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Résumé. 2014 Nous présentons un modèle décrivant l’élasticité d’un réseau de chaînes rigides. La
variation du module élastique avec la fraction volumique de polymère est déterminée dans les
deux cas où : (a) les chaînes sont rigidement connectées entre elles, c’est-à-dire que les seules
déformations possibles du réseau sont celles obtenues en courbant les chaînes (réseau
énergétique) et (b) les chaînes peuvent s’articuler librement autour des points d’interconnection
et une entropie est alors associée à ces degrés de liberté. Nous définissons une concentration
03A6c de raccordement entre ces deux comportements. Un renforcement du réseau rigide peut être
effectué en introduisant une petite concentration cP de bâtonnets de taille P (beaucoup plus
grande que la distance moyenne L entre points de réticulation. Le module élastique se voit dans
ces conditions augmenté d’un facteur, GP ~ cP P. Nous discutons en conclusion le gonflement et
le « dégonflement » des réseaux rigides par le changement de la qualité du solvant. Nous
calculons une forme possible du taux de gonflement en fonction de la taille de la maille du réseau.
Le système est instable pour un taux de gonflement supérieur à v2 eq = (5/4)3.

Abstract. 2014 A model is presented for the elasticity of networks composed of rigid chains. The
elastic modulus as a function of polymer volume fraction is determined for two cases : (a) the
chains are rigidly crosslinked to each other i.e. the network may only deform by bending the
chains (energetic network) and, (b) the chains are allowed to rotate freely about the crosslink
points so that there is entropy associated with the crosslinks. A crossover concentration between
the two behaviours 03A6c is defined. The reinforcement of a rigid network, by introducing a small
concentration cp of straight rod-like elements of length P (much greater than the mesh size of the
lattice) is found to increase the modulus by a factor, GP ~ cP P. Finally we discuss how rigid
networks may swell, and « de-swell » if the solvent quality is changed and calculate a possible
form of the swelling ratio, as a function of the length of the network chains. The system is found to
be unstable for a swelling ratio greater than v2 eq = (5/4)3.
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1. Introduction.

Rigid networks are present in many guises in nature, for instance, silica gels, and the fractal
structures arising from irreversible aggregation are often rigid. Polymers which are naturally
stiff, such as helical molecules (PBLG), polydiacetylene, kappacarrageenan, polyamides and
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peptides, can aggregate to form networks. We will model these networks as stiff elements
joined at crosslink points. The elasticity of the network will depend upon the stiffness of the
elements and the degree of mobility of the chains at each crosslink point.

It is important to quantify the rigidity of the chain. Even classical flexible chains, entirely
dominated by the entropy associated with their myriad of configurations, are stiff on a short
enough length scale (that of individual bonds). Such chains behave, for short enough
deformations, as springs with spring constants which scale with the temperature T, i.e.

k oc T (where N is the degree of polymerisation of the chain). The scaling with T indicatesN
that the déformation is restricting the number of chain configurations, causing the entropy to
drop. Our chain will be rigid in the sense of the spring constant being independent of T, the
distortions are paid for with bend energy. We will first review a model of Ball and Kantor [1]
which quantifies what level of stiffness is required before the network is energetic rather than
entropic. Other discussions dealing with the cross-over from a rigid chain to a flexible one
may be found in references [2] and [3]. Then we will go on to calculate the spring constant of a
frozen chain with an arbitrary shape in the limit of small deformations. From the assumptions
of affine déformation and rigidity of the crosslinks, will emerge laws governing the scaling of
the elastic modulus with volume fraction of the chains in the network.
Even in the case where the network is built from rigid chains, its elasticity may be

dominated by entropic rather than energetic effects. This is possible if the elements can rotate
freely around the crosslink points and the topological constraints are « soft » enough. This
problem has been considered by Edwards et al. [4]. The scaling of the elastic modulus with the
volume fraction can be different from the system with rigid crosslinks. These two different
behaviours can be simultaneously displayed and we will discuss the conditions under which
each of them can be observed. We will mainly concern ourselves with modelling networks
with rigid crosslinks, so there is no entropy associated with the system due to the free rotation
of stiff elements about hinges, although we will discuss entropic contributions to the modulus
in section 4.
Reinforcement of the rigid gels can be achieved by the introduction of extra chains in the

network. We will calculate the increase of the elastic modulus of the network, as a function of
the added concentration of rigid rods and their size.
We shall conclude with a calculation of the swelling and « de-swelling » of rigid networks

with changing solvent quality. Again molecular weight between crosslink points is important.

