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Abstract 

Certain lyotropic surfactant systems, including microemulsions, form 
smectic phases at very low volume fractions of surfactant (in the few percent 
range). Upon further dilution these melt into an isotropic state. The effect of 
a steady shear flow on this transition has been considered from the point of 
view of time-dependent Landau Ginzburg theory. In the absence of a cubic 
term in the Landau expansion, the theory predicts, in a suitable temperature 
range, a transition from the isotropic to the lamellar phase at a critical shear 
rate D*. (Preliminary experiments suggest D* of only a few reciprocal 
seconds for certain highly diluted bilayer-forming surfactant systems.) In the 
presence of a cubic term (as expected for most microemulsions, on symmetry 
grounds), there is the further possibility of an hexagonal phase. In this case 
we predict that the hexagonal phase is stabilized by shear even more effectively 
than the lamellar one. Hence we expect systems to exist for which hexagonal 
order is induced by a flow, whereas lowering the temperature produces a 
lamellar phase instead. 

1. Introduction 

Certain lyotropic surfactant systems [l-31 and microemul- 
sions [4, 51 (in common with diblock copolymers blends and 
solutions [6-81) may undergo a transition from a liquid-like 
homogeneous disordered phase to a long-range ordered state. 
Several different ordered structures can result, depending 
upon the intrinsic asymmetry of the system. Very asymmetric 
systems tend to form spherical objects, packed in a three- 
dimensional body-centre cubic lattice. For smaller asym- 
metries the tendency is to form cylinder-like aggregates, 
packed in a two-dimensional hexagonal lattice, or one dimen- 
sional lamellar structures. In microemulsions, for example, 
the intrinsic asymmetry is controlled by the spontaneous 
curvature of the surfactant film at the oil/water interface, and 
by the ratio of water and oil contents. In suitable systems, 
hexagonal liquid crystalline phases, as well as lamellar 
(smectic) ones, are seen [9]. 

At the level of the mean-field approximation, the Landau- 
Ginsburg formalism (which is expected to correctly describe 
the second-order or weakly first-order phase transitions) 
predicts a second order [7, 101 isotropic-lamellar transition 
for symmetric systems but a first order one when there is finite 
asymmetry. Symmetric systems include (as an idealization) 
perfectly “balanced” microemulsions with no spontaneous 
curvature and equals amounts of water and oil. A more exact 
realization of such a system may be provided by the sponge- 
like L, phase [ll-131, in which it is thought that a surfactant 
bilayer divides random domains of the same solvent. [In this 
case the two sides of the sheet are identica1 and the symmetry 
is exact unless it is spontaneously broken.] If fluctuations are 
taken into account at the Hartree level [14] the transition 
becomes first order even for symmetric systems. The Hartree 
treatment leads also to a negative shift into the temperature 
at which the transition occurs [6, 141. 

Under an applied shear flow (U, = (Dy,  0, 0)) the two 

preceding descriptions correspond to two limiting situations 
[ 151: (a) for small enough shear rates D, the time for a fluctu- 
ation to be convected away from the critical shell (I k I = k , )  
is longer than its spontaneous relaxation time, and the flow 
has only a weak effect on the phase transition which remains 
“Hartree-like”; (b) for large shear rates the fluctuations are 
convected away before they would otherwise have time to 
relax, and are less and less effective in suppressing the phase 
transition which, at high shear rates, therefore acquires a 
strong mean-field character. 

In the case of symmetric systems the transition tempera- 
ture increases with shear rate [16, 171 and, for large enough 
shear rates, approaches exponentially its mean-field value. 
Hence, close to the static transition temperature, there is a 
region where the disordered homogeneous phase becomes 
unstable to a lamellar phase at high enough shear rate. For 
asymmetric systems one obviously need to consider also the 
formation of two dimensional structures. We study the for- 
mation of a two-dimensional hexagonal phase, and the cor- 
responding isotropic-lamellar (I-L), isotropic-hexagonal 
(I-H) and the hexagonal-lamellar (H-L) phase transitions. 
We review first some well known results of the mean-field 
treatment [7] and of the Hartree approximation of Brazovskii 
[14]. Then we discuss the role of the shear field on the I-H 
and H-L phase transitions and conclude by outlining the 
practical relevance of this work for surfactant systems. 

