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We study theoretically the angular relaxation and translational diffusion of stiff rodlike 
micelles that can undergo reversible scission reactions, in both the dilute and the entangled 
regime. The very strong dependence of the angular diffusion constant on rod length leads to an 
anomalous superdiffusive behavior of the typical angular deflection of a subunit at short times. 
Despite this, angular correlation functions such as (u(t) *u(O)) (also the linear birefringence 
and entropic stress response) decay exponentially with a relaxation time that is a power law 
combination of the time scales for reversible scission and for angular rotation of a 
(hypothetical) unbreakable rod. This relaxation time corresponds to the waiting time for a 
subunit to find itself on a rod that is short enough to rotate through an angle of order IT before 
recombining with another rod. The translational diffusion of rodlike micelles shows no 
anomaly in contrast to the angular case. However, the collective diffusion and self-diffusion 
constants differ by a factor of 2 at all concentration ranges for which rod micelles exist. The 
diffusion equation for collective motion is nonlinear (even below the overlap threshold) since 
the mobility of the rods depends on their local concentration. The dynamic structure factor 
S( q,t) is calculated to order q4, the quartic terms providing, in principle, a probe of the 
micellar scission time. 

I. INTRODUCTION 

In recent years, there has been intense experimental and 
theoretical interest in the dynamics of elongated surfactant 
micelles.’ Most work has focused on the case of “wormlike” 
micelles, whose contour lengths greatly exceed the persis- 
tence length of the locally cylindrical aggregate,24 although 
there is also interest in very stiff, rodlike structures.‘-’ In 
aqueous surfactant solutions the latter tend to arise at low 
concentration, when mass action effects cause the micelles to 
be relatively short, and/or at low salinity, when polyelectro- 
lyte effects cause an increase in stiffness. The idealized limit 
of very long, stiff micelles may soon be realized even in sys- 
tems with short-range forces, for example, by synthesizing 
lyotropic analogs to the columnar discotic liquid crystal 
compounds.* We therefore assume the absence of long range 
interactions, in which case the law of mass action requires 
that the size distribution of rods is exponential, the number 
density of rods of length L obeying (in suitable units) 

C(L) = exp[ -E/k,T]exp[ -L/Z], (1) 
E=gS”*exp[E/2k,T]. (2) 

Here 4 is the volume fraction of solute, and E the energy 
required to create a pair of end caps in the middle of an 
infinite cylindrical rod. These results should apply through- 
out the dilute and semidilute regimes; only at relatively high 
concentrations (near the Onsager threshold) should ex- 
cluded-volume forces between rods come into play.9 

We consider in what follows the angular relaxation 
(Sets. II-VI) and translational diffusion (Sets. VII-X) of 
stiff self-assembled rods that can undergo scission and re- 

combination reactions. We summarize our conclusions in 
Sec. XI. For simplicity we assume that micellar reactions 
obey the random scission scheme used in previous stud- 
ies.‘G’3 This assigns a uniform probability for the scission of 
a micelle at any point along its length. In this case, there is a 
well-defined characteristic time TV for the micellar kinetics. 
This may be defined as the mean lifetime of a rod of the 
average length before it breaks; it is also (to within order 
unity factors) the lifetime of the end of a micelle before a 
recombination event occurs.1o7’3 In the usual mean-field ap- 
proach, such recombination is presumed to involve a ran- 
dom member of the population of rods (subject to the con- 
straint that fusing rods are collinear) rather than the partner 
from the preceding dissociation step. 

Other reaction schemes are possible, for example, scis- 
sion can be induced by the end of another micelle (the so- 
called end-interchange process). In this case we expect re- 
sults that differ only in numerical factors from those 
presented below. In some cases, the exchange of material 
between rods may occur mainly by sequential release and 
adoption of individual subunitsI rather than random scis- 
sion and recombination; this case is qualitatively different 
and we do not treat it here. 

II. FORMAL STATEMENT OF THE ROTATIONAL 
DIFFUSION PROBLEM 

It is straightforward formally to express the problem of 
computing the response of our system of “living” rods to 
perturbations in the angular distribution function.‘* At the 
level of linear response theory, we obtain for perturbations 
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c(L, u) in the number density of rods of length L with direc- 
tor II, the following equation: 

k(L,u) = - k(L + 2’)c(L,u) 
L 

+ 2k 
s 

c(L ‘,u)exp[ - (L - L ‘)/L ]dL ’ 
0 

O3 + 2k s c( L ‘,u)dL ’ - 2k exp [ - L /z ] 
L 

m 

X 
s 

c(L’,u)dL’+D(L)R.[Rc(L,u)], (3) 
0 

where R = u X (a /&I) and D(L) is the angular diffusion 
constant ofa rod of length L. The last term on the right-hand 
side arises from the angular diffusion of rods and the remain- 
ing terms are the linearized chemical rate equations for the 
scission-recombination scheme described above. (The re- 
combination rate has been eliminated in favor of k using the 
principle of detailed balance. ) 

We do not attempt a complete analysis of this equation 
in the present paper, but focus on certain limiting cases of 
physical interest. Parts of our analysis are closely related to 
that of Lequeux” who has presented a general formalism for 
treating first order relaxation processes in systems undergo- 
ing reversible scission. 