2. Chain rigidity.

In order to arrive at a criterion for the rigid chain limit, in terms of polymer chain parameters,
Ball and Kantor [1] consider a chain in the form of a frozen random walk. See figure 1. The
chain is represented by a walk of N steps, each of length a. The equilibrium angle for the joint
between the i-th step and the (i + 1 )-th step is 0 i, where 0 may take any value between 0
and 2 7T. The random walk is frozen in the sense that an energy, U = B ( P i - () i)2 /2 is

required to go from the equilibrium angle 0  to 0 i. B is the elastic force constant. If we then
consider applying a force F to the ends of the chain the distortion can be found, enabling the
modulus to then be determined. In this paper we are essentially only interested in two
particular limiting values of the above quantities. Let us consider the limit for which

NkT/B &#x3E; 1, i.e. this is the high temperature, low B/N region. The distortion X of the chain
in this case is found to be
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Fig. 1. - A chain in the form of a frozen random walk of N steps each of length a. The angles between
consecutive steps are only allowed to change by small amounts when the force F is applied to the ends of
the chain.

which leads to the Gaussian chain result for the modulus and is to be expected at high
temperatures. Now taking the high B/N, low T limit i.e. when NkT/B  1, the distortion is

which has a dependence on B but no T dependence, unlike the Gaussian chain result. It

should be noted that an alternative way of discussing the two limits is in terms of the thermal
persistence length of the molecular chain Qp = Ba /kT. The high temperature limit corre-
sponds to lp  L (L is the contour length of the chain), so that the chain is flexible and we not
surprisingly obtain the Gaussian chain result. The low temperature limit, however corre-
sponds to fp » L and so the chain is rigid.
In the following·discussion we shall limit ourselves to networks composed of elements

which are energetic rather than entropic in their elasticity. These elements, e.g. the molecular
chains, may be conceived as frozen chains with some fractal dimension 1 / v connecting the
size R to the mass distribution : R = N’a, where a is a length of the order of the monomer
size. As an example when v = 1 we have a network of rod-like chains.

3. Elastic response of rigid chains.

3.1 BENDING A RIGID ROD. - The deformation of objects with large aspect ratios, for
instance rods or frozen chains with a fractal dimension close to unity, is achieved most easily
for a given applied force by bending rather than stretching or compressing. This notion is the
basis for the elasticity of cellular structures (Ashby and Gibson [5]) and has been applied to
tenuous fractal elasticity (Kantor and Webman [6]).
Applying a force F transversely to the end of a single rod produces a deflection X which

scales as L3 for a fixed F. See figure 2. In the limit of small deformations the rod behaves, as
expected, like a spring, with a spring constant of

where E is the rod material modulus, t the cross-sectional dimension, and the constant
depends on boundary conditions and on the shape of the cross-section. We ignore details
since we are interested only in scaling. In the case of a rod-like molecular chain, it is not

meaningful to talk in terms of the modulus and the cross-section of the « rod material ».
Instead we consider the quantity Ba, the bend constant of the chain (where Ba = Et ), which
is directly proportional to the persistence length of the chain. We will calculate the magnitude
of this quantity for a given system in section 4.
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Fig. 2. - The rod bends when a force F is applied, producing a deflection X.

3.2 BENDING A FROZEN CHAIN WITH AN ARBITRARY SHAPE. - The assumption that the
polymer chains are straight rods may be severe, and it is worthwhile looking in more detail at
the conformation of the chains. A chain which is typical of the stiff synthetic systems we have
in mind is given in figure 3. This has many benzene rings joined together, and gives rise to a
structure, which is not linear see figure 4, but has an overall linearity. Stricter linearity can be
obtained by using molecules with linkages of the type shown in figure 5 which are discussed in
reference [7].