2. Mean-field and Hartree descriptions of the transitions 

Our starting point is the Landau-Ginsburg expansion [ 181 for 
the free-energy density as a function of the order parameter 
4 (in units of k,T):  

z being a temperature-like control variable. The order par- 
ameter is chosen to vanish on average in the homogeneous 
disordered phase and has a non-zero value in the ordered 
phases. The third order coefficient p is a measure of the 
intrinsic asymmetry, being zero for completely symmetric 
systems. 

We first recall the predictions of the mean-field theory 
for the formation of the lamellar and hexagonal mesophases. 
The one dimensional lamellar phase along the z-axis is 
described by 

@(U) = 2a, cos (k,Z) (2) 
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Fig. 1. (a) Mean-field phase diagram of the isotropic (I), hexagonal (H) and 
lamellar (L) structures. 7 is a temperature related parameter and f i  the 
measure of the intrinsic asymmetry. i is the fourth coefficient of the 
Landau-Ginsburg free-energy and accounts for the relative importance of 
the spontaneous fluctuations. The I-H and H-L lines are parabolas of 
equations T = (4/45)p2/L 0.089p2/A: and T = -(7 + 3&5)p2/2 4 

2.87p2/L,  respectively [7]. (b) Hartree phase-diagram of the isotropic (I), 
hexagonal (H) and lamellar (L) structures. The coordinates of the triple point 
are 5, = -2.308 jc = 0.564. For high values of 5 the transition lines 
approach their mean-field values. 

and for the two dimensional hexagonal phase in the Y - Z 
plane we have 

(3) 

Replacing these forms of the order parameter in the Landau- 
Ginsburg free energy (I) ,  minimizing with respct to the 
amplitudes ah and a, and then comparing the values at the 
minima, leads to the determination of the isotropic-lamellar 
(I-L), isotropic-hexagonal (I-H) and lamellar-hexagonal 
(L-H) phase transitions. The phase diagram may be displayed 
in I convenient way in the [ z /A ,  p /A]  plane (Fig. l(a)). As 
expected we have an homogeneous disordered phase at high 
temperatures. For symmetric systems (p = 0) there is a 
second-order phase transition from the isotropic to the 
lamellar phase at z = 0. For asymmetric systems (p  # 0) the 
transitions are first order. Unde cooling the hexagonal phase 
appears first but at lower temperatures the stablestructure is 
the smectic. 
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The role of the fluctuations on the phase transition has 
been previously considered by Brazovskii [ 141 who showed 
that, within a self-consistent Hartree approximation, the 
renormalized inverse susceptibilities of the isotropic ( r , ) ,  
lamellar ( r , )  and hexagonal ( r h )  phases satisfy the following 
equations [6, 141, where a = G/(471): 

(4)  

The difference to the mean-field picture resides in the presence 
of the o-terms which are the explicit contributions of the 
fluctuations, self-consistently calculated from 

az = --I 
The phase diagram can be obtained by minimization of the 
thermodynamic potentials (with renormalized susceptibil- 
ities) and by comparison of their minimized values [6, 171. We 
summarize in Fig. 1.b the results plotted in the plane ?, fi 

There are two main differences with the mean-field phase- 
diagram. First, the isotropic-lamellar phase transition is shifted 
to negative values of the temperature (?, = -2.03) and 
the transition is first order even for symmetric systems (the 
spinodal line, given by ro = 0 is shifted to z = - 00). In the 
symmetric case the lamellar structure first appears from the 
isotropic phase with a finite amplitude a, = 1 . 45d3  A-’’6. The 
second difference is the existence of a finite region of small f i  
for which the hexagonal phase is never stable. Only for asym- 
metries larger than f i ,  = 0.564 does this structure appear. 

( 5 )  
CrA 

N -  
1 2  dk 
2 (27~)~ ri + ( k  - k,)’ - 

where 7 = zGl-2/3A-2/3 = p1-5/6~(-1/3,  

3. The effect of a shear flow on the phase diagram 

We now investigate how an applied shear flow modifies the 
transitions described above. Our arguments follow those of 
Cates and Milner [I 61, and the works of Fredrickson [19] and 
Onuki [20]. The starting point is the “Hartree version” of the 
Fokker-Planck equation for the probability P ( $ ( k ) }  of the k 
Fourier component of the order parameter [21] 

where 1 is the Onsager mobility coefficient, approximated by 
its value at k,. This gives an equation for the flow-distorted 
S(k)  [19, 201 

D aS(k )  
[r + (k  - kO)*]S(k) - - k,  - = 1 

21 ak, (7) 

