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ABSTRACT: We study the adsorption of an A-B diblock copolymer from a dilute solution onto a solid surface 
that attracts the A block and repels the B block in a nonselective solvent, good for both blocks. The structure 
of the adsorbed layer is governed by the asymmetry of the copolymer. When the asymmetry is small, the 
adsorbing block forms a fluffy layer swollen by the solvent and the nonadsorbing block forms a polymer brush 
pointing toward the bulk solution. When the nonadsorbing block is much larger than the adsorbing one, the 
fluffy A layer breaks into individual chains, which form flat pancakes on the wall; this quasi-two-dimensional 
solution may be either dilute or semidilute. The B chains still form a grafted layer. 

I. Introduction 
Colloid stabilization with polymers'v2 requires the for- 

mation of a thick polymer layer around each particle in 
order to create a repulsive steric force that overcomes the 
van der Waals attraction. This is usually done by ad- 
sorbing on the colloidal particle a polymer solution in a 
good solvent, which builds up on the surface a fluffy layer 
with a thickness of the order of the radius of gyration of 
isolated polymer chains (in general of the order of a few 
hundred angstroms). I t  was realized, however,3+ that a 
more efficient way to stabilize colloidal suspensions is to 
graft polymers by one end in the so called brush configu- 
ration.' One forms then a much thicker layer where all 
chains are stretched perpendicular to the surface, thus 
increasing the range of the repulsive steric force. End- 
grafted polymer layers are obtained in two ways, either by 
chemical grafting or by diblock copolymer adsorption. In 
this case one block A, which from now we call the anchor, 
adsorbs strongly onto the surface; the other block, the buoy 
B, repelled by the surface, forms the brush around the 
colloidal particles. 

In this spirit, in a recent work8 we have studied block 
copolymer adsorption in a highly selective solvent where 
the anchor is in a poor solvent and the buoy is in a good 
solvent. On a solid surface, the anchor block forms a 
molten layer where neither the B block nor the solvent 
penetrates. At thermodynamic equilibrium, the chain 
density u (or equivalently the area per chain Z - l / u )  and 
the thickness of the polymer layer are governed by the 
chemical potential of the solution in equilibrium with the 
adsorbed layer. In a highly selective solvent, block co- 
polymers have a tendency to self-aggregate and form 
mesophases in the bulk, even in a dilute solution;+'l this 
self-association plays thus a major role in the study of the 
adsorbed layer. 

We study here the reverse limit of a nonselective solvent 
where both blocks are still incompatible but where the 
solvent is equally good for both b l o ~ k s . ' ~ J ~  The solvent 
penetrates then into the adsorbed anchor layer, which is 
a fluffy layer very similar to what is obtained in homo- 
polymer adsorption. In particular, this anchor layer is 
quite dilute, and the direct van der Waals interaction 
between the polymer and the wall, which plays an im- 
portant role in a highly selective solvent, is of no impor- 
tance in a nonselective s01vent.l~ Another important 
difference is the role of the mesophases in the bulk co- 
polymer solution: in a nonselective solvent we expect 
mesophase formation only in semidilute solutions. We will 
restrict this work to dilute solutions and assume thus that 
these solutions are isotropic and homogeneous. 

The paper is organized as follows. In the next section 
we present a mean-field theory of the adsorption, dis- 
cussing the geometrical characteristics of the adsorbed 

layer: the anchor thickness d,  the buoy thickness L,  and 
the chain surface density u. We then extend in section I11 
these results to take into account correctly the role of 
concentration correlations in a good solvent. We follow 
there closely the theory introduced by de Gennes for 
homopolymer ad~orpti0n.l~ When the block copolymers 
are very asymmetric, the anchor layer is not continuous: 
it breaks into small islands on the surface. This regime 
and the crossover toward a continuous layer are analyzed 
in section IV. Section V presents a discussion of our re- 
sults. 