Fig. 3. - Part of a molecular chain which will deform by rotation about the bonds.

Fig. 4. - A schematic diagram of a molecular chain formed from the type of molecules in figure 3.

Fig. 5. - Linear chains can be formed using the type of molecules shown above, as in Husman and
Helmimiak [7].
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As we have discussed, if the force constant preventing deformation is quite large, we have
an energetic network. It may be the case though that in the real system, over long time
periods, i.e. long compared with the time for the modulus to be measured, the bonds may flip
around and the structure exhibit behaviour more characteristic of flexible chains. The chains

may then have entropic contributions to their elastic energy and have a temperature
dependent modulus, for long time measurements.

Returning, to short time modulus measurements, where large changes in the shape of the
chain are not allowed it is possible that the chain has a rigid, but random structure. For chains
which are not straight we consider a more general case i.e. that of a rigid but arbitrary shaped
chain. This problem has been considered before by Kantor and Webman [6] for fractal
structures, Ball and Kantor [1] ] and Brown [8]. A simple form of the type of calculation is
given below. Consider the arbitrary shaped element in figure 6 with forces applied to each end
(the ends being the crosslink points that mechanically couple the chain to the network). The
torque on the i-th element is B à 0 i = Frr where â8 i is the angle through which the i-th
element of the chain bends through as it is strained and r/- is the perpendicular distance from
the point of application of the force to the i-th element of the chain. The change in length in
the x-direction is where àr§’ is the change in the length of the i-th element in the

direction parallel to the x-direction.

The arbitrarily shaped chain behaves, under small deformations, as a spring with a spring
constant

It can be seen .that for v = 1/2 this gives equation (2), so that equation (2) is just the special
case of equation (6), where the chain has the configuration of a random walk. In the limit of
the fractal dimension being one, we recover the rod spring constant of equation (3) (using
Ba = Et). For fractal dimensions higher than one, the equivalent spring rigidity is smaller by

Fig. 6. - A randomly shaped rigid chain, which may deform by bending when a force is applied to its
ends.
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a factor of R/N ~ N v -1. As in the preceding paragraph the calculation ignores the

extensibility of the rigid elements of the chain, since this leads to a less compliant elastic
response.

4. Elasticity of a network of rigid chains.

4.1 FROZEN CROSSLINKS. - We first consider systems where there is a fixed number of
chemical crosslinks which are permanent and rigid i.e. they are not freely hinged. We now
want to determine the modulus of a network of this type. A qualitative argument to derive the
shear modulus is given first and a more detailed and more general argument is given later.

If we apply an external force to the network it will be transmitted by the rigid system. We
make the assumption that the system deforms affinely down to a length-scale - 0 (R), the
distance between crosslinks. Although it is not clear that this assumption should hold for rigid
chains for the types of deformations that we are considering, we use it here as an attempt to
obtain a simple, first order model of the processes involved when rigid networks deform.

If there is a force F acting on each chain, and a total of n chains in a volume

R3, then the stress carried is a = nF /R2. Because of the affine assumption the strain of the
network will be given by e = X / R. Young’s modulus G r for small deformations is then given
by, 

We define the volume fraction 0 of polymer in our system as follows. If there are n chains in a
volume R3, each of volume - Na3 (where a is the typical monomer dimension and the cross-
section t is taken to be the monomer length a) then qb is

the làter relation relying on R - N " a. In our modelling we assume that n is small so that the
effect of entanglements can be ignored. The volume fraction may be varied by holding n fixed
and allowing N to vary, or by fixing N and allowing n to change. The later of these can be
achieved by controlling the functionality of the crosslinks. If N is constant then we obtain the
following scaling of the modulus with concentration.