In what follows we allow the following general form for 
the angular diffusion constant: 

D(L) =D(Z)x(L/E)-“. (4) 
The value K = 3 corresponds to dilute rods so long as a weak 
logarithmic factor is neglected; in this case D(z) = D,/z 3 
with Do a constant. (The logarithmic factor is easily re- 
stored in principle. ) Another case of interest is for entangled 
stiff rods, where according to the tube model of Doi and 
Edwards,’ one has Eq. (4) with 

K = 7. (6) 
Equations (5) and (6) can be adopted for use in Eq. (3) 

so long as the motion of a (hypothetical) unbreakable rod, at 
time scales of order r,, can in fact be represented as a simple 
angular diffusion process. In the tube model, the angular 
motion of an entangled rod is complicated at short times but 
crosses over to simple angular diffusion at time scales 
7 rep - D,L 3.9 This is the time taken for a rod to escape its 
tube by sliding along its own tangent; during one such es- 
cape, the rod undergoes only a small angular deflection 
[ 19- ($L ‘) - ‘1 because its rotation is hindered by the con- 
straints of the other rods. Adopting this as the elementary 
diffusive step, we see that the angular motion of an un- 
breakable rod for times c > T,,~ is indeed a pure diffusion with 
D(L) obeying Eqs. (5) and (6). To exploit this simplifica- 
tion we below assume r6 g r,.ep throughout our discussion of 
the entangled case.16 

III. ANGULAR CORRELATION FUNCTIONS 

We focus now on the angular correlation function de- 
fined as (u(t) *u(O) ) where the average is over all subunits 
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(monomers). For a diffusing unbreakable rod of length L, 
this obeys’ 

(u(t).u(O)), = exp[ - 2D(L)t I. (7) 
This single-exponential behavior of the one-rod relaxation 
turns out to be a crucial simplification in what follows.” 
Note that higher moments of the angular distribution func- 
tion also decay exponentially: 

(f’,[u(OMO)l), =exp[ -D(Lb(n+ lP1, (8) 
as do correlators of tensors such as (uu) which are probed 
experimentally using linear birefringence and entropic stress 
response.’ Since all these decay exponentially without 
breakage, they should all behave alike when scission effects 
are included,15 and therefore we take (u(t) -II (0) ) as the 
canonical example. 

It is, of course, easy to calculate (u( t) *u( 0) ) in the limit 
where scission processes are negligibly slow. (In doing this 
for the entangled case, we ignore any corrections to the sim- 
plest tube model that might arise from the polydispersity.) 
The limit we consider is formally rb + CO, although qualita- 
tively the results should apply whenever rb ) T,,~, where 

7 ,.Ot e-D(z) - ’ (9) 
is a characteristic time scale for angular relaxation of an 
unbreakable rod of the mean length. 

Clearly in this limit the angular correlation function is 
the weight average 

(u(t)*u(O)) = 
s 

P(L)exp[ - D(L)t]dL (10) 

p(L) =+exp[ -L/x], (11) 

where P(L) is the probability that a subunit is on a rod of 
length L. For long times, a saddle point approximation can 
be applied with the result 

(u(t)-u(O))-exp[ - (t/~,,~)~] (12) 
1 a=-, 

K+l 
(13) 

where the “stretched exponent” a is l/4 for dilute rods and 
l/8 in the entangled regime. These equations were previous- 
ly given by Bellini et al. who confirmed the prediction 
a = l/4 for dilute micellar rods in a birefringence experi- 
ment.” 

At short times, Eq. ( 10) must be treated differently. The 
leading behavior is found by recognizing that at time t, rods 
with D(L)t> 1 have essentially relaxed their orientations 
whereas the remainder have not. This yields the short time 
behavior 

(e(t)‘) = 2[ (u(t)u(O)) - l] = + 
( > 

z’x (14) 
rot 

which does not coincide with the Taylor expansion of Eq. 
( 12) for small t. 