11. Mean-Field Theory 
We study the adsorption of diblock copolymers on a flat, 

idealized solid surface. Both blocks are in a good solvent; 
we call uA and UB the corresponding Edwards dimensionless 
excluded volume parameters (UA I 0, UB I 0). The anchor 
block A is strongly attracted by the surface, and the buoy 
block B is strongly repelled by the surface. Polymers A 
and B will be supposed incompatible; i.e., the Flory in- 
teraction parameter xAB is positive and large. In a 
mean-field theory, the natural radius of gyration of the two 
blocks is R A  = N A 1 I 2 a  and R B  = N B 1 I 2 a ,  N A  and N B  being 
the degrees of the polymerization of the blocks and a a 
monomer size, which we choose equal for both blocks. We 
measure the asymmetry of the copolymer by the radius 
ratio 

In the following we always assume that p >> 1. 
The external solution in equilibrium with the adsorbed 

layer, where the total monomer concentration is %, is 
dilute and imposes a chain chemical potential pel and an 
osmotic pressure Ilex. Throughout this paper, we choose 
temperature units such that the Boltzmann constant kB 
is equal to unity. 

The structure of the adsorbed copolymer layer is shown 
in Figure 1. The A block forms a layer swollen by the 
solvent, and the B block forms a polymer brush. The 
characteristics of the layer are obtained by minimization 
of the grand canonical free energy 

(3) 

F A  and F B  are the free energies of the A and B layers, 
respectively; u is the chain surface density u = ( U / D ) ~ ,  D 
being the mean distance between A-B junction points 

R = F A  + F B  - /.L,,UU-~ + n,,(L + d )  
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Minimization with respect to u gives a relation between 
X and a 

4 

d L 

Figure 1. Structure of the adsorbed diblock copolymer layer. 
The A block is attracted by the wall and builds up a self-similar 
layer. The B blocks point toward the solvent in a brush con- 
figuration. 

parallel to the surface; L is the thickness of the B layer; 
and d is the thickness of the A layer. 

The free energy of the anchor layer FB is that of a so- 
called grafted polymer brush with a given chain density 
a. In a mean-field theory this problem has been studied 
by Alexander7 and de Gennes15 and more recently by 
Milner et  a1.16 Although the simpler theory of Alexander 
does not give the correct Concentration profile inside the 
brush, it is sufficient for our purpose, giving the correct 
scaling behavior. When the surface density u is high 
enough (aNB >> l ) ,  the free energy FB is written as 

(4) 

The first term is the chain elasticity, the second term is 
the excluded volume free energy. 

The anchor layer is a semidilute layer where the local 
volume fraction $ of A monomers decays with the distance 
z from the wall. The free energy functional of such layers 
is conveniently written in terms of the order parameter $ - - 41/2-15 

The first term, where cpS is the surface concentration, is 
the energy gain due to the contact of the polymer with the 
wall. In a strong adsorption limit, the monomer adsorption 
free energy y is of order unity. The gradient term takes 
into account the polymer elasticity, and the last term is 
the excluded volume between A monomers. Because A and 
B chains are connected in a block copolymer, the number 
of chains per unit surface is the same in the two layers 

In order to take this constraint into account, we intro- 
duce a Lagrange multiplier X and minimize 

with respect to the three independent variables u, L,  and 
$. Minimizing Q’ with respect to L,  we obtain the usual 
brush size L and free energy FB (the external pressure Hex 
always has a small contribution) 

L = k f l ~ , l / ~ U ~ ’ / ~ a  

where ko  and k ,  are numerical constants of order unity. 

The minimization with respect to IC. is made by using an 
Euler-Lagrange equation 

As z becomes large, in the brush, the concentration of 
monomers A becomes small, the homopolymers being 
highly in~ompatible;’~ we approximate it by zero: 1imz--$ 
= 0. The boundary condition on the solid surface is ob- 
tained by minimizing the free energy with respect to the 
surface order parameter 4, 

The size of the proximal region b is, in the case of strong 
adsorption (y - 1) which we consider here, of the order 
of the monomer length a. 

