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ABSTRACT: We discuss the adsorption of copolymer chains where most monomers B are repelled by the 
surface and a few stickers A distributed regularly along the chain are strongly attracted by the surface. 
For a single Gaussian polymer chain we calculate the propagator close to  a hard wall or a phantom wall. If 
the adsorption strength is very large, all stickers are on the surface; in a weak adsorption limit the chain 
may be renormalized to a chain of blobs each containing a single sticker. In this case the propagator is 
calculated by resummation of a perturbation series. The results are in good agreement with a simple Flory 
theory. A dilute solution in contact with a wall forms a continuous polymer layer on the wall. We give a 
geometrical description of this layer in a good solvent in terms of a blob model. When the fraction of 
stickers decreases from 1 to zero the structure of the layer crosses over smoothly from an adsorbed homopoly- 
mer layer to a polymer brush. We finally discuss briefly the interactions between two flat plates coated 
with copolymers. 

I. Introduction 
The behavior of polymers close to interfaces has been 

extensively studied over the last few years, and a broad 
spectrum of theoretical, numerical, and experimental tech- 
niques has been developed to investigate various physi- 
cal properties of the polymer layers:' polymer concentra- 
tion, surface excess, thickness of the interfacial layer, and 
elastic response of the layer. 

Two mechanisms of interaction between a polymer solu- 
tion and a surface are in general distinguished, leading 
to the formation of adsorbed and grafted layers respec- 
tively. 

(1) Adsorbed layers are built up by polymers where all 
the monomers are attracted toward the surface. Even in 
contact with a dilute solution, the interfacial layers are 
rather diffuse and their thickness is of the order of RG, 
the radius of gyration of isolated chains in solution. The 
layer is made from loops with a broad size distribution 
that has been described in terms of a self-similar grid.2 

(2) Grafted layers (sometimes called polymer brushes) 
are formed by nonadsorbing polymers end-linked to the 
surface. When the grafted density is large enough to allow 
overlap, the chains are stretched and the layer thickness 
is several times thicker than the radius of gyration, 
R,.3*4 

Most studies have been dedicated to homopolymers, 
but it may sometimes be interesting to use A-B copoly- 
mers to form thick layers on a solid surface. A favorable 
architecture is achieved when one type of monomers A 
is attracted by the surface and anchors the chain and 
the other one B is repelled by the surface forming a thick 
layer. We recently presented a scaling theory of the 
adsorption of diblock  copolymer^,^.^ which are not often 
used as an alternative way to the covalent cross-links to 
form grafted layers on solid surfaces. The adsorbing block 
end-links the chain; the repelled block forms the brush 
in the solution. 

In this paper we are interested in another architecture 
where the adsorbing monomers are not grouped in a block 
but are distributed along the chain either in a regular or 
in a random way. This is an intermediate case between 
the two situations encountered with homopolymers (graft- 
ing and adsorption). When the fraction f of A mono- 
mers is close to 1, the interfacial layer is an adsorbed 
homopolymer layer and is thus formed by many loops 
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on the surface. In the other limit where each chain has 
only one strongly adsorbing A monomer (to which we 
will sometimes refer as a sticker), a grafted layer made 
of extended chains is obtained (even if the sticker is not 
at the end of the chain, the qualitative structure remains 
unchanged). We study below the intermediate range 0 
<< f << 1 where we expect a mixed structure where the 
chains still form loops but are also slightly stretched. We 
discuss the structure of these loops first for the adsorp- 
tion of one isolated chain and then for the adsorption of 
a dilute solution. 

A useful picture of the random copolymer is to group 
monomers into blobs, each of them containing one sticker 
A. The average number of monomers per blob is P = f' 
and the number of blobs per chain is N = M / P  = fM 
where M is the degree of polymerization of the chain. 
One of our basic assumptions is that the disorder is not 
a relevant variable and that the adsorption properties of 
the chain are not very different from that of a chain where 
all blobs have exactly P (>>1) monomers. This is cer- 
tainly true if the variance of the blob size distribution is 
small compared with the mean size P. We also expect 
this to be a rather good approximation when the adsorp- 
tion of A monomers onto the wall is strong and the repul- 
sion of B monomers is large. In cases of weak adsorp- 
tion or weak repulsion, or close to an adsorption thresh- 
old, the disorder might be a relevant variable, its 
consideration is far beyond the scope of this ~ o r k . ~ , ~  

The paper is organized as follows. In section I1 we 
review some known results on polymer statistics and Gaus- 
sian chain configurations near two different types of inter- 
faces: a phantom and a solid wall. The first corresponds 
to an attractive interface between two incompatible sol- 
vents and the second to a solid-liquid type of interface. 
In the spirit of the blob model we also first treat the 
adsorption of one blob (with a single adsorbing mono- 
mer). This result is then used in section I11 to discuss 
the adsorption of the whole copolymer chain. We use a 
perturbation expansion that can be resummed to calcu- 
late the propagator of an adsorbed Gaussian copolymer. 
The results are in good agreement with simple Flory argu- 
ments. Section IV is devoted to the discussion of the 
more realistic problem of the adsorption of a dilute solu- 
tion in a good solvent. A blob model is introduced to 
describe the geometrical structure of the layer. Our con- 
clusions are presented in section IV. 
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11. Statistics of Gaussian Polymer Chains near 
Interfaces 