IV. FAST BREAKING CASE 

It is notable from the data of Bellini et al. that the expo- 
nent a measured in birefringence becomes larger rather than 
smaller as the concentration is raised above the overlap 
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threshold for micelles.” The tube model predicts a very low 
a = l/8; the observation of the opposite trend suggests that 
in this regime (for the particular system studied in Ref. 17) 
the micellar breaking time may cease to be very much longer 
than the rotational time of a typical rod. (This is not conclu- 
sive, however; an increase in micellar flexibility could also 
increase a.) This is what happens in the case offlexible elon- 
gated micelles, for which both theory and experiment sug- 
gest that the relaxation becomes narrowed to a pure single 
exponential decay, in the regime where scission occurs rap- 
idly on the time scale of orientational relaxation.‘~~r” 

To analyze the relaxation of stiff micelles in the regime 
Th 4 rrot we can exploit the Markov property of the angular 
correlation function. The history of a given subunit or mon- 
omer, between time zero and time t may be divided into 
intervals ti on which it is on a rod of diffusivity Dj = D( Lj ), 
where Z, t, = t. Since the angular correlation function dur- 
ing any of these intervals decays exponentially (though with 
a relaxation rate that depends on the current rod length), the 
angular correlator for subunits may be broken down as 

(u(t)*u(O)) = exp - 2 2 Diti 
( [ I) , (15) i= 1 r 

where the angle brackets ( ), denote an average over the 
stochastic scission and recombination events that determine 
D,, t,, and n. 

The behavior of averages like Eq. ( 15) in systems with 
reversible scission has been studied recently by Lequeux.” 
Here we give a simpler treatment based on the following 
approximations: (i) we assume that the L, are uncorrelated 
samples from the population.c( L); (ii) we assume that all 
the t, are the same and equal to 76. (Hence n = t /r6. ) For 
the scission and recombination processes described by Eq. 
(3), neither approximation is quite correct. First, successive 
L values are correlated, but the correlation decays rapidly on 
times of order r,; only a few reversible scission events are 
needed before a subunit loses all memory of its earlier rod- 
length history.13 Second, the ti are in reality random vari- 
ables, having Poisson statistics with mean ti (L) 
= rh/(2 + L/Z). I5 However, it can be checked by per- 

forming more elaborate calculations that these approxima- 
tions do not alter our results except at the level of numerical 
factors. 

With these simplifications we have for times large com- 
pared to rh the obvious formula n(t) = f /rh, and Eq. ( 15) 
reduces to the following form: 

(u(t)*u(O)) = {Jw exp[ - 2D(L)rh]P(L)dL))/“. 
0 

(16) 
Since we are assuming r, <rrot (recall that the latter is the 
angular rotation time of a hypothetical unbreakable rod of 
length z), we may use the approximation in Eq. (14) to 
write this as 

(u(t).u(o))E[ 1 - py”’ (17) 

which for rb <r,,, approaches the single exponential form 

(u(t) -u(O)) = exp[ - t/r], (18) 

r = r:, - */522/c rot . (19) 
The second formula is as found by Lequeux.” The physical 
content of these results is as follows. At each time step rb, all 
monomers are redistributed at random among the rods, 
which continuously relax by angular diffusion. Only those 
monomers which are on rods of length L<L * such that 
D(L * )rh u 1 can relax orientation before the next redis- 
tribution of rod lengths takes place; the fraction of such 
monomers is of order ( rJrrot ) 2’K. The relaxation thus pro- 
ceeds by a sequence of independent steps in which this pro- 
portion of the remaining orientational bias is eliminated at 
each step. The characteristic relaxation time r for angular 
relaxation is the waiting time for a monomer to find itself on 
a rod of length L<L * whose orientation can relax signifi- 
cantly between one scission event and the next. The single 
exponential relaxation arises because the final relaxation 
time r is much larger than the time scale rh at which each 
subunit loses memory of what length rod it is on. Hence all 
subunits receive equal treatment and relax at the same rate, 
an effect similar to that found previously for flexible rather 
than stiff micelles.‘4 

It is interesting to translate Eqs. (18) and (19) into 
predictions for the concentration dependence of the relaxa- 
tion time r. Using the results of Sets. I and II for z( 4) and 
thus T,,~ (#), and assuming a scission rate k [ Eqs. ( 1) and 
(2)] that is independent of volume fraction, we obtain 
r-@, with/3 = 5/6 (17/14) for dilute (entangled) rods in 
the rapid breaking regime, compared to /? = 3/2 ( 1 l/2) in 
the opposite limit of slow breaking. The much reduced val- 
ues for the concentration exponent /7, allied to the prediction 
of single exponential relaxation, should make it easy to iden- 
tify experimentally the regime of fast breaking in stiff micel- 
lar rods, especially in the entangled case. 