The solution of eq 10 with these boundary conditions 
is 

where the size of the anchor layer d is given by 

d = U ( N ~ / ~ X ) ‘ / ~  (13) 

coth (z,/d) = d/2b (14) 

The length zo is given by eq 11 as 

In the limit of strong adsorption b << d and zo = 2b. 
Close to the solid surface (z  + z,) << d the concentration 

profile is the same as the concentration profile of a pure 
homopolymer A adsorbed layer 

The presence of the B block reduces the number of ad- 
sorbed chains (the brush free energy is positive); however, 
it does not change the concentration profile. Only the 
thickness of the adsorbed layer is reduced from the hom- 
opolymer radius R A  to d. At  distances larger than d, the 
concentration profile decays exponentially with z .  

Inserting the concentration profile $ ( z )  in eq 6 gives a 
relation between the surface density u and the anchor 
thickness d 

Combining eq 16,13, and 9, we obtain an equation giving 
the surface density a 

where we have introduced the reduced density y = (6b/ 
a)vAaNA and the numerical constants of order of unity a 
and a’ such that a = a/(6bvA) and a’ = 5/3[k1V~2/3 /  
( 3 ~ ~ ) ~ / ~ ] ( ~ / 2 b ) ~ / ~ .  In general, since no mesophases are 
expected, the chemical potential term is negligibly small 
in eq 17 if the bulk polymer concentration $b has a finite 
value (4b >> exp(-NA)). We now distinguish two regimes 
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according to the value of the radius ratio 0. 

density 
(1) Whenever @ << NA1I3 we obtain y = 1 or a surface 

c 
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systematically the numerical coefficients. The brush size 
L has the same scaling behavior as in mean-field theory. 
The dependence of the free energy in u is slightly modified. 

de Gennes14 has proposed a modified free energy func- 
tional which explicitly takes into account correlations in 
an adsorbed layer. In the anchor layer this is written as 

The thickness of the anchor A layer may then be calculated 
from eq 16 

The thickness L of the brush is 
L = ,JfNB2I3ap2I3 - NB/NA1/3 (20) 

It  may be directly checked that uRB2 - p >> 1, and the 
chains in the brush are effectively stretched. The thickness 
d of the A layer scales with the mass of the anchor A with 
a higher power than the gaussian radius of gyration RA. 
However, the radius ratio is larger than 1 and d < NA’/~u 
< RA. As explained earlier, the constraint introduced by 
the confinement of the B chains does not change the 
concentration profile in the A layer, it only diminishes the 
thickness of the layer, which becomes smaller as p is in- 
creased. 

(2) When the asymmetry of the chain, p, is larger than 
NA113, eq 17 leads to a surface density 

This result, however, does not seem to be very meaningful; 
it  leads to a distance between junction points of the co- 
polymer D much larger than the chain radius RA and a 
thickness of the adsorbed A layer of the order of a mo- 
nomer size a. The continuous semidilute picture of the 
anchor layer that we have adopted in eq 5 is not appro- 
priate for this regime; we will discuss it further with more 
accurate approximations in section IV. 

111. Scaling Theory 
The mean-field theory of block copolymer adsorption 

is expected to give a qualitatively good description of the 
adsorbed copolymer layer; however, it  does not take into 
account correctly the concentration correlations induced 
by the excluded volume, and we thus do not expect it to 
give quantitative results. The power law dependences 
must be corrected to take into account the excluded vol- 
ume effects. In a good solvent, the natural radius of the 
polymer chains is the Flory radius RFA = N A ~ / ~ ~  and RFB 
= NB3/5a. We thus change the definition of the radius ratio 

In the grand canonical free energy s1’ which governs the 
structure of the adsorbed copolymer layer (eq 7), the free 
energies of both layers, F A  and FB, must be modified. 
Alexander’ has proposed a blob model to calculate the free 
energy of a grafted polymer brush in a good solvent. For 
a grafted brush with a chain density u this leads to 