1. Single-Chain Statistics?.” The fundamental quan- 
tity describing the statistics of a Gaussian chain of N 
monomers of size a is the statistical weight or propaga- 
tor, GN(R,R’). Within a normalization factor, this is the 
conditional probability of finding the Nth segment a t  posi- 
tion R’ knowing that the first segment is at R. The deter- 
mination of the statistical characteristics of the chain (such 
as the average end-to-end distance or the energy) often 
involves the knowledge of G,. As an example, the mono- 
mer concentration at a given point R is calculated from 
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Under the assumption that the chain behaves as a sequence 
of statistically independent segments under an external 
potential U ( R ) ,  the propagator GN is written as 

-11 T (11.2) 

where we have chosen temperature units such that the 
Boltzmann constant is k, = 1 and R(s)  is the position of 
monomer s. This statistical independence between dif- 
ferent parts of the chain is expressed by a composition 
law 

G,+,(R,R’) = SdR” G,(R,R”) G,(R”,R’) (11.3) 

Under the assumption that the external potential var- 
ies slowly, Edwards’’ first showed that the composition 
law is equivalent to the following differential equation 
for the propagator: 

aGN --(R,R’) aN = [ azVR2 6 - ““1 T G,(R,R’) (11.4) 

This equation is the analogue of the Schroedinger equa- 
tion of quantum mechanics. If the potential does not 
depend on N, a general solution is found by expansion 
in eigenfunctions 

G,(R,R’) = a3x#k*(R’)  # k @ )  exp(-tkl\r) (11.5) 

where gk(R)  and ek are, respectively, the eigenfunctions 
and eigenvalues of the equation 

k 

The propagator of eq 11.5 satisfies the proper boundary 
condition Go(R,R’) = 6(R - R’). 

One important feature of eq 11.6 is the presence of the 
factor N in the exponential; in a very large class of prob- 
lems the sum is dominated by one term, corresponding 
to the smallest eigenvalue. This is known as the ground- 
state dominance approximation. The concentration then 
simply reads 

c(R)  = Nl#(R)12 (11.7) 
2. Single-Chain Adsorption at an Interface. We 

now briefly review the behavior of homopolymer chains 
close to a flat interface (the homopolymer chain corre- 
sponds to a random copolymer with a fraction of stick- 
ers f = 0 for a repulsive wall and f = 1 to an attractive 
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Figure 1. Concentration profile of a Gaussian chain near an 
impenetrable repulsive wall. 4( t )  = c ’ ( t ) / c ’ ( a ) .  t = (312a2N)’/2z. 
The depleted region extends over a distance -N1/ a. 

wall). We first discuss an infinitely repulsive wall and 
then an attractive wall in the two limits of a phantom 
wall penetrable by the polymer and a hard wall impen- 
etrable by the polymer. Finally we discuss adsorption 
of one “blob” of the copolymer where one end is attracted 
toward the surface and the rest of the polymer repelled 
by the surface. 

a. Purely Repulsive Wall. In the vicinity of an infi- 
nitely repulsive wall a polymer solution has a depletion 
layer where the concentration decreases from its bulk value 
to zero; when a zero concentration is imposed at  the wall, 
the propagator of a Gaussian chain in the direction z per- 
pendicular to the wall is derived” from eq 11.6 

This leads to a concentration profile 

erfc (22) - 2 erfc (2)) ] (11.9) 

where we have introduced the dimensionless variable 2 
= ( 3 / 2 ~ ’ N ) ~ / ~ z .  erf is the error function defined by erf 
(x) = ( 2 / d r ) S t d u  e-u2, and erfc is the complementary 
error function erfc (x) = 1 - erf (x). A is the total area 
of the wall and V the volume of the solution. 

This profile is shown in Figure 1. As expected the chain 
avoids a region of order N’/’a near the wall, where its 
entropy is reduced. For small z the concentration increases 
as c’(z) N (N/V) (~ /U)~  and reaches, a t  infinity, the bulk 
value N/ V. 

b. Attractive Wall. We distinguish here between a 
phantom wall penetrable and a hard wall impenetrable 
by the chain. The potential seen by the polymer chain 
due to the wall U(z )  is purely attractive for a phantom 
wall. For a hard wall it is attractive for positive values 
of z but becomes infinitely repulsive on the wall ( z  = 0). 
We limit the study to short-range attraction potentials 
with a range b of the order of a monomer length a. At 
distances smaller than b the details of the concentration 
profile depend explicitly on the actual shape of the poten- 
tial; however, the adsorbed layer is in general larger than 
b and farther away, and the chain configuration is inde- 
pendent of the details of the potential, the only impor- 
tant feature being that this profile has a good matching 
with the shorter range part z < b. This matching imposes 
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the value of the logarithmic derivative of the concentra- 
tion profile close to the wall. For convenience, in the 
following we mimic the potential by a 6 function for a 
phantom wall 

U(Z) = -7f$3(2) (11.10) 

For a hard wall, the potential is infinite at  the wall and 
we must shift the attractive well at  a distance b from the 
wall 

U(z )  = -7$6(z - b)  z > 0 

U(Z) = m z < o  (11.1 1) 
The use of more realistic potentials would improve the 
description of the chain conformation in the vicinity of 
the wall, which is irrelevant for practical purposes. 

