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Résumé. 2014 Nous étudions l’adsorption d’une solution semi-diluée de polymère sur des grains collaidaux petits
dont la surface a une géométrie fractale de dimension D (5/3  D  3) en insistant sur le profit de
concentration autour du grain et l’adsorbance qui représente le nombre total de monomères appartenant à des
 chaînes adsorbées. Sur des grains gros (surface plane), le profil de concentration a une structure self-similaire ;
l’adsorbance est égale à l’excès de surface aux concentrations voisines de la concentration de recouvrement
03A6 * mais est beaucoup plus grande en solution concentrée, les chaînes adsorbées faisant de grandes boucles
dans la solution. Sur des grains petits on trouve une assez grande variété de comportements d’échelle. Si la
taille du grain est plus petite que la longueur de corrélation de la solution, le profil self-similaire s’étend jusqu’à
une distance de l’ordre du rayon du grain, la concentration décroît ensuite plus rapidement vers sa valeur en
volume. La géométrie de la surface détermine l’adsorbance aux faibles concentrations. Aux concentrations
plus élevées la solution doit être considérée comme un fondu de blobs.

Abstract. 2014 We study the adsorption of a semidilute polymer solution on small colloidal grains with a fractal
surface of dimension D (5/3  D  3) focusing on the concentration profile around the grain and on the
adsorbance which is the total number of monomers belonging to adsorbed chains. On large grains (flat
surfaces) the concentration profile is self-similar. The adsorbance is equal to the surface excess at

concentrations close to the overlap concentration Ø * but is larger in a concentrated solution, adsorbed chains
making large loops in the solution. On small grains a rather large variety of scaling behavior is found. If the
grain size is smaller than the solution correlation length, the self-similar profile extends up to distances of the
order of the grain radius ; further away the concentration decays more rapidly towards its bulk value. The
adsorbance is determined by the surface geometry in dilute solutions. At higher concentrations, the solution
can be considered as a melt of blobs.
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1. Introduction.

Most polymer solutions adsorb in a good solvent
onto solid walls. The polymer chains form on the
wall a fluffy layer which has been described in great
details both experimentally [1] and theoretically [2].
The fluffy layer has a self-similar structure up to a
length gb of the order of the bulk correlation length
of the solution which can be as large as a few
hundred angstroms (Fig. 1). This self-similar struc-
ture accounts well for many observed features of
adsorbed polymer layers : surface excess, surface
tension [3], hydrodynamic thickness, ellipsometric
measurements [4], concentration profile as measured
by neutron scattering [5]...
The existence of such diffuse polymer layers is of

major importance in the study of colloidal stability.
Colloidal particles may be coated with polymers and

Fig. 1. - Self-similar structure of a semi-dilute solution in
contact with a wall.

in a good solvent, the repulsive interaction between
the adsorbed polymer layers eventually stabilizes the
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suspension. If the radius of the colloidal particles is
much larger than the typical length scale of the
solution (the correlation length 03BEb in a semi-dilute
solution or the chain radius in a dilute solution) the
description of the adsorbed layer is the same as on a
plane (self-similar structure) . We are interested here
in the reverse limit where the radius b of the

particles is much smaller than the correlation length
of the polymer solution (we will limit the study to
semi-dilute solutions although some of the results
may be used in a dilute solution as well). This has
little application for colloidal stability but may be of
some interest in the interpretation of experiments
where a semi-dilute polymer solution adsorbs onto
small surfactant micelles [6], it also gives a better
understanding of the geometry of adsorbed polymer
layers. We will characterize the polymer layer by the
concentration around the particle 0 and its adsorb-
ance T. Close to the surface we distinguish between
adsorbed chains which have at least one monomer in
contact with the solid surface (or within a distance a
of the order of the monomer size) and non adsorbed
chains. The adsorbance is the total number of
monomers per unit surface belonging to adsorbed
chains. In a dilute solution it is equal to the surface

excess TeX = dr (o - 0 b) where -0 b is the bulk

concentration away from the particle. In a more

concentrated solution, the two quantities are differ-
ent and r &#x3E; T eX. Experimentally, for a polymer
solution adsorbed on a colloidal suspension, F may
be measured by extracting the colloid and titrating
the remaining liquid (assuming that the adsorption is
irreversible). The knowledge of the adsorbance

might also be of importance in the study of the
adhesion of polymers on solid surfaces.
Our approach follows the scaling theory of De

Gennes and Pincus [8]. We limit the study to a
strong adsorption limit where the adsorption energy
per monomer is of order kT. We thus ignore all the
subtle tricritical effects related to the so-called

special transition [7].
The paper is organized as follows. In section 2 we

briefly review the important results concerning the
adsorption of semi-dilute solutions on planar surfaces
and discuss in details the adsorbance. This leads to a

description of the adsorbed layer in terms of trains
tails and loops as in the classical theories but the
trains have here a slightly different meaning. These
results are then extended to large fractal surfaces
with a known fractal dimension D. In section 3 we

study the adsorption on a small spherical grain and
distinguish several regimes according to the relative
value of the grain radius b and the characteristic
lengths of the solution, the chain radius R and the
correlation length 03BEb; we then discuss fractal col-
loidal grains with a small size b. Section 4 presents
our conclusions.