L - NBaa1l3 (22) 

In this section we are interested only in scaling laws of the 
relevant parameters NA, N B ,  and u, and we will ignore 

4 is the local monomer A concentration in the anchor layer, 
is the local correlation length (in a good solvent [ - 4-3/4), 

and m and CY are two numerical constants of order unity. 
The minimization of the free energy 3’ (eq 7) with re- 

spect to the chain density u gives 

with the external chemical potential wex being a small 
contribution when the external solution is dilute. 

The concentration profiie in the anchor layer is obtained 
by minimization of 3’ with respect to 4. Close to the wall, 
at  a distance z smaller than the layer thickness d, the 
Lagrange multiplier term is small in eq 7, and we obtain 
the usual self-similar profile in an adsorbed polymer layer 

t(4) = z 

4 ( ~ )  - z - ~ / ~  (25) 

The thickness of the layer is reached when the Lagrange 
multiplier term (X/NA)S+ dz becomes equal to the two 
terms of eq 23. The thickness of the adsorbed layer is then 

d = (NA/X)~/~U (26) 

As in the mean-field theory, the concentration profile in 
the A layer is the same as in a homopolymer A adsorbed 
layer. The confinement of the B chains only reduces the 
thickness of the layer. 

At  distances larger than d the concentration profile of 
the A chains decays rapidly to zero: 4(z) - l/X4za. It is 
not clear, however, whether the Cahn-de Gennes free en- 
ergy of eq 23 retains a meaning in this regime. 

Inserting the concentration profile in the copolymer 
constraint,6 we obtain 

NAu = 1 - (a /d) ’ I3  (27) 

The geometrical characteristics of the adsorbed layer are 
given in this scaling theory by eq 24,26, and 27. We will 
consider them here only on the limit where the radius ratio 
p is smaller than NA1I2 for which this continuous de- 
scription has a meaning 

u - 1/NA 

d - NA1I2/p 

L - NB2/3P1/3 - NBNA-1/3a (28) 

These results are quite similar to what was obtained in the 
mean-field approximation although the thickness of the 
anchor layer shows a different scaling behavior and is 
somewhat larger. 

IV. Discontinuous Layer: Dilute and Semidilute 
Regime 

The previous results are meaningful only if the adsorbed 
layer is continuous and may be considered locally as a 
semidilute solution. This requires in particular that the 
thickness of the A layer on the wall is much larger than 
a monomer size a. This is obviously the case when the 
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Figure 2. Discontinuous regime. For very asymmetric chains 
the A layer forms a discontinuous pancake patchwork in contact 
with the wall. The B chains are always stretched, except for very 
low bulk concentrations. 

block copolymers are moderately asymmetric but ceases 
to be true for very asymmetric polymers (/3 > NA1I2), which 
we discuss below. We first consider the case where the 
radius ratio /3 is extremely large. The adsorbed copolymer 
layer breaks then into a patchwork of individual chains 
as shown in Figure 2. As for homopolymer single-chain 
adsorption, the A block forms a flat two-dimensional 
pancake on the surface with a thickness d of the order of 
a monomer size (and decreasing with the adsorption energy 
y). The radius of these pancakes is the radius of an ex- 
cluded volume polymer chain in two dimensions 

RA = N A ~ / ~ ~  (29) 
The A chains are not close packed on the surface and form 
a two-dimensional dilute solution only if the A chain 
concentration is smaller than the overlap concentration 

(30) 

The B blocks are dangling in the solution and form a brush 
as soon as u(RFB2/a2) >> 1, RFB being the Flow radius. If 
u(RFB2/a2) << 1, the buoy layer is also discontinuous. 