In both cases the concentration profile is obtained from 
eq 11.7 using the ground-state dominance approxima- 
tion. Close to a phantom wall, the chain is always con- 
fined within a distance D from the surface 

c ( z )  = N/AD exp[-21z1/D] (11.12) 
The thickness of the layer D decreases with the strength 
of the potential as 

D = 2aj6 (11.13) 
The ground-state dominance approximation is accurate 
if the distance D over which the chain is confined is smaller 
than its radius N’12a, i.e. 
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(%,’:>> 1 or 6 >> (11.14) 

We consider here the strong adsorption limit 6 - 1 for 
which this condition is always satisfied. 

In the presence of a hard wall, the concentration van- 
ishes at  the wall and increases up to z = b. The bound 
state of the Schroedinger equation corresponding to an 
adsorption exists only if the attraction 6 is larger than a 
threshold 6, = a / b  N 1. This threshold is due to the 
reduction of the entropy of the monomers close to the 
wall; although their interaction energy with the wall is 
always negative, their free energy remains positive if 6 < 
6,. Above threshold, the concentration decreases expo- 
nentially as z > b according to eq 11.12 with a decay length 

D = a / (6  - 6,) (11.15) 
Below threshold the propagator is not dominated by the 
ground state and the concentration increases monotoni- 
cally from the wall to its bulk value. The wall may there 
be considered as a partially repulsive surface, and the 
profile shows a depletion layer similar to that of a purely 
repulsive wall. This depletion profile may also be char- 
acterized by its interpolation length D, 1/D = -(2/c)(dc/ 
dz)l, = (l/b)[(6, - 6)/6]. If there is no attraction 6 = 0, 
the profile is that of Figure 1: D increases with 6 and 
diverges for 6 = 6,; the profile is then essentially flat, 
and the attractive part of the potential compensates exactly 
the repulsive part. 

c. Chains Adsorbed by One End. As a last exam- 
ple we discuss the behavior of one blob of the copolymer 
with only one end monomer feeling the attractive part 
of the potential. Since the potential acts only on the 
last monomer, the propagator of N - 1 first monomers 
GN-lo(z,z’) is that of a free chain 

phantom wall CN0(z,z’) = (*)”’ exp( 3(Z - 2’)’ ) 
xNa’ 2Na2 

a 

I 
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Figure 2. (a) Concentration profile of a Gaussian chain adsorbed 
by one end on a penetrable wall. ~ $ ( z )  = c’(z) /c’(m).  
2a2N)’/22.  The adsorption free energy 6 is of order N‘Ih $( 
Concentration profile of a Gaussian chain adsorbed by one end 
of an impenetrable wall. The adsorption free energy 6 is 4N in 
b and 0.5N in a. 

hard wall GN’(z,z’) = 

(II.16a) 
Adding the adsorbing end simply changes the propaga- 
tor from its nonperturbed form by a Boltzmann factor 

GN(z,z’) = CNO(Z,Z’) exp[-U(z)/T] (II.16b) 
Using the potentials in eq 11.10 and 11.11, we obtain 

phantom wall GN(z,z’) = GNo(z,z’) + 6 6 ( z )  6a GNo(z,z’) 

hard wall GN(z ,z ’ )  = GNi(z,z’)  + -6(z 6a - b)  G ~ ( z , z ’ )  

(11.16~) 

For a phantom wall the concentration profile is calcu- 
lated from the propagator 

6 

(11.17) 

As soon as the attraction is finite (6aA < V), the concen- 
tration is inversely proportional to the volume, indicat- 
ing that the chain is not confined to a small region close 
to the surface. The concentration is slightly higher than 
its bulk value N/V on the wall and relaxgs toward this 
value over a radius RG - N1/2a (Figure 2a). Only for 
infinite attraction is the concentration inversely propor- 
tional to the area and the chain confined in a radius of 
thickness RG. This corresponds to a grafted chain. 

The expression for the concentration in the presence 
of a hard wall is rather lengthy; we only give on Figure 
2b the concentration profile for two values of 6. The main 
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new feature is the existence of the depletion layer close 
to the wall. If 6 >> N ,  the attraction dominates and the 
concentration first increases, then shows a maximum, and 
decreases toward its bulk value. Notice, however, that 
this does not correspond to the adsorption threshold of 
the previous section: for finite values of 6, the chain is 
not constrained in a small region close to the wall and 
the concentration remains inversely proportional to the 
volume of the solution. 
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111. Adsorption of a Random Copolymer 
In this section we discuss the adsorption of one chain 

of M - N monomers B and N monomers A. We first 
assume a regular distribution of A monomers along the 
chain, which is then built of blobs of size P = M / N ,  each 
blob having one A monomer at  the end and a tail of P - 
1 monomers. A and B monomers have thus similar prop- 
erties in the bulk; only their adsorption behavior is dif- 
ferent. We also give one example where the number of 
monomers per blob fluctuates around an average value 
Po. 

There are clearly two different limits for the confor- 
mation of the chain at  the interface. If the adsorption 
is very strong, all the stickers A are on the surface, the 
chain is grafted. For a weaker adsorption only a frac- 
tion of stickers is in contact with the surface, the others 
dangling farther away in the solvent. The configuration 
of the adsorbed chain is then similar to that of an adsorbed 
homopolymer but with renormalized monomers, the blobs. 