The main assumption in this formulation is that the flow field 
U, = (Dy, 0, 0) is fixed by an externally imposed pertur- 
bation. This completely neglects any reaction of the flow field 
to local fluxtuations in the order parameter, but it is a good 
approximation for the disordered state and presumably also 
in weakly ordered phases (since the order parameter is small 
everywhere). 
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z correction of the fluctuation integral (9, which now reads, to 
the leading order in D and small r 

I 

I s o t r o p i c  

= 4 0 )  + 24 71 ( D y ( y y ’ 2  D* 7, (8) 0 

Hexagonal ,, 
where z, = - 2.03(aA)2’3 and D* = ~ h l i 2 .  The negative sign 
of this contribution shows that, as expected, the shear flow 
reduces the fluctuations. In the limit of large shear rates the 

Lame1 l a r  fluctuation integral is (at the leading order in r) [16, 201 - *- 

I I with p = I T ,  I-’(D/D*)*’’. This integral vanishes with increas- 
ing shear rates, even in the limit r + 0. Accordingly the 
behavior approaches that of mean-field theory, as D*/D 
approaches zero. The crossover from the Hartree to the 
mean-field description is roughly at D = D*. We now set 

Fig. 2 .  Schematic phase diagram for the transition between the isotropic, 
hexagonal and lamellar mesophases for systems with small asymmetry 
(O < G < f i c  0.564). 

A = DID* and discuss how the phase diagram changes when 
A varies from 0 to CO. 

Following the above scheme, the phase diagram for the 
crystallization of the lamellar and hexagonal structures is still 
obtained by minimization of the “static” thermodynamic 
potentials where the contributions from the fluctuations to 
the renormalized susceptibilities (equations 1 and 5) are now 
flow-dependent (equations 8 and 9). In the regime of small 
shear rates we have solved these equations by a perturbation 
method, to first order in A*. For large shear rates we indicate 
the general trends of the solutions, which may be determined 
largely by applying topological arguments to the phase 
diagram. 

The new phase diagram which accounts for the role of the 
shear flow is set in a three-dimensional space [?, p, A]. The 
A = 0 and A = CO planes correspond, respectively, to the 
static Hartree (Fig. l(a)) and mean-field (Fig. l(b)) phase- 
diagrams. The fi = 0 plane corresponds to the situation 
previously analyzed by Cates and Milner [16]. This situation 
arises for completely symmetric systems, and the only two 
possible phases are the lamellar and the isotropic. The I-L 
transition temperature ?c = -2.03 for zero shear rate, to 
reach the infinite shear rate value of z, = 0. In the region of 
small flow rate the first correction to the temperature is 
quadratic in the flow rate 

ic(A) - 2, = 3.323A2 (10) 

?,(A) - ?$ - A-5/6 exp {-A”*} (1 1) 
for large values of A. 

When ji it 0 the phase diagram in the plane [?, A] at 
constant ji is qualitatively different for values of fi larger or 
smaller than fi, = 0.564. In the large ,ii case (p > p,) three 
different phases already exist at zero shear rate: the hom- 
ogeneous disordered phase at high temperatures, the hex- 
agonal phase at intermediate temperatures and the lamellar 
phase at lower temperatures. Thus, by increasing the shear 
rate at constant f i  the only effect is to shift each of the two 
correspondent transition lines. For small rates there is a 
parabolic departure from the Hartree values. 

In the intermediate ji case (0 < ji < p,), only two phases 
are present in the static Hartree phase diagram, but three 
phases do exist in the mean field limit. Therefore the I-L 

approaching exponentially the spinodal line z, - A-’‘3 

transition line must split in the two I-L and H-L lines for 
some value of A (Fig. 2). Correspondingly, the triple point 
located at  [?,, f i , ,  A = 01 in the static case moves towards its 
[ i  = 0, fi = 0, A = a] position in the mean-field diagram. 
Thus an interesting situation arises if 15 is smaller than but 
close to the triple point value bc = 0.56), and for tempera- 
tures such that ? is greater than but close to its I-L value 
ic = - 2.03: in this region close to the static triple point, the 
same isotropic system can transform either into the lamellar 
or into the hexagonal phase according to whether it is cooled 
or sheared. 