The grand canonical free energy, which governs the 
structure of the adsorbed layer, reads in this geometry 

Q = F A  + FB + F,,,, - pexaa-2 (31) 

per is the external chemical potential given by eq 2, and 
we have neglected the external pressure contribution. F- 
is the translational entropy of the chains on the surface 

Ftransa2/T = u In u (32) 

F B  is the brush stretching energy given by eq 22, and F A  
is the adsorption free energy of the A blocks. The ad- 
sorption energy of one chain is proportional to the number 
of monomers NA 

FAa2/T = -SUNA (33) 

6 being a number of order unity depending on the mono- 
mer adsorption energy y. 

When uRFB' << 1, the brush energy is small and 

Q = eXp(NA6 4- p e x / T )  - (34) 
This is possible only when the monomer external con- 
centration &, is extremely small 

I#Jb < (NB~/~)- '  eXp(-NAS) (35) 
As soon as the external concentration is finite, the buoy 
layer B becomes continuous (although the anchor layer 
might be discontinuous), and the translational energy F- 
and the external chemical potential pel are negligibly small 
in eq 31. 
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Table I 
Conformation of the Copolymer as a Function of the 

Asymmetry Ratio B = RB/RA 
3D regime 2D semidilute 2D dilute 

NA-' 
P 1 < @ < N A ' / ~  N A ' / ~  < @ < N A ~ / ~  6 > NA~/ '  

The surface density then depends strongly on the radius 

u = p-2  (36) 

The A layer forms thus a two-dimensional dilute solution 
if the asymmetry /3 is larger then N A ~ / ~ .  When /3 C N A ~ / ~  
the A blocks form on the solid surface a semidilute two- 
dimensional layer whose properties have been discussed 
in details by Bouchaud and Daoud." Although the A 
blocks start to form large loops and to build up the self- 
similar fluffy layer, the average thickness of the A layer 
remains of order of a monomer length. The chain density 
in this semidilute layer is given by eq 36. The semidilute 
regime crosses over smoothly to the continuous regime of 
the previous section when /3 = NA1I2. In the case of ad- 
sorbed homopolymer A studied by Bouchaud and Daoud, 
the two-dimensional semidilute regime is obtained for 
extremely low bulk concentrations, which are inaccessible 
experimentally. The study of adsorbed diblock copolymer 
layers in a nonselective solvent might make this regime 
accessible by an accurate choice of the asymmetry of the 
copolymer. Finally, both in the dilute and semidilute 
regimes the size of the buoy layer increases with the buoy 
molecular mass slower than linearly 

ratio p 

L = NB3/5NA2/5a (37) 

Although this is much smaller than a stretched chain, it 
is much larger than the Flory radius of the B chains due 
to the NA dependence. 

V. Discussion 
Although the simplest way to coat a colloidal particle 

with a polymer brush seems to be the adsorption of diblock 
copolymers in a highly selective solvent, the results pres- 
ented here show that such layers also form in a nonse- 
lective solvent where the two incompatible blocks are in 
a good solvent, one block being strongly attracted by the 
surface and the other one strongly repelled. 

At thermodynamic equilibrium, when the adsorption is 
made from a dilute solution, the structure of the adsorbed 
layer is governed essentially by the asymmetry of the co- 
polymer, which we have measured here by the radius ratio 
0. A summary of our results for the conformation of the 
copolymers as a function of 

When /3 is smaller than NA1I2 the A layer in contact with 
the surface is a continuous fluffy layer where the concen- 
tration profile decays in the same way as in an adsorbed 
homopolymer layer. The existence of the buoy dangling 
in the solution prevents this layer from reaching the 
equilibrium surface coverage of a homopolymer layer and 
reduces the number of adsorbed chains. The thickness of 
the adsorbed layer is thus smaller for block copolymers 
than for homopolymers. The external layer is, as required, 
a polymer brush with a thickness L scaling linearly with 
the molecular mass of the B block of the copolymer. 