V. THE STRESS-OPTICAL LAW 

The linear response calculations given above for 
(u(t) *u (0) ) generalize to any probe of the angular distribu- 
tion of subunits that decays exponentially for a single rod. 
This includes both entropic shear stress and birefringence. 
For rods these are proportional to the off-diagonal parts of 
the tensors Jc( L,u)uu dL and JLc( L,u)uu dL, respectively; 
the stress-optical law is said to hold when these two quanti- 
ties are linearly related to one another. Clearly, the stress- 
optical law is obeyed for monodisperse rods; in contrast it is 
not obeyed in the case of polydisperse unbreakable rods, 
since the alignment of a rod under external perturbation is 
dependent in general on its length. According to the above 
description of the fast breaking regime, however, each 
subunit gets randomized over the rod-size distribution with 
the time scale rh. According to Eqs. ( 18) and ( 19), r, the 
angular relaxation time for subunits, greatly exceeds rh, 
which implies that there can be almost no correlation 
between the orientation of a given subunit and the length of 
the rod it is on. Hence the stress-optical law must be recov- 
ered in the fast breaking regime. This agrees with observa- 
tions on several systems that are argued to contain rather 
stiff micelles.5-7 This could be a useful diagnostic: if an ex- 
perimental system of micellar rods obeys the stress-optical 
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law it seems reasonable to conclude that the fast breaking 
limit applies in that system.‘* 

VI. ANOMALOUS DIFFUSION: AN ANGULAR Lb/Y 
FLIGHT 

Above we considered the time dependence of 
(u(t) -u(O) ), which is typical of that expected for any corre- 
lation function whose dependence is exponential for un- 
breakable rods of a given length. Let us now consider instead 
the probability distribution for angular displacements 0(t) 
as a function of time. For small times on a rod of length L this 
is Gaussian distributed with variance 

o(t) = (e*(t)) =4D(L)f. (20) 
The motion in the 0 variable is essentially the same as a 
diffusion process for a particle with diffusion constant D(L) 
in real space; this analogy holds for times short enough that 
there is negligible probability of 8 values of order rr being 
reached. Likewise, in the fast breaking regime one has, for 
any given sequence of reactions, a conditional probability for 
B which is Gaussian distributed with variance 

a(t) =4 i Diti. (21) 
i= 1 

The problem is now to combine this with the probability 
distributions for Di, ti, and n. 

Let us temporarily ignore the fact that 0 is really an 
angle. The probability distribution P( 8) may then be calcu- 
lated by standard methods from the asymptotic statistics of 
the sum in Eq. (21).‘9320 (This is done most easily if we 
adopt the same approximations as used in Sec. IV.) We find 
that for K> 2, the stochastic process this represents is an 
anomalous one corresponding to superdiffusive behav- 
ior. 19~2’ The result 

P [Q(t) 1 CL, [e/&f) I, (22) 

/l = 4/K (23) 
is a symmetric Levy stable distribution,‘9’20 with a charac- 
teristic angular displacement 

s(t) - (ty4. (24) 
\r/ 

At large values of its argument, L,(x) decays slowly as 
IX\- ’ -p, which means that moments (x”) with k>,u do not 
exist. 

The reason for an anomalous diffusion 8(t) -tK" 

(which applies for all K > 2) is that the motion of a subunit is 
controlled by those time intervals ti during which it is on a 
rod that is much shorter than the mean length. Indeed, the 
sum in Eq. (2 1) is dominated by its largest term, and hence 
the effective angular mobility of a subunit increases with 
time. The typical angular deflection 8(t) obeys 
8=D(Lmin )r*, where Lmin (t) is the expected length of the 
shortest rod visited between times zero and t; since in this 
interval n-t /r6 different rods are sampled, we have 

s 

L ml" 
P(L)dL = I/n = rb/t (25) 

0 

which leads directly to Eq. (24) for e(t). 
We must now take account of the fact that 0 is not a 

spatial coordinate but an angular one, and cannot exceed rr. 
The above analysis applies to the probability distribution for 
angles 8 that are very small compared to IT. This remains the 
case for the main part of the probability distribution until 
such time that 8(t) -z-; the crossover time is easily checked 
to be r [ Eq. ( 19) 1, which we recall is the time a subunit has 
to wait until it is on a rod short enough to undergo an order- 
unity angular deflection before recombining. Hence we con- 
firm that the anomalous angular diffusion regime arises for 
time scales r6 < t 4 7, between the characteristic time for re- 
actions, and that of angular relaxation. This regime can be 
very large in the fast breaking limit when r$ rb. 