1. Strong Adsorption. In the limit of strong adsorp- 
tion (6 - a), all the stickers A are on the wall and the 
chain is made of a succession of loops of B monomers. 
The concentration profile is obtained by summing the 
concentration of individual loops with both ends on the 
surface. Generalizing the results of section I1 where the 
blobs only have one sticker, we obtain at  a liquid-liquid 
interface 

where we have used the reduced variable 2 = ( 3 / 2 ~ ~ P ) ' / ~ z .  
This profile is plotted in Figure 3a. The chain is con- 
fined at  the interface over a distance of order P'l'a, and 
the concentration at  the origin is of order NP'I'IAa. All 
the blobs touch the interface and each of them contrib- 
utes a factor P1I2 to the surface concentration (this is 
due to the Gaussian statistics of each blob). 

A true random copolymer would have different blob 
sizes. Let us assume, for instance, that each blob has Pi 
monomers with an associated Gaussian probability of aver- 
age Po and root mean square A.  The monomer concen- 
tration is obtained by averaging the concentration pro- 
file and is up to second order in A 

where the function f@ varies slowly from f(0) = 1 to f(2) - t3  for z >> 1. The power law divergence for large z 
values is not important since there the concentration decays 
exponentially. The original assumption over the regu- 
larity of the copolymer is then justified if the statistical 
distribution of the P values is not too broad, i.e., if A C 
Po. The correction to the concentration profile is of order 
(Alpo)'. This result remains valid throughout this sec- 
tion. 

Close to a solid wall, the concentration profile can be 
determined as before, the Green function for each loop 
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Figure 3. Concentration profile of a Gaussian copolymer chain 
grafted on a wall: (a) hantom wall, (b) hard wall. d ( i )  = c ' ( i ) /  

of P monomers being G,'(b,b) (eq 11.8). The profile is 
displayed in Figure 3b. Its mean characteristics are sim- 
ilar to those of a copolymer chain grafted on a phantom 
surface: thickness of confinement of order of P'l'a and 
maximum of concentration of order NP'I'IAa. We already 
noticed in section I1.2.c. that for the grafted chain geom- 
etry the existence of an impenetrable wall introduces a 
depletion region of the order of P'/'a, the radius of gyra- 
tion of the loop. In contrast to the depletion layer of a 
purely repulsive wall (eq II.9), the concentration increases 
here linearly from its vanishing interfacial value to reach 
its maximum at  z N P1/'a and decreases again to zero 
over a length P'l'a. 

2. Weak Adsorption. a. Flory Theory. In the oppo- 
site limit of weak adsorption the stickers A have a finite 
adsorption strength 6. There is then a distribution of 
the positions of monomers A along the z axis, two suc- 
cessive stickers being connected by a free chain of P - 1 
monomers B. In terms of blobs this means that only a 
fraction of the blobs touch the interface, all the others 
dangling in the solvent. Let D be, as above, the size of 
confinement of the chain. D may be estimated from a 
usual Flory argument that balances the loss of entropy 
due to confinement with the adsorption energy gained 
by contact with the surface. In the case of a liquid-liq- 
uid interface, this reads 

c'". 2 = (3/2a2P)' P '2. 

(111.3) T = -(S/P)(pM + (a/D)'M 

In the first term, on the right-hand side, cp = a / D  is the 
fraction of monomers in contact with the surface, a frac- 
tion 1 / P  of those (the monomers A) being able to gain 
an energy -6. The second term is the loss of entropy of 
a Gaussian chain of M monomers confined in a size D.  
Minimizing this energy with respect to D leads to 

D - aP/6 (111.4) 
which naturally recovers eq 11.13 in the limit P = 1. From 
eq 111.4 we thus expect the adsorbed random copolymer 
to have loops extending P times further in the solvent 
than a simple homopolymer. This Flory argument is eas- 
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ily extended to the case where the chain is in a good sol- 
vent. The only term that we need to change is the entropic 
contributionlo that becomes M(a/D)’l3; the minimiza- 
tion leads to 

D - u ( P / ~ ) ~ / ~  (111.5) 
In a good solvent, the increase of the thickness of the 
adsorbed chain is even more important. 

A similar scheme may be applied to the adsorption on 
a hard wall, but two new difficulties arise. First, the exist- 
ence of a finite threshold is not predicted by the Flory 
argument, which simply takes into account the adsorp- 
tion free energy y gained by contact of the monomers 
with the surface. This free energy is the difference from 
the threshold y = 6 - 6,. Second, as we have seen before, 
there is a depletion layer close to the wall over a dis- 
tance of order P1/’a. The concentration increasing as a 
quadratic function from the wall, c ( z )  - ( M / D A ) ( z 2 /  
Pa2),  the fraction of monomers within a distance b from 
the wall is thus cp = (a/DP)(b/a)’ .  Substituting this in 
the Flory energy and minimizing with respect to D, we 
obtain 
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D - a p / y  (111.6) 

D - ~ ( P / y ) ~ / ~ ( a / b ) ~ / ~  (111.7) 