4. Applications to surfactant systems 

The results presented above can be applied directly to surfac- 
tant systems, with some extra input from experimental results 
to estimate the parameter values. Here we consider mixtures 
of oil, water and surfactant which form thermodynamically 
stable phases. The isotropic phase is a microemulsion; at low 
temperatures (and/or high concentrations) this is unstable, 
typically to lamellar ordering, although hexagonal phases are 
sometimes seen [9]. The relevant parameters of the thermo- 
dynamic description of the system are: q5 the volume fraction 
of water; $, the volume fraction of the surfactant (which 
resides in the surface dividing the water and oil domains); 
6 = Ck/a where tk  is the persistence length of that surface and 
a its thickness, and xo which is the ratio of the persistence 
length to the spontaneous radius of curvature of the interface. 
We may expand a suitable estimate of the free-energy [5] 
G ( $ ,  q5s, xo, 6) for these systems in powers of the order 
parameter $ = 4 - 4,  with 4 the average value of the 
water fraction in the homogeneous disordered phase and 6 its 
spatially dependent value in an ordered phase. Assuming the 
existence of corresponding gradient terms, and comparing 
the coefficients of the expansion with the parameters of the 
Landau-Ginsburg free-energy, we obtain an estimate for the 
asymmetry parameter fi as 

Here p is the value of S(O)/S(k,) in the isotropic phase at 
coexistence with a lamellar state; this parameter is for micro- 
emulsions of order unity [22]. The other relevant quantities 
a r e x  = a$)G(4)I4=i. Within the framework of the model 
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of Andelman et al. [22] the value of ko is of the order of 
7&/(6$(1 - $ )). If one calculates the values of F as a 
function of 6 for sensible parameter choices (for example 
/3 = 0.5, c$$ = 0.2, 6 = e'' and xo = 0; see e.g., Ref [22]) it 
turns out that the asymmetry parameter can easily be in the 
region of fi, even for quite small asymmetries of the water/oil 
contents. Obviously the above estimate is only reliable to 
within (at best) a factor of order unity but still we expect that 
the cubic terms should be significant in microemulsions that 
are not carefully tuned to lie at the oil/water symmetry point. 

To investigate the possibility of a microemulsion exhibit- 
ing a shear-induced hexagonal or lamellar phase, we need to 
estimate the crossover shear rate D*. This was done by Cates 
and Milner [16] on the basis of a hydrodynamic estimate of 
the relaxation time zo for piece of surfactant film of the 
characteristic size (related to the persistence length). How- 
ever, their estimate neglects the fact that full structural 
relaxation requires topological reconnections of the film, for 
which there may be a significant activation energy E[23]. This 
suggests instead a relaxation time t - ToeEikBT, whih may 
allow a reduction of D* from rather high rates (perhaps of 
order 104-106 s - ' )  toward values more readily accessible 
experimentally. In particular for suitable sponge phases [l, 21 
the I-L transition appears to be induced by simple agitation 
of the test tube; this suggests an activation factor z/ro of order 
100. [The hydrodynamic relaxation time in this system is 
already quite long (- s) since the characteristic length is 
of order 1000 A, larger than usually seen in microemulsions.] 
While this is an extreme case, D* values of order a few 
hundred s-' for normal microemulsions should be attainable, 
allowing flow effects on the phase diagram to be probed 
experimentally. 

5. Conclusions 

We have studied the effect of shear on the transition from 
isotropic (I) to hexagonal (H) and lamellar (L) phases in 
weakly ordering systems, such as microemulsions, and 
lyotropic surfactant solutions. [Applications to block 
copolymer systems may also be significant and are described 
elsewhere 1171.1 The role of shear is to move the system away 
from Hartree and toward mean-field behaviour. For the case 
of the I-L phase transition temperature that increases with 
flow rate; thus for suitable temperatures a shear induced I-L 
transition is predicted. Preliminary observations on sponge- 
like L3 phases [ll-131 are in accord with this prediction, 
which was made originally for symmetric systems 1161 (of 
which the L,  phase may in fact be an example). In the 
asymmetric case the same tendency to suppress fluctuations 
can lead to more subtle effects on the phase diagram. When 
the cubic coefficient p is large enough, a hexagonal phase is 
stabilized relative to lamellae at all flow rates. However, the 

most interesting case arises when there is a relatively small 
cubic term. Under these conditions a mean field calculation 
(valid at high flow rate) show that the hexagonal phase is 
stable whereas the Hartree results for the static case show that 
the lamellar phase is preferred. This results in the phase 
diagram of Fig. 2, which shows that hexagonal order may be 
induced under shear in systems that have no phase of this 
symmetry in their static phase diagram. This is particularly 
interesting since, although static hexagonal order is found in 
a minority of microemulsion-forming systems [9], lamellar 
order is much more common. Our treatment suggests that at 
least some of these systems will order hexagonally under a 
shear flow; we await with interest experimental tests of this 
prediction. 
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