If we fix n and allow N to vary then we obtain a different scaling of modulus with
concentration, as given below

There exist more general arguments to calculate the stress in a network which do not rely
on defining an area and a volume for each molecular chain, see Doi and Edwards [9]. The
stress across a given area, see figure 7 is then given by the following argument.

where Rm is the position of the m-th junction and Fmn is the force exerted by the point n on the
point m (in this case via the connecting chain). Although the application of equation (11) does
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Fig. 7. - Definition of the stress tensor U afJ. The component of the stress U az’ is the a component of
the force (per area) that the material above the plane of area A and a distance h from the origin exerts
on the material below the plane.

not allow us to obtain a precise result for the modulus, it is worth following through the
argument since the underlying assumptions are drawn sharply into focus.
Considering figure 8 there are three rods exerting forces and torques at m. The analysis is

extremely involved and so we introduce some simplifying assumptions. These involve : (a)
Taking only the reaction, - Fmn to evaluate the distortions of strut mn. This represents the
action of the counter-couples at n by clamping and vice versa for the couples at m. (b)
Assuming all of the Fmn is effective in bending mn. (c) Assuming that the deformation
ORmn is affine. Then if we consider the deformation of one rod, we obtain

where (A - 1 ) is the strain and following (b) above we get

If we impose a uniaxial strain À zz’ inserting the above into equation (11) we obtain

Averaging this using, Rmn, Z = L cos 0 and (cos2 0 &#x3E;= 1/3 (which assumes an isotropic chain
distribution) yields

Fig. 8. - Derivation of the stress tensor U zZ. The component of Fmn in the z-direction causes a change in
the z-component of Rmn.
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For the modulus ÔUzz/ÔEzz with Ezz = (Àzz - 1 ) we get a result differing only by unimportant
factors from equation (7). For a straight chain Ba = Et 4 and in equation (15) NS is defined as
the number of chains in a volume V.

Returning to equation (10), we can choose to follow the scaling properties by varying cp, the
volume fraction of the polymer, by allowing N to vary, at fixed n. When the chains are straight
(fractal dimension 1 / v = 1) the elastic modulus scales as the second power of the polymer
volume fraction, as is found for a wide class of cellular structures as shown in [5].

This is in good agreement with the experimental results of Rinaudo et al. on the elastic
modulus of kappa-carrageenan gel which gives a power law dependence of G - o 2 --t 0.01 as
discussed in [10]. The chains of this gel are believed to have a very large persistence length
and, indeed, electron micrographs show a structure which could be described as an

entanglement of almost straight chains see reference [11].
Another system which could provide a convincing test of our predictions is the silica gel

system. These gels have been characterized by several experimental groups. By varying the
pH of the reaction bath which produces the gel it is possible to modify, at least to some extent,
its fractal dimension. Schaefer et al. [12] report fractal dimensions obtained by SAXS varying
from 1.7 to 2.3. We are not aware of any systematic measurement of the elastic modulus of
the gel as a function of its fractal dimension but results reported by Dumas et al. [ 13] give a
power law dependence of G - 0 5 ± 0.5, consistent with the fractal dimensions of order of two
reported by Schaefer.
The value of B in the above equation may be estimated for a particular system, that of

figure 3. It can then be used to determine the order of magnitude of the modulus expected for
such systems, and a comparison be made with typical experimental data. It is assumed that for
a molecular chain such as figure 3, the bend is achieved by rotation about molecular bonds.
Rotation about the bond shown causes the chain to bend out of the plane of the paper. This is
shown in the more schematic diagram figure 9. This mechanism is different in detail from that
of figure 1. We assume coplanarity of the two successive benzene rings and their connection is
a quadratic minimum of the energy, U = C m 2/2, where m is the rotation about the CD axis
(systems not obeying this type of potential are beyond the scope of this paper). The effect is to
move end E from coplanar position El to the elevated position E2. For small cv the

displacement is perpendicular to the plane and is given by - w sin yDE, and the effective
angle bent through is a - w sin yDE/CE. The rate of change of angle with distance moved
along the chain is a /CE, and the bend constant is Ba = B. CE. The energy for bending the
chain is then given by U = B (CE )2 ( a /CE )2/2. The expression for the bend constant being
Ba = C . CE ( CE /DE sin y )2. Then by using data giving the variation of U with w we can
calculate C and thus Ba. Obviously the exact value of Ba depends on the geometry of
particular molecules, and so we only give an order of magnitude estimate for a typical system,
that of figure 3. We thank Dr. A. H. Windle for supplying the potential data. Assuming that
DE/CE - 1/4, sin y = B/3/2 and that CE = a - 10-9 m we obtain Ra - 10-27 Jm. Then using
N - 10, and ~ - 10- we obtain a value for the elastic modulus of G - 106 Pa. In the work of
Aharoni and Èdwards [14] the modulus is found to be of the order 106 Pa, and over the range
of temperature investigated, it is independent of temperature, which fits the energetic
network model.