In a good solvent a similar argument leads to 

Notice, however, that this ignores proximal effects, which 
to our knowledge have not been studied for such 
 copolymer^.'^"^ 

b. Perturbation Theory. To go beyond these sim- 
ple Flory arguments and calculate the detailed concen- 
tration profile, we need to compute the propagator of 
the copolymer. We first notice that the potential U(z)  
which acts on the A monomers is now N dependent, and 
we cannot use the expansion in eigenfunctions of eq 11.5. 
One natural approach would be to renormalize the mono- 
mers to blobs and try to derive a Schroedinger equation 
from the composition law between successive stickers 

(111.8) 
The major problem with this approach is that the solu- 
tion ignores the details on length scales smaller than P‘/% 
and thus does not correctly account for the boundary con- 
dition at  the wall. An alternative approach is to build 
the propagator recursively from the individual blobs using 
the composition law ar.d the propagator of the blobs given 
by eq 11.16. This is equivalent to a diagrammatic expan- 
sion of the propagator shown in Figure 4: we sum over 
all the configurations that take the chain from z to z’; 
each configuration is a succession of flights of nP mono- 
mers starting and ending on the surface. A configura- 
tion of m flights is trapped by the PO ential m - 1 times 
and is thus weighed by a factor (6/6)”-’. The final expres- 
sion of the Green function of the Nth sticker is, for a 
liquid-liquid interface 

GN(z,z’) = 

with 
N-r N-r+l-il N-il-i2- ...I 

AGN(z,z’) = Z(:)‘C C ... C Gi,O(z,O) 
r= l  11=l r2=l  i,=l 

Gi:(0,O) ... Giro(O,O) GN-i ,-,,, ~,‘(O,Z’) (111.10) 

2 

Figure 4. Diagrammatic expansion for the propagator of a chain 
of four blobs. The sum has eight terms in this case. Each term 
of the sum for which j stickers touch the surface is weighed by 
a factor (b/6)J. 

This same approach also may be used for a solid-liq- 
uid interface if one substitutes all the Gaussian statisti- 
cal weights a t  the surface G?(O,O) by the corresponding 
propagators G:(b,b) for an impenetrable wall and the 6 
functions at  the origin by the 6 functions centered at  a 
distance b from the wall. 

The perturbation series eq 111.10 can be summed by 
Laplace transformation over N leading to 

AG,(z,z’) = JmAGN(z,z’)eaNcW N 

where g,(z,z’) = (6a/6)J;dN e-5N GNpO(z,z’). The prop- 
agator is then calculated by inverse Laplace transforma- 
tion. In the limit of a very long chain (N - m), there 
are two different contributions to the inverse Laplace trans- 
form of eq 111.11. The first corresponds to the existence 
of a branch point a t  s = 0, the second one is the pole s, 
corresponding to g,(O,O) = 1. The ground-state domi- 
nance approximation is equivalent to neglecting the con- 
tribution of the branch point; the pole corresponds to 
the smallest eigenvalue. 

For a penetrable interface the explicit form of g,(z,z’) 
is 

gg(2,2’) = -(-) 6 3 112 ([e-2(z-i’)s”2 erfc - (2 - Z ’ ) ]  + 6 2P 

The pole exists for all positive values of 6. This gives a 
threshold for adsorption 6, = 0. Figure 5 displays the 
concentration profile as calculated from eq 11.1. Note 



Macromolecules, Vol. 23, No. 1, 1990 

that eq 111.9 only gives the stickers’s statistical weight; 
the complete propagator for a chain with an arbitrary 
length r = n P  + s must be calculated from the composi- 
tion law (eq 11.3) 

00 
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- z 

GnBs(z,z’) = 1:dz” G&,z’’) G:(z”,z’) (111.13) 

with Gnp(z,z”) calculated above and G:(z”,z’) the usual 
Gaussian propagator. 

At  larger distances z > P’/’a the concentration decays 
exponentially according to eq 11-12 with a decay length 

D = 2aP/6 (111.14) 
in agreement with the Flory argument (eq 111.4). In the 
limit P - 1 this reproduces the homopolymer result (eq 
11.14). Since there is only a fraction f = 1/P of mono- 
mers contributing to the adsorption energy, the ground- 
state dominance approximation holds only for adsorp- 
tion strengths P times larger than that of a homopoly- 
mer, the validity condition (eq 11.13) becomes 

f 6  >> (24/M)i/2 (111.15) 
Geometrically this corresponds to a confinement length 
D smaller than the radius of the chain RG. 

For a solid-liquid interface g,(z,z’) is given by 

e2(t-2’)8’12 erfc [s1/2 + (2 - z!)] - e-2(z-2’)2/z erfc - (Z - 

z’)] - e2(i-z’)2’zs + (2 - z’)] (111.16) 

The pole s, exists for 6 I 6, = ap/bfl(P) where the func- 
tion P(P) is defined by = erf (b )  - [(l- e-6)/?r1/2b] with 
6 = (3/2a2P)ll2b. In the limit where P is unity 6, - a/  
b. If P is much larger than unity the threshold is 6, = 
(~/6)’/~(a/b)p3/’. The threshold value is large, and the 
perturbation theory might be questionable in this case. 
We expect, however, these results to be qualitatively cor- 
rect. The concentration profile of the adsorbed chain 
onto the solid wall is sketched in Figure 5b. I t  decays 
exponentially a t  large distances. When 6 is slightly larger 
than 6,, the decay length D is written as 

and the asymptotic behavior for P >> 1 is 

D = -(?) ?rP 2 a 
6(6-6,) b 

(111.17) 

(111.18) 

in agreement with the Flory arguments presented above. 
The previous approximations break down if 6 is too 

large. A necessary condition for their validity is that the 
thickness of the layer D be larger than the blob size; i.e., 
6 < P1I2 (liquid-liquid interface) or 6 - 6, < PI2 (solid- 
liquid interface). At larger values of 6 the concentration 
profile smoothly crosses over to the strong adsorption 
limit given in the previous section. 