When p is larger than NA1l2 the anchor layer has a 
thickness of the order of a monomer size a and forms a 
quasi-two-dimensional polymer solution which is either 
dilute or semidilute, the crossover between these two re- 
gimes occurring for p = N A ~ / ~ ,  

is given in Table I. 
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These results were obtained under the assumption of 
full thermodynamic equilibrium, which is not obviously 
reached experimentally. If an undersaturated copolymer 
layer exists, the B part of this layer creates a strong po- 
tential barrier for new adsorbed chains due to the excluded 
volume repulsion between monomers. A possible way to 
form an end-grafted layer a t  equilibrium would perhaps 
then be to adsorb first a homopolymer A with a reactive 
end group and then to polymerize the B block in situ. 
Theoretically, a natural extension of this work would then 
be the study of the adsorption kinetics, which would make 
this approach to equilibrium more quantitative. 

The predictions made here could be directly compared 
to neutron scattering or reflectivity measurements on 
colloidal systems. An alternative way to probe experi- 
mentally the structure of adsorbed copolymer layers is to 
coat with block copolymers the mica surfaces of a force 
measurement apparatus. Such experiments have already 
been made by Tirrell and co-workers,18 Klein and co- 
w o r k e r ~ , ~ ~  and Hair and co-workers.20 It seems, however, 
that in many cases the solvent is neither a highly selective 
solvent nor a nonselective solvent and that a detailed 
analysis of the crossover between these two regimes is 
needed for a quantitative comparison between theory and 
experiments. 
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ABSTRACT: Mean-field theory is used to study the adsorption of polymer chains on a rough surface, both 
with and without excluded-volume interactions. In particular, the adsorption on a fractal surface generated 
from a hierarchy of small-amplitude sinusoidal perturbations is investigated. It is found that there is a simple 
scaling relation between the concentration of adsorbate on a fractal and on a plane boundary. Surface irregularity 
greatly enhances the adsorption of polymer. The probelm is mathematically equivalent to the binding of 
quantum mechanical particles by rough interfaces. 

I. Gaussian Adsorption 
1. Introduction. In the scientific literature it is gen- 

erally assumed that polymers adsorb on regular smooth 
surfaces: lines, planes, or spheres, for example.lp2 Some 
recent work by Hone et al.3 has considered adsorption on 
a sinusoidal interface, but many naturally occurring sur- 
faces are rough over many length scales. In some cases the 
surface geometry has been characterized as fractal.*z5 

In this paper we will introduce a model fractal surface, 
which has already been used to study the scaling structure 
of viscous fingerings and the impedance of a rough elec- 
trode-electrolyte c ~ n t a c t . ~  We consider the adsorption of 
polymer within mean-field theory, using a renormalization 
scheme developed by Ball and B1unt.I 

First, though, we shall briefly introduce the Edwards8 
mean-field approach to polymer statistics, which we use 

here to formulate the problem. The reader is referred to 
de Gennesg or Doi and EdwardslO for a more comprehen- 
sive treatment. 

A diffusion or Schrodinger-like equation may be written 
for the Green function of a polymer chain. 

[ $ - $ 0 2  + V(r) G(r,r’,L) = 6(r - r’)6(0) (1) I 
G(r,r’,L) is the statistical weight for a polymer chain 

which starts from r’ to land at  r in L steps of length 1 in 
a potential V. If L is replaced by imaginary time then this 
equation becomes equivalent to the Schrodinger equation. 

The 6 functions impose the boundary conditions that 
G(r,r’,O) = 6(r - r’) and G(r,r’,L<O) = 0. V(r) is the 
external potential in units of k,T; it may include a term 
to account for self or excluded-volume interactions. 

The Green function may be written as an expansion in 
* Present address: BP Research Centre, Chertsey Road, Sun- the eigenfunctions of the differential operator. 

bury-on-Thames, Middlesex, England. 

Didcot, Oxfordshire, England. n 
‘Present address: Rutherford Appleton Laboratory, Chilton, G(r,r’,L) = X+n(r)+n(r’) exp(-EnL) (2) 
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