4.2 REINFORCEMENT OF THE GEL. - It may be of some practical interest to consider a
system into which there has been introduced a small concentration c p of chains with a size
much larger than the average mesh size of the network. For the sake of simplicity we only
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Fig. 9. - Diagram to show how the bend of a molecular chain may be achieved by rotations about
bonds. The segments BC, CD and DE are part of a chain. When E is in position El there is a linearity a
long AEI. If the segment DE rotates about the axis CD, through an angle w out of the plane of the
paper so that the end moves from position El to position E2 then the line connecting C and E is no
longer parallel to AEI and has rotated through an angle a from the direction of AEI. Therefore
successive rotations along the molecular chain give rise to bending of the chain.

discuss the case of straight chains (of length P) being introduced into a network of rods’of size
L (L « P ). When a force is applied to the network there are two types of chain-chain
contacts which transmit the stress. The first ones are the permanent crosslink points that have
been discussed in the preceding section i.e. chemical crosslinks consisting of covalent bonds.
In addition to these ones there will be rod-rod contact points which are formed when a P rod
meets other L rods along its length, we will call these contact points extra links. They are extra
in the sense that as the network is deformed the rods will form more of these contacts. This

type of contact has been considered before in relation to rigid networks by Doi and Kuzuu
[ 15]. In [ 15] the only type of links in the system are physical ones, formed by rod-rod contacts
occurring during deformation. In such a network it is found that the elasticity is highly non-
linear. In the network which we discuss this non-linear elasticity is not present, at a first level
of approximation, since the stress carried by the extra links is transmitted via the network of
fixed crosslinks. Non-linearity would only occur at higher concentrations of added P rods.
The extra links increase the free energy of the system and; following [ 15] we write this extra

free energy per unit volume as

where e (x) is the amount of deflection imposed to one rod by the deformation of the
network. A rough estimate of the extra energy can be obtained from  d ), the averaged
deformation imposed on the P rods, and  dx2), the squared average distance between two
points carrying the stress. The assumption of affine deformation leads to

where - = (A - 1 ). The introduction of the P chains (P » L ) thus reinforces the elastic
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modulus of the gel by a factor which increases linearly with concentration and with the size of
the extra rods, giving a contribution to the modulus of

4.3 FREELY HINGED NETWORK. - We consider in this paragraph a system which is made
from chains of average size R meeting at permanent crosslink points of functionality z. The
chains are freely hinged in the sense that if one isolates from the network the z chains meeting
at some crosslink point, there will be no constraint on the angles between the chains. Thus, in
such a network, the constraints acting on the crosslinks are only derived from the topology of
the system. Other work on freely hinged systems has been done by Thorpe and Phillips [16]
and also Edwards et al. in [4]. We expect that a very high functionality will completely freeze
the degrees of freedom of the system. This problem has been considered before by Vilgis et al.
in reference [17]. In order to estimate the critical functionality which would freeze the angles,
we describe the system as an ensemble of N points - the crosslink points - each of them
connected to z neighbours. The description of the dynamics of these N points in a d-
dimensional space needs Nd coordinates. There are, in a very large system, Nz/2 constraints
of the type . The total number of degrees of freedom per crosslink point is then

If one wants to keep some mobility in a three dimensional system, the functionality needs to
be less than six. For z = 4 there will be a degree of freedom per crosslink point. We now
assume that the functionality is low enough in order to keep some internal mobility in the
system. At non-zero temperature, the thermal fluctuations of the system determine its

susceptibility

where Y is the average vector joining the two points which represent the extreme positions of
the end of the chain as the chain undergoes thermal fluctuations. Let a be the angle formed by
two chains meeting at a crosslink point. The fluctuations in the positions of the end of any
particular chain depend upon the fluctuations 6 a of the angle between the two chains about
its average value of a. Therefore since R is the end to end distance of the chain we obtain the

following equation for ( y2)