Note that, despite this anomalous diffusion, averages 
such as (e(t)‘) now remain finite; since these would other- 
wise diverge, they are immediately sensitive to the fact that 
angular and not spatial motion is involved. In principle, we 
may also study a winding number t?(t), now defined as the 
total angle traversed by a subunit and hence not subject to 
periodic boundary conditions. This is simple to define for 
motion on a circle (angles in two dimensions) where the 
preceding Levy analysis (without restraint on 8) describes 
the diffusion in winding number space. It is notable in that 
case that all circular harmonics J: m dB L, (8/t “p)eime 
decay monoexponentially in time (this follows directly from 
the definition of L, I9 ). In three dimensions the situation is 
more complicated, since we must consider two angle vari- 
ables; winding around a particular axis is dominated by sin- 
gular contributions that arise when the rod lies nearly paral- 
lel to that direction, and we do not pursue this issue here. 
Nonetheless, we do know from the resuts of Sets. III and IV 
that all spherical harmonics of P( u) decay exponentially in 
the fast breaking regime. 

Obviously it would be very interesting to think of experi- 
ments that could probe the anomalous motion described in 
Eqs. (22)-( 24). In the analagous problem of spatial diffu- 
sion in flexible micelles, fluorescence recovery after photo- 
bleaching has been used to demonstrate a similar Levy flight 
behavior.‘* Unfortunately, our results indicate that, to see 
any anomalous angular diffusion, the experimental quantity 
probed must be of sufficient complexity that it cannot be 
written as a simple sum of angular correlation functions (all 
of which decay exponentially, as described above). This 
rules out many of the standard methods,22 and so a rather 
original experiment may be needed to see this effect. 

VII. TRANSLATIONAL MOTION 

We now turn from the problem of angular relaxation to 
that of translational diffusion and mass transport. The trans- 
lational diffusion constant D, (L) for rods is much less sensi- 
tive to micellar length than is the rotational diffusion con- 
stant D(L). It is also rather insensitive to entanglements; 
according to Doi and Edwards’ we have 

D,(L) -Do log(L)/L dilute (26) 
D, (L ) - DO/L entangled, (27) 

where the logarithmic factor arises through hydrodynamic 
self-interactions that are screened in the semidilute regime. 
For simplicity we ignore the logarithmic factor below, when- 
ever we need a definite form for D, (L ) . The entanglements 
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present in the semidilute regime are very effective at imped- 
ing the translational motion but reduce translational mobil- 
ity by only an order unity factor. 

The problem of translational self-diffusion can be dealt 
with immediately. This concerns the asymptotic dependence 
of the spatial displacement g(t) for a monomer as a function 
of time t. Over a long time interval the monomer will spend a 
fraction of the time P(L) [Eq. ( 11) ] on rods of length L. 
The asymptotic self-diffusion constant is therefore 

local processes and cannot, in themselves, redistribute mat- 
ter from one region of the system to another. 

Under conditions of local equilibrium, c(L,r) in Eq. 
(32) is related to $( r) by thermodynamic considerations. In 
the linear response regime, we may deduce this from Eqs. 
( 1) and (2) by performing a small change 4 --t 4 + &$ and 
find the corresponding shift in C(L), using 

(33) 

- D, = 
s 

P(L)D, (Lb=, (28) 
0 

The result is as follows: 

which implies D, = Do/z, for D,(L) obeying Eq. (27). In 
contrast to the angular diffusion case, the average in Eq. 
(28) exists and there is no anomalous behavior. (This also 
contrasts with the translational behavior offlexible entan- 
gled micelles.2’ ) The probability distribution for monomer 
displacements r approaches a Gaussian for times t>rb, 

whereas at short times (when the rod length distribution is 
effectively quenched) it obeys instead 

c(L r) = LC(L)w-) 
, -.T- 7 (34) 

ZpL 

where C(L) and 4 refer to the globally averaged size distri- 
bution and concentration. Substituting in Eq. (30) we find 
the collective diffusion equation 

P(r) a (DA2 
(2D$ + ?)7’2 - 

This formula is found simply by averaging the Gaussian dis- 
tributions corresponding to chains of different lengths. 

VIII. COLLECTIVE DIFFUSION 

J(r) = B,V’+(r> (35) 

B, = (2z) -’ 
I 

-dL P(L)LD,(L). (36) 
0 

(29) This 5, is the “mass-squared average” diffusion constant, 
and it governs collective diffusion whenever the correlation 
between local concentrations and the total density obey Eq. 
( 34).23 For D, (L) obeying Eq. (27)) the result is simply 

0, = DJ2, (37) 
so that the collective diffusion constant is half the self-diffu- 
sion constant. Note that this holds even far below the overlap 
threshold for micelles: the micelles “interact” even in this 
regime since their size distribution is coupled to the local 
density by mass-action effects. 