2. Adsorption of a semi-dilute solution on a large
colloidal grain.

2.1 ADSORPTION ON A SOLID PLANE. - The concen-
tration profile of a semi-dilute polymer solution
close to a wall is obtained by minimization of the
grand canonical free energy [8] :

Here d2 s is the surface energy which depends on
the surface concentration -0 S. The free energy den-
sity f (.0 ) is given by [9]

m and a are numerical constants of order unity ;
the local correlation length 6 (o ) scales as (p - 3/4.
The external chemical potential Aex and osmotic

pressure 7T ex are imposed by the solution in the bulk
of concentration Ob far from the surface

It is convenient here to caracterize the polymer
solution by the order parameter If¡ defined as

If¡ = (cpa3)3/8. The Euler-Lagrange equation min-
imizing the grand canonical free energy (1) is

m, is a length proportional to the monomer length
a and the external chemical potential gex has been
expressed as a function of the order parameter in the
bulk 4’b- If qi does not vary in space, it is equal to
Qb.
When we study the adsorption on a plane, the

concentration is a function only of the distance from
the surface z and equation (4) leads to the self

similar profile of figure 1

The interpolation length d is obtained by minimi-
zation of the free energy with respect to the surface

concentration Os ; in situations of strong adsorption
it is of the order of a monomer length a. At distances
larger than 03BEb the concentration relaxes exponen-
tially towards its bulk value.
The surface excess reX is directly calculated from

the concentration profile

The adsorbance r however cannot be directly
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obtained from the concentration profile, the descrip-
tion of a semi-dilute solution by equation (1) essen-
tially assumes that the chains are infinite and does
not distinguish between adsorbed and non adsorbed
chains. An upper bound for Fits readily obtained by
integrating the concentration between the wall and
the radius of gyration of the chains in a semi-dilute
solution R (Pb) - N 1/2 Pb 1/8

In any case, r is larger than TeX, we now argue
that r is also larger than the second term on the right
hand side of (6). For a semi-dilute solution in contact
with a neutral wall (neither attractive not repulsive)
or a weakly attractive wall (attraction energy much
smaller than 1), the concentration profile is essen-
tially flat. As in a melt, a finite fraction of the chains
within a distance R (0 b) from the surface touch the
surface, the adsorbance fits thus equal to R (’0 b)
~b (the subtle effects related to the special transition
are not important here). As the attraction of the wall
is increased, the adsorbance must increase, we thus
approximate the adsorbance by

This leads us to distinguish between two different
regimes : in a rather dilute solution the second
contribution is small and as expected r = F ex, in a
more concentrated solution the second term is
dominant and the semi-dilute solution has a be-
haviour closer to that of a melt. The crossover
between these two regimes occurs at a concentration
cP 2 much larger than the overlap concentration

cP*

The adsorbance r is closely related to the number
of monomers per adsorbed chains on the solid
surface Ns = N / ra2. In dilute solutions

(I&#x3E; : I&#x3E; 2) N s fOOo; N a result which has already been
discussed in details by several authors [10]. In

concentrated solutions Ns is much smaller than N
and has the same mass dependence as in a melt
N s fOOo; N 1/2 ( l&#x3E;b a3)-7/8.

This allows to give a precise description of the
geometry of a semi-dilute solution in contact with a
wall. Close to the wall, there exists a region of size
03BEb which we call the adsorbed layer (Fig. 1) where
the concentration has a self-similar structure and is

significantly larger than the bulk concentration

l&#x3E;b.
At the overlap concentration ~ * the thickness of

this layer is equal to the chain radius and the

adsorbed chains are trapped inside the adsorbed
layer. On the contrary in a concentrated solution,
the thickness of the adsorbed layer is 03BEb much

smaller than the chain radius R ( CPb) and an adsorbed
chain can be viewed as a succession of trains and

loops, the trains being pieces of chains trapped in the
adsorbed layer. The size of the trains can be

estimated by considering the semi-dilute solution as
a melt of blobs of size gb each containing g = gg!3
monomers. A blob belonging to a train has gs - g
monomers in contact with the surface. On a surface

03BE b 2, the surface concentration being unity,
c2/gS _ gns chains are in contact. The self-similar
picture of figure 1 imposes that only a finite number
of these of order 1 escape from the adsorbed layer
i. e. each chain has a probability g-1!5 to escape,
leading to a number of monomers per train

Combining equations (7) and (9) we obtain the
average number of loops per chain ni - (N / g )1/2.
A comparison between the size of the trains p and

the polymerization index N defines a second cross-
over concentration cf&#x3E; 1 1 (0 * ’-- 0 1 "- 0 2)

When the bulk concentration is smaller than

~ 1 most adsorbed chains are trapped in the adsorbed
layer, although some of them escape in the solution
they make few loops. While increasing the concen-
tration between 0 1 and 0 2, loops are formed ; this
broad crossover regime is not easy to study in
details. Finally in a more concentrated solution

CP b &#x3E;- CP 2 the behaviour of the solution is reminiscent
of that of a melt with an adsorbed layer of size
6b-
The existence of these two crossover concen-

trations is related to the finite size of the chain and as
shown below to the difference