The susceptibility y is the inverse of the force constant k. The elastic modulus can thus be
written as a function of the angle fluctuations  8 a 2) and the distance between crosslinks R :

The exact value of (&#x26;a 2&#x3E; depends in a very complicated way on the topology of the network
and will remain as an unknown parameter. From equation (8) we get the scaling of the elastic
modulus with the volume fraction of the polymer for constant n to be
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The elasticity of this entropic network of rigid chains has a very different scaling from the
system with frozen crosslinks (compare with Eq. (10)) :

The entropic and enthalpic type of elastic behaviours can be simultaneously present in
actual systems, depending on the rigidity of the chains and on the magnitude of the
fluctuations of the angles. At a macroscopic level there is an imposed stress u and the two
different contributions to the elastic modulus act in parallel. The resulting modulus G is then
given by

Comparing the two contributions it is natural to define the crossover concentration

0 c that can be written as

for straight chains ( v = 1 ). For volume fractions larger than 0,,, the elastic behaviour has an
entropic origin and the elastic modulus follows the scaling of equation (24). For volume
fractions smaller than c/J c the deformation of the network is accomplished by the bending of
the rods leading to the scaling of equation (10). In practice a large rigidity of the chains (large
B) and a large thermal fluctuation of the angles (large  5 a 2) ) lead to a very small crossover
concentration and the displayed behaviour is entropic.

5. Swelling of rigid networks

When networks come into contact with solvent three main effects can exist. First there is the

preference of the chains for each other or for solvent, which following Flory [ 18] and Huggins
[19] is conventionally expressed in terms of mean field theory as giving an energy change per
monomer site of k TX 0 ( 1 - 0 ) when mixing occurs. y is the solvent quality and is negative
for solvent absorption into the network to be favoured, and positive for expulsion. Secondly,
if solvent is imbibed, the chains must extend so reducing their entropy, and there will be an
elastic restoring force, opposing extension. In the networks described in this paper, then at
least at short times, these forces will be energetic. At long times it is possible that the chains
display entropic behaviour due to bond flips occurring. The third contribution is an entropy of
mixing when solvent is absorbed. This is only present when the chains are flexible, that is in
the long time entropic limit, where configurational changes are allowed. In the rigid system no
such entropy of mixing term exists. In the general case these three effects compete with each
other and the system reaches swelling equilibrium when the total energy of the system is a
minimum with respect to the amount of solvent taken up.

In this section we first want to consider the case of a rigid network made of energetic chains,
and to ask the question of how the network swells. The swelling process brings into focus
several problems still to be resolved in the modelling of rigid systems. - How much does rigid
chain overlap effect classical swelling, to what extent is Doi and Kuzuu treatment required ?
Over what length scale is the chain deformation affine with the bulk ? A large amount of work
has been done by Bastide et al. on the de- swelling of gels and their deformation mechanism,
which can be found in reference [20].
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In rigid systems the entropy of mixing term discussed above vanishes (because no
configurational changes are allowed to occur), and therefore we can only consider the
k Ty 0 ( 1 - 0 ) term to be driving the swelling. Thus swelling will only occur if X is negative so
that the energy can be lowered.

We make the assumption in our model that for the swelling process the network is phantom
i.e. the chains may pass through each other. This is admittedly a dramatic simplification and
ignores such difficulties as log-jams. On the other hand we assume contacts between chains
and solvent are described by kTXc/J (1 - c/J), which implies that the number of rod-rod
contacts scale as 02. We shall use it however to give a first approximation to the swelling
mechanism. The total free energy of mixing of the network is written as

The elastic free energy is given by

where h Ro = R and Ro is the unstretched value of the end to end chain length, and
ns is the total number of chains. Also, for isotropic swelling the extension ratio À is

i.e. the quantity V2 is defined as the ratio of the initial and final volumes of the network.
Therefore, if n solvent monomers mix with a fixed number, n2 of polymer monomers in the
network, then V2 = (n2 + no)l(n2 + ni) where no is the initial number of solvent monomers.
The volume fraction of polymer is then cp = n2/ (n2 + nI), and the initial value is