Throughout this section we have presented results for 
the adsorption of a copolymer in two extreme limits for 
the interface, which we have called liquid-liquid and solid- 
liquid situations. Practically, this led us to use two dif- 
ferent statistical weights to describe the behavior of the 
nonadsorbed monomers: the Gaussian propagator Go for 
blobs at  a liquid-liquid interface and the propagator G’ 
of an impenetrable wall for the blobs close to the solid- 
liquid interface. As mentioned at  the end of section I1 
the actual situations are often intermediate, the nonad- 

0.8 ‘ ‘ O n  

a 

0 4  0,61 \ 
0 2  I \  

sorbed monomers see a small attraction near a solid sur- 
face or a small depletion close to the liquid-liquid inter- 
face. The propagator for that intermediate situation may 
be approximated by’‘ 

(3(2 + z’ + ””)I (111.19) 
2Na’ 

where the interpolation length is D B  = baB/(GcB - tiB), aB 
being the strength of the interaction acting on the non- 
adsorbed monomers. The size of confinement of the copol- 
ymer in the presence of a partially repulsive wall has a 
form similar to eq 111.17 

(111.20) 

with r = erf (6  + D ~ )  - [(I - e-(h+’B)/[r’/2(b - &$I] 
and 6, = aP/bI’(P) where DB = ( 3 / 2 ~ ~ P ) ’ / ~ 0 ~ .  Notice 
that when the interaction with the loops is such than DB - m (JB - SCeB>, we recover the phantom-wall situation 
of eq 111.14 with a zero threshold. On the other hand, if 
there is no interaction (tiB = 0), the wall is purely repul- 
sive, r (P)  = P(P), and eq 111.20 reduces to eq 111.17. The 
introduction of a single parameter DB allows a descrip- 
tion of the crossover between a purely repulsive wall and 
a phantom surface. 
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Figure 6. (a) Self-similar grid of a homopolymer solution 
adsorbed on a solid wall. (b) Brush of grafted polymer chains 
with excluded-volume interactions. Circles represent the blobs. 

IV. Adsorption from a Dilute Solution 
A single copolymer chain adsorbed on a wall makes a 

layer much thicker than a homopolymer, forming loops 
larger than the blob size P1l2a. However, even if the bulk 
concentration of the solution in equilibrium with the wall 
is very small (way below the overlap concentration c * ) ,  
different chains overlap and form a continuous polymer 
layer. Isolated adsorbed chains turn out to be almost 
impossible to observe in the limit of large molecular weight. 
We now discuss the adsorption of copolymers from a dilute 
solution in the so-called plateau regime of the adsorp- 
tion isotherm when the copolymer is in a good solvent. 
As mentioned in the introduction, this creates a some- 
what intermediate structure between the so-called self- 
similar and grafted layers of homopolymers. These two 
configurations have been described in terms of blob mod- 
els. We extend here these models to describe the copol- 
ymer layer. We then briefly discuss the interactions 
between two plates coated by copolymers. 

1. Adsorbed Layer. An adsorbed homopolymer layer 
may locally be viewed as a semidilute solution but with 
a correlation length [ ( z )  that depends on the distance 
from the wall. The blob size [ ( z )  varies with the local 
volume fraction of monomers 4 ( z )  as [ ( z )  - a 4 ( ~ ) - ~ / ~ .  
The self-similar structure proposed by de Gennes2 and 
sketched on Figure 6a corresponds to f ( z )  - z ,  i.e., to a 
decay of concentration @(z) - ( a / ~ ) ~ / ~ .  The size of the 
layer is the size of the largest loops of the order of the 
radius of gyration of isolated chains R, - @/'a (A4 being 
the degree of polymerization). 

The brush configuration is obtained by grafting the 
chains by one end on the surface with a density u such 
that a(RF/al2 >> 1. In the blob model proposed by 
Alexander3 each chain is a linear chain of blobs of size [ - au-'l2 (Figure 6b). This leads to a brush thickness L 
= M ~ u ' ~ ~ .  The concentration in the grafted layer is a 
constant all over the layer, except in a region of size D 
on the outside. The more refined model of Milner et al.4 
gives a precise description of the concentration profile, 
which is not constant over the layer. I t  gives, however, 

Y Y Y Y Y Y Y  

A 

LO 

z C  

Figure 7. Blob picture for a random copolymer chain adsorbed 
from a dilute solution. For distances smaller than z the chains 
are stretched. On the outer side of this region the chains build 
a self-similar grid. 

the same scaling behavior, and we use here the simpler 
blob model. 