Our next task is to find the collective translational diffu- 
sion behavior. We start from the linearized equation of mo- 
tion, which is the direct analog of Eq. (3) for the rotational 
case. The equation reads 
t(L,r) = - k(L + %z)c(L,r) 

L 

+ 2k 
s 

c(L’,r)exp[ - (L - L’)/z]dL’ 
0 

+ 2k 
s 

mc(Lt,r)dL’-2kexp[ -L/z] 
L 

I 
m x c(L’,r)dL’+ D,(L)V*[Vc(L,r)]. (30) 

0 

We consider the limit of large length scales, such that 
D,q2rb ( 1, where q is a wave vector of interest. In this case, 
the collective motions involve only the local concentration 
4(r), which is the first moment of c(L,r): 

4(r) = lrn Lc(L,r)dL. (31) 

At large length scales the chemical relaxation processes are 
fast compared to diffusion and we may in this limit assume 
there is always full local equilibration of the micelle size dis- 
tribution. [This will depend, through Eqs. ( 1) and (2), on 
the local density d(r). ] The first moment of Eq. (30) then 
reads 

m f@(r,t) = 0 + 
I 

L dL D,(L)V2c(L,r), (32) 
0 

where S#( r ) = qS(r) - 4. (subtracting the global average) 
and the contribution to S# arising directly from the reaction 
terms has been set to zero.12 This is because reactions are 
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IX. NONLINEAR DIFFUSION EQUATION 

It is notable that hardly any change is needed to the 
preceding discussion, in order to write down a nonlinear col- 
lective diffusion equation describing the response of the sys- 
tem to large concentration gradients. Under conditions of 
local equilibrium, we may apply Eqs. ( 1) and (2) locally 
(without linearization); moreover, the argument leading to 
Eq. (32) can equally well be applied directly to the full den- 
sity 4(r) rather than the small fluctuation S4( r). [The reac- 
tion contributions to d(r) vanish whether or not they are 
linearized as was assumed in Eq. (30); the argument that 
reactions cannot move material from one place to another 
still applies. ] 

In the case of most interest, where D, (L) = Do/L [ Eq. 
(27) ] we obtain 

a(r) = Btl;j1’2V2[4(r)1’2], (38) 
where, to avoid confusion, the global average density is now 
denoted 4. It may easily be checked that Eqs. (35) and (36) 
are recovered in the linear response regime. The factor of 
half between B, and D, can be viewed as arising from the 
linearization of the square root in Eq. ( 38). 

Related nonlinear diffusion equations should arise 
whenever the diffusivity is coupled locally to the concentra- 
tion, a generic effect in self-assembling systems where the 
complexion of the particles is a function of density, even at 
low enough concentrations that the aggregates do not “inter- 
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act” by conventional interaggregate forces. Experiments on 
this aspect of collective diffusion would be of great interest; 
in their absence, we defer to future work the detailed analysis 
of Eq. (38). 

scission-recombination scheme. We have assumed Eq. (27) 
for simplicity. 

X. DYNAhMC STRUCTURE FACTOR 

The collective relaxation of concentration fluctuations 
is generally studied by measuring the dynamic structure fac- 
tor22 

Note that in Laplace space, cq (t,O) is the total number 
of rods and dc, (t,s)/dsl, = o = - b4 (t) is the total mon- 
omer density. Taking the limit of s-0 in Eq. (42) and in its 
derivative one gets the following coupled equations for the 
density and chain number: 

-$(t,o) =fj,(t> - 2~c,(t,O) - d$ 
s 

QI 
c, ( t,s’ ) ds’, 

0 

S(q,t) = (2 2 2 2 expCiq.[ry(t) - $YO)]~), 
nmjk 

(39) 

where j and k are monomer indices and the n and m indices 
run over all the rods of sizes L, and L, present, respectively, 
at time t and at time 0 in the scattering volume. The weight- 
ing probabilities for the average () describe not only the 
configurational space for position and orientation of the rods 
but also for the distribution of sizes L. In this sense the dy- 
namical structure factor of “living” rod micelles is funda- 
mentally different from the structure factor of a quenched 
polydisperse set of rodlike particles. 

4,(t) = - q2DocqW). (43) 
By solving these with suitable initial conditions, we can find 
the memory kernel for #4 fluctuations [which is the same 
thing as S( q,t), by Eq. (40) 1. The correct initial condition is 
provided by Eq. (34) which determines the response of 
c, (L) conditional on a given density fluctuation e54. [The 
result may readily be checked by considering the correlation 
matrix for c, (L) and 4, which can be calculated directly by 
assuming Poisson statistics for each species of rod.] 

