
marized on phase diagrams in Figures 5 and 6. To see 
coadsorption over a reasonable range of volume fractions, 
it is necessary for the C blocks of the two chains to be 
quite close in length. This condition results from the linear 
N dependence in the second term on the right in eq 16, 
which contrasts with the weak logarithmic dependence 
found earlier for the comicelles. 

As an illustrative example we use the following param- 
eters for our case studies: N = 15, N1 = 400, NZ = 450, 
S = 1, H = 10, and Teff = 8. With these parameters we 
get qcaC = 0.042 06, alcaC = 2.61 X 10-lo, @pc = 3.93 X 

azcnc = 0.041 20, +zaC = 1.01 X lo-*, and +pc = 6.43 
X Figure 5 is a phase diagram for XAB = 0. The solid 
linesPQ and RT are the adsorption boundaries separating 
regimes of a depleted wall from a monodisperse adsorbed 
brush, and QR is the coadsorption boundary separating 
a depleted wall from a bimodal brush. The dotted lines 
QX and RY are the mixing lines separating regimes of 
monodisperse brush and bimodal brush. With the above 
parameters we find as we traverse the coadsorption 
boundary from Q to R that u, the total coverage, remains 
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the case of a swollen core where the solvent is able to 
penetrate into the core. Also different core lengths of the 
two species may be considered. There is also the inter- 
esting case where one of the previously insoluble blocks 
is now in a good solvent but has a negative interaction x 
parameter with the other insoluble block. In that case we 
can envisage the comicelles as consisting of the molten 
core of insoluble blocks coated by the block that has affinity 
for both the insoluble block and the solvent; the corona 
fanning from the core arises from both species of diblock 
copolymers. These phenomena are obviously complicated, 
but their further investigation may be warranted if suitable 
experiments become available. 

In Figure 7 we summarize the results of this paper in 
a phase diagram that shows schematically where the 
different phenomena may arise. We assume that aiQc < 
@ p c .  Depending on the path taken through the phase 
diagram, one may on increasing the volume fractions of 
chains undergo various different sequences of adsorption, 
competitive adsorption, micellization, or comicellization. 
The general structure of this phase diagram should not 
depend too much on the chemical species involved, 
although as we have seen the actual values of the critical 
volume fractions depend sensitively on parameters such 
as chain length. 
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Figure 7. Schematic phase diagram showing the different 
regimes of adsorption, coadsorption, micellization, and comi- 
cellization. 

almost constant while the ratio u1/u varies smoothly from 
1 to 0. The evolution path taken by u1 and u2 allows us 
to predict @I”, the value of @1 at R, for which the brush 
at the wall becomes a monodisperse long brush. An 
estimate for @I”, is given from eq 1 2  via pl”  = -2c/(u2cac)3 

Unlike micellization where the chemical potentials 
remain constant at picmc for @i > aicmc, the chemical 
potential for the adsorption case can continue to increase 
on addition of more chains. Hence the mixing lines QX 
and RY, in the coadsorption case, are not parallel to the 
axes in the plot of Figure 5. Within our approximations 
p1 and p2 continue to increase logarithmically with @I and 

until micellization occurs. At  this point the correspond- 
ing partial coverage ceases to increase further. 

In Figure 6 we show the effect of varying the interaction 
parameter xm on the coadsorption boundary. Like the 
comicellization case, the effect of increasing (decreasing) 
the incompatibility between the anchor species A and B 
reduces (increases) the range of the mixing ratio K = @2/ 
@I within which coadsorption occurs. 

IV. Discussion and Summary 
Although the model used above is rather crude, it 

provides a useful illustration of competitive adsorption 
and comicellization phenomena in block copolymers at 
the lower end of dilute bulk volume fractions of the species. 
With increasing concentrations of the species we need to 
take into account the bimodal distribution on the for- 
mation of stable mesophases such as lamellar bilayers, 
cylindrical phases, etc. We have also not addressed the 
interesting question of kinetics of exchange between the 
two species on comicellization. The problem of a bimodal 
distribution offers an interesting starting point for con- 
sidering the more challenging case of a continuous 
distribution of chain length in the bulk. 

Several variations to the problem addressed in this paper 
may be contemplated. For instance we have not considered 

+ (11/6)N1( u ~ ~ ~ ~ ) ~ / ~ .  
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