We now construct a blob model for a copolymer layer 
on a solid wall with preferential adsorption sites, i.e., sites 
to which the stickers of the polymer bind. In the very 
strong adsorption limit each of these sites must be in 
contact with a monomer A (notice that not all A mono- 
mers need to be on the surface). This for instance might 
be a good model for adsorption on silica colloidal parti- 
cles where polymers adsorb on polar sites. The density 
between adsorbed sites a, is chosen such that the dis- 
tance between two of these neighboring sites is smaller 
than the size of a blob (uop"'' >> 1). The first layer of 
blobs made by the blobs in contact with the surface has 
thus a structure very similar to a brush: this layer obvi- 
ously contains blobs where the two ends are on the wall; 
they also are in a brush configuration and behave as two 
chains with a degree of polymerization P/2 end-grafted 
on the wall. If we forget about numerical constants, the 
thickness of this layer is 

L, = ~ a a , ' ' ~  (IV.1) 

On top of this first blob layer there is a second gener- 
ation of blobs, which are also in a brush configuration. 
The surface density u1 in this second layer is, however, 
smaller than that in the first layer: some blobs of the 
first layer have their two stickers on the wall and are not 
linked to a blob of the second layer; they do not contrib- 
ute to the surface density in the second layer. Parallel- 
ing the construction of the self-similar grid, we assume 
that a finite fraction k of blobs does not make such small 
loops. We then build the layer recursively (Figure 7) by 
assuming that the ith generation has a surface density 
ui = kai-l. The thickness of the ith blob layer is thus 

Li - ki/3~01/3p (IV.2) 
The thickness of the stack at  the ith layer is 

The concentration in the ith layer @i = may then 
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be expressed as a function of the distance z from the 
wall 
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A t  larger distances the force is exponentially small. 
For adsorbed polymer layers, locally the correlation 

length [ is equal to z so that 

ne&) = T / z 3  (IV.12) 

Copolymer layers behave as brushes at  short distances z 
C Lo. At large distances (Lo < z < z,) we obtain 

1/3]2 (IV.4 
4 ( z )  = (2)2’3[ 1 - (1 - k’/3)- Z 

Pa uo 

When the density ui in the ith layer becomes such that 
ajp6/5 << 1, individual blobs are not stretched any more 
and this construction reduces to the self-similar grid. This 
occurs a t  a thickness z, 

of the order of a few times Lo. 
A t  larger distances, the concentration decays as 2-4/3. 

The correct scaling form is obtained by imposing the good 
crossover a t  z = z, 

a 
z - z ,  + Pl5a 

(IV.6) 

Notice that this self-similar region exists only if the chain 
is long enough 

M > MC - P/3u,5 (IV.7) 
The thickness of the layer is L - P u , , ~ / ~  if M C M ,  and 
L - RG - @I5 if M > Mc. 

If the surface does not have specific adsorption sites 
but attracts the A monomers with a finite free energy 
-T6, the surface density is obtained by minimizing the 
free energy of the layer 

(IV.8) 

where F,,,,/T is the conformational free energy of the 
chains. Its scaling behavior is obtained by integrating 
the excluded-volume free energy from the surface 

%f T - Jm49/4& a - pu;1/6 (IV.9) 

The equilibrium surface density is 

(To = (6/P)6/5 (IV.10) 
If the adsorption energy is smaller than T (6 << 1); the 
regime where the chains are stretched does not exist ( a P l 5  
<< 1). The concentration profile is given by eq IV.6 and 
z, - PI5a. If the adsorption energy is larger than T (6 
>> 11, the chains are extended close to the surface and 
form a self-similar grid a t  larger distances. 

2. Interaction between Plates. We now briefly dis- 
cuss the interaction between two flat plates coated by 
copolymers. This is a model for the interactions between 
colloidal particles and could also be compared to exper- 
iments with a mica force apparatus.16 The plates are first 
put far apart and coated with the copolymer in a good 
solvent. The two layers are then approached by apply- 
ing a force per unit surface Hex. We assume here that 
the adsorption is irreversible and that the total number 
of adsorbed copolymer molecules remains constant. The 
distance 22 between the plates a t  mechanical equilib- 
rium is such that the osmotic pressure at  the midplane 
H(z) is equal to Ilex. 

For polymer brushes, in between the plates the con- 
centration is roughly constant and at  short distances (z 
< L = Na&“ the force between plates varies with the 
distance z as 

(IV. 11) nex(z)  = ( T/a3)a3/2(L/z)9/4 

At larger distances this crosses over to the self-similar 
grid behavior 

m 

(IV.14) 

V. Conclusions 

We have studied the adsorption of copolymers with 
stickers regularly distributed along the chain but other- 
wise repelled by the surface. 

For a single Gaussian copolymer we found two regimes; 
a very strong adsorption regime where all the stickers 
are bound to the surface and where the chain makes small 
loops with a size equal to the blob size, and a weak adsorp- 
tion regime where the chain may be viewed as a renor- 
malized chain of blobs with the usual adsorption behav- 
ior. 

The results of the simpler Flory theory are easily gen- 
eralized to a chain in a good solvent. However, we have 
ignored the so-called proximal effects close to the hard 
wall, which for homopolymer strongly modify the adsorp- 
tion behavior. They would certainly deserved a detailed 
study for copolymers. 

Another major assumption is that we neglected the dis- 
order of the copolymer chemical sequence: even for Gaus- 
sian chains it might be a relevant factor in some limits. 
I t  would also be interesting to see how it affects the prox- 
imal effects. 