The initial decay rate of the scattering function S( q,t) 
can immediately be obtained by combining Eqs. (43) and 
(34): 

The behavior of S( q,t) in different wave vector regimes 
will probe different aspects of the micellar dynamics. At high 
wave vector, the angular processes discussed in Sets. II-VI 
will play an important role. We focus here on the low wave 
vector expansion, for which we may write 

S(q,t) = @,ca?tyco)> (4.0) 
so long as qz< 1, The leading behavior is then 

%ht) = exp[ - h2t 1, (41) 
which follows directly from the collective diffusion equation 
found in Sec. VIII. This is totally independent of the micellar 
kinetics, and it is interesting to see whether a more informa- 
tive behavior can be found by keeping terms of the next order 
in the low q expansion. We may expect the next corrections 
to be important, not just at very high q where the internal 
structure of the rods starts to matter (i.e., qz- 1), but at 
wave vectors in the range Brq2rb z 1. This corresponds to 
distances of order that moved by an average rod during its 
lifetime before scission, and if chemical relaxation is slow 
this can be far larger than the mean micellar size. If this is the 
case, which we assume from now on, the q” terms can yield 
information on the micellar kinetics. 

To calculate S( q,t) to order q4 we consider the Laplace 
transform (on L) l3 and Fourier transform (on r) of Eq. 
(30) which then takes the form 

S(W) It=0 = - m. (4-4) 
In contrast, the general (arbitrary q) solution for S(q,t) can- 
not be extracted easily from the equations because they are 
not closed. For a full solution one must therefore deal direct- 
ly with Eq. (42) rather than attempting to find an autono- 
mous equation for the density 44. It is, however, possible to 
find the leading ( q4) corrections to the simple diffusive be- 
havior [Eq. (41)], by treating perturbatively the diffusive 
contribution (the last term on the right) in Eq. (42). At first 
sight there is a danger that this term could be divergent, but 
in fact it remains finite for all s, as may be shown from study- 
ing the behavior of the size distribution of short chains 
c, (t,L) <c, (0,L) -L. [In other words, although the diffu- 
sion constant diverges for short chains, these are, according 
to Eq. (34), only rather weakly coupled to the local density 
and do not dominate the relaxation of that quantity. ] 

This allows us to set in Eq. (43) 

s 

m 
cq (t,s’)ds’ = A, (t)%, (t,O), 

0 
(45) 

where A, (t) is an unknown, but well-behaved function of q 
and t. Combining with Eq. (43), it is now possible to obtain 
an autonomous expression for the time evolution of the con- 
centration fluctuation 

+qt,S) =&(t,s) +2 
[ 

z 1 --- 
sL+l s I 

x [c,(t,s) -c&O)] - 22Jc&s> (42) 

-q+j-“cq(t,s’)ds’, 
s 

where cq (t,~) is the Laplace transform of cq (t,L); we have 
divided through by the scission rate constant k. The last term 
in the right-hand side of Eq. (42) is the contribution of spa- 
tial diffusion of rods, the other terms arising from the usual 

- 
i&w + ;+24,wqqj,w +e [ r* d,(t) =a 

(46) 
In order to proceed, we first solve Eq. (42) for q = 0, choos- 
ing a normalized concentration fluctuation b. (0) = 1. This 
allows us to determine the zero order term of the unknown 
function A, (t); in this manner we obtain the result 

A,(t) = 1 + 0(B,q2rb). (47) 
This can be substituted back in Eq. (46) to obtain an equa- 
tion that determines the scattering function to the fourth 
order in q. Note that this relies on the fact that 4, is itself of 
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order q2; one can confirm that, if one carries through the 
term of order Bjrq2rb in Eq. (47), the result given below for 
S( q,t) does not depend on the coefficient of this term, to the 
required order. By the procedure just described, we have 
avoided expanding to order q4 in the full coupled equations 
for c, (s,t)-a complicated step which would otherwise have 
been necessary. 

We may now solve Eq. (46) for an arbitrary initial dis- 
turbance c$~ (t = 0). There are two eigenmodes whose decay 
rates obey a quadratic equation. Working to order q4 in both 
the amplitudes and the decay rates, we obtain the following 
result for the dynamic structure factor S( q,t) 
= @,W$qYW 

S(q,t) = exp [ - q”b, t + q”B ftr] - q40 fd 

Xexp 
I 

, 

(48) 
Of course, this reduces to the standard form of Eq. (41) for 
z’,q’t& 1; the leading departures, calculated here, could, in 
principle, be used to extract from S(q,t) data a quantitative 
estimate of the chemical relaxation time TV. This might pose 
experimental problems, in practice, since the corrections are 
always small in the limit where our perturbative approach is 
valid. It would therefore be desirable to obtain a closed-form 
approximation to S( q,t) over the entire q range, but we have 
not yet found a simple way to do this. 