00 = n2/(n2 + ni) , so that V2 = cp /CPo. The total solvation energy when n 1 monomers of
solvent are absorbed is given by

In order to find the equilibrium swelling point the total free energy Ftot must be minimised
with respect to n1. This gives,

It can be seen that if we consider the small swelling limit, so that V2 eq = 1 - 8 where
8  1 then we obtain

which for B19 N 2kTo 0 » 2 X leads to
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If we take the large swelling limit i.e. then we arrive at the result

It is interesting at this point to compare these results with the corresponding ones for a flexible
network. For a classical Gaussian chain the elastic free energy is given by

The energy of mixing of an entropic network with solvent contains both an entropic mixing
term and an energy of solvation due to solvent interactions. For the entropic network and
taking cb o = 1, we have

For this type of network the equilibrium condition can be determined and is found to be,

In the large swelling limit i.e. V2 eq « 1 we obtain,

This shows a significant difference in the N depedence of the swelling ratios for entropic
networks and energetic networks.
We can also look at how the network may « de-swell », i.e. how solvent may be expelled, by

using a poor solvent and allowing the network to decrease in volume. This type of behaviour
will be seen in a rigid network only if x &#x3E; 0. We have already seen that swelling equilibrium is
achieved when the osmotic pressure ir vanishes, and ir is given by

When X &#x3E; 0 it can be seen that there is a region in which the - y v2term dominates and the
system will be unstable. This will occur when

and substituting in the condition at equilibrium (32) we obtain

Therefore the model gives an instability for
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Experimentally, the swelling of rigid networks has been performed by Aharoni [14] by
changing the solvent quality. The swelling was performed over several months and factors of
order two for the swelling ratio were observed. The experiments are done over long time
periods in order to allow the solvent to enter into the networks slowly, otherwise the networks
are destroyed by the process. We have mentioned already in section 3 that in addition to the
energetic behaviour of these networks there could also be a different long time scale
behaviour. This would occur because of bonds flipping over long time periods and cause
configurational changes leading to entropic behaviour. These long time (slow) flips would
give rise to a long time temperature dependent modulus, and in addition, because

configurational changes can occur, the network could display a conventional swelling
mechanism as described by FLory [18] and Huggins [19], if the time for swelling is greater
than the time for bond flips to take place.

4. Conclusion.

We have presented a model for the deformation of a network made of rigid elements and
found that, if the deformation is restricted to the bending of the chains then the scaling
behaviour of the modulus with concentration under certain conditions depends on the fractal
dimension of the chains. For straight rod-like chains this scaling being çb 2 and for chains
which are frozen random walks 05 . The other feature of this elastic modulus being that it is
temperature independent, since it is derived from energetic rather than entropic effects.
We also consider an entropic contribution to the modulus for the case where the crosslinks

are freely hinged and obtain a new set of power laws for the variation of modulus with
concentration. The two moduli i.e. entropic and energetic, have different scaling with
concentration and so we can define a crossover concentration Oc above which the entropic
effects dominate the modulus, and it becomes temperature dependent.

If the network is reinforced by introducing a concentration cp of rods of size P into the
system, then for P &#x3E; L (where L is the distance between crosslinks in the network) the
modulus is found to be increased by a factor which is directly proportional to cp and P.
The swelling of rigid networks by imbibing solvent is a very complex problem and we have

given only a first approximation as to the processes taking place. The equilibrium swelling
ratio v2 eq is determined for the case where the crosslinks are rigid for a general fractal
dimension v of the chains, however it is difficult to visualise how the network can swell for
v = 1, and it is possible that the analysis breaks down before v = 1. If the network « de-

swells » it is found that an instability exists when the ratio of initial to final volumes,
V2 eq is greater than (5/4)3. Although, there is only a limited amount of experimental data
currently available for such systems, the results of [12] and [13] give the modulus versus
concentration power law. The dependence of this power on the fractal dimension of the
chains, agrees qualitatively with our predictions. In [14] the networks synthesised have a
temperature independent modulus and to an order of magnitude the modulus measured
agrees quantitatively with what is predicted for very similar systems by our model.
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