For the adsorption of a dilute solution in a good sol- 
vent, we proposed a blob model that crosses over smoothly 
between the self-similar structure and the brush behav- 
ior. This description is quite rough, and a more detailed 
study is certainly needed: we were not able to write down 
explicitly a free energy of the polymer layer that would 
give both the brush and the self-similar limit; this would 
be a first step toward a more precise description of copol- 
ymers layers. 

On the experimental side we are not aware of any 
detailed quantitative study in the limit considered here. 
Our main result seems to be the existence of a large dis- 
tribution of loops which could perhaps be observed by 
measuring the hydrodynamic thickness of copolymer lay- 
ers adsorbed on colloidal particles. One could also make 
direct measurements with a mica force apparatus to probe 
the structure of the layer; the force between two flat plates 
has been discussed in section IV.2. 

The adsorption of a single chain does not seem acces- 
sible experimentally; however, computer simulations could 
be useful to test some ideas presented here and to study 
the influence of disorder along the chain. 
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ABSTRACT We discuss the precursor film profiles expected to be encountered during the spreading of 
large N polymer melts. We introduce a new control parameter: the ratio f of bulk to substrate monomer 
mobility. As a function off, a variety of shapes are encountered. For f = 1, the "sliding" profile of Bro- 
chard and de Gennes is recovered. With increasing f the macroscopic "foot" predicted by Brochard and de 
Gennes diminishes in height and eventually vanishes. For large f, the precursor is found to spread by a 
new mechanism: reptation instead of hydrodynamic flow. The new precursor profile is characterized by a 
shoulder or step with a height on the order of the radius of gyration of the polymers. 

I. Introduction 

The macroscopic properties of drops of low-viscosity 
fluids spreading over dry and smooth substrates are well 
understood.' The drop has the shape of a hemispheri- 
cal cap whose radius increases with time and whose con- 
tact angle 0 with the substrate decreases with time (Fig- 
ure 1). The spreading velocity U of the drop is deter- 
mined by a competition between the capillary pressure, 
favoring spreading, and viscous losses. This competi- 
tion is expressed in Hoffman's law: U c: (y/7)03, with 7 
the viscosity and y the surface tension. Importantly, this 
spreading velocity is not dependent on the difference in 
surface energy of a wet and a dry surface. A measure of 
that difference is the spreading pressure S, defined by 

(1) 

with ysv and ys, respectively the energy per unit area of 
the dry and the wet substrate. Of course, a positive value 
for S (wetting) is a necessary condition for spreading. 
For negative S (nonwetting), the contact angle is fixed 
by Young's law' y cos (e) = ysv - ysl. 

It has been known since the days of Hardy that ahead 
of the macroscopic drop there exists a microscopically 
thin precursor film. This precursor film is due to the 
film-thickening "disjoining" pressure exerted by van der 
Waals forces between substrate and film. The driving 
force for the spreading is the combined effect of gradi- 
ents in the capillary pressure and the disjoining pres- 
sure. The height profile { ( x )  of the precursor film was 
predicted, by Joanny and de Gennes'" (JG), to be pro- 
portional to l/x, with x a coordinate along the substrate 
and perpendicular to the contact line (see Figure 1). The 
precursor film starts when the thickness of the droplet 
has fallen below a height a,/O, with a, = (A/6ay)l/' a 

s = YS" - 7 8 1 -  Y 

microscopic length ( A  is the Hamaker constant). Naively, 
we should have expected the drop to spread until its height 
has been reduced to that of a monolayer. JG predicted 
instead that due do the disjoining pressure, there should 
be a minimum height e = a,(y/S)l/', such that { cannot 
drop below e .  

The spreading properties of drops of polymer melts 
are of particular intererest for technical applications (lub- 
rification, paints, etc.). Because they are nonvolatile and 
because of their slow spreading velocities, large N poly- 
mer melts (with N the degree of polymerization) would 
be expected to provide us with a test case for the JG 
theory of precursor films. However, already the macro- 
scopic spreading properties of polymer melt droplets offer 
unexpected features: the spreading velocity sometimes 
exceeds Hoffman's law4 and deviations from the macro- 
scopic drop shape have been n ~ t e d . ~ ? ~  

Recently, polarized reflection microsco y by Ausserre 

ylsiloxane) (PDMS) melts, spreading over smooth silica 
surfaces, confirmed Hoffman's law. Detailed ellipsome- 
try measurements by Leger et  al.8v9 showed that the drop 
thins out to a limiting thickness that is in fair agreement 
with the predicted value of e. They did find a precursor 
film, but the measured profile was in clear disagreement 
with the calculated profiles." 

Brochard and de Gennesll (BG) noted that we indeed 
should expect the precursor profiles of polymer melt drop- 
lets to be unusual. Because large N polymers are entan- 
gled with each other, polymer melts will resist shear flow. 
A precursor film spreading under a pressure gradient nor- 
mally can only do so by shear flow because the flow veloc- 
ity at the substrate is assumed zero. For large N melts, 
this is an unlikely scenario. One would rather expectI2 
a thin melt film subjected to a pressure gradient to slip 
and slide over the substrate. If k is the friction coeffi- 

et a1.7 of drop profiles of large N (104-10 B ) poly(dimeth- 
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