Another limiting case can be solved easily, however: 
that of ( prr6 ) - 1’2<q<~ - ‘. This corresponds to distur- 
bances which relax much too quickly to allow local equili- 
bration of the size distribution, but which are nonetheless on 
a large length scale compared to the size of a typical micellar 
rod. In this case, one can again write S(q,t) 
= (4, (t)$,*(O)), but this time calculate the latter by propa- 

gating an initial disturbance c$~ using the dynamics for for an 
effectively quenched system of rods. The initial conditions 
for cp (L) are found, as before, from Eq. (34) in which case 
the result for S( q,t) follows immediately: 

s 

m 
S(q,t) = (22) -’ dL P(L )Le - Dr’ L’q2t, (49) 

0 

which at long times approaches a stretched exponential re- 
laxation 

S(q,t) -exp[ - 2(D,q2t)] 1’2. (50) 
[At short times, on the other hand, one recovers Eq. (44) .] 

This result of course resembles those found in Sec. III for 
rotational relaxation in the slow breaking regime. 

Xl. DISCUSSION AND CONCLUSIONS 

We have presented a theoretical analysis of angular re- 
laxation and translational diffusion in stiff micellar rods un- 
dergoing reversible scission processes. We summarize our 
results in Table I. 

A. Angular relaxation 

In the limit of slow scission reactions, we recover a 
stretched exponential behavior, with exponent (r = l/4 for 
dilute rods (as seen in birefringence by Bellini et al.” ) 
whereas a = l/8 for the entangled case. In contrast, for the 
limit of fast breaking we obtained single exponential relaxa- 
tion for angular correlation functions, with a relaxation time 
r-rk’“<$ (dilute) and r-?b’7<$ (entangled). These re- 
sults agree with the analysis by Lequeux” of first order re- 
laxation processes in living systems, of which the angular 
correlation functions for stiff rods provide a concrete, and 
experimentally interesting example. However, the simple ex- 
ponential relaxation of the correlation functions disguises 
the fact that the angular diffusion of a subunit or monomer is 
highly anomalous: in effect an “angular Levy flight” with 
typical angular deflection 3 - t 3’4 for dilute rods and 3 - t 7’4 
in the entangled regime. 

B. Translational diffusion 

There is no anomaly in the translational diffusion of rod 
micelles, and we recover earlier resultsz3 equating the self- 
diffusion constant D, to the mass average diffusivity and the 
collective diffusion constant D, to the mass-squared average 
diffusivity for the aggregated species. For rodlike micelles, 
we found D, = 23,, a result that applies even far below the 
overlap threshold. This discrepancy arises from the local 
coupling between the mean micellar size and the concentra- 
tion, which also results in a nonlinear diffusion equation 
4 - V2( c$“~) when concentration perturbations are large. 
We calculated the dynamic structure factor S( q,t) to order 
q4, the q2 terms arising simply from the collective diffusion 
constant but with q4 corrections that are sensitive to the mi- 
cellar kinetics. An intermediate q regime can arise 
((B’,r6) -“‘gqgz -‘) in which S(q,t) should show a 
stretched exponential time dependence (with stretched ex- 

TABLE I. Summary of a theoretical analysis of angular relaxation and translational diffusion in stiff micellar 
rods undergoing reversible scission processes. 

Rotation 

(U(f) u(O)) 
Dilute 

Entangled 

Diffusion 
(4com)) 

r, = 1/(2/z) 

76 % rromt 

Exp{ - [ r IT,, ] “‘1 
Exp{ - [I /r,,t ] “‘1 

TbSTD 
Exp{ - 2[2t/7,]“*) 

rr.at = l/D,,, (,) 

76 ( rrot 

Exp{ - t/(~;“+:,‘)} 
Exp{ -t/Cd”<:)‘) 

Tbb(TD 
Exp{ - f /rD} 

r, = q2Do/(2zl 
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ponent a = l/2) arising from an effectively quenched poly- 
dispersity. 

All of our new predictions await experimental test, and 
this will require work on materials that form very stiff long 
micelles at low volume fractions; to avoid complications 
brought about by Coulomb forces,24 it would help to find 
aggregates that are inherently very stiff. In addition to nor- 
mal surfactant materials it may be interesting to seek candi- 
dates of somewhat different architecture, for example, 
among disk-shaped molecules which might in some cases 
form a relatively rigid precolumnar aggregate even at low 
concentrations. Although in the absence of detailed experi- 
ments some of our calculations may appear premature, we 
hope that in fact the theoretical predictions made in this 
paper will stimulate renewed experimental interest in stiff 
micellar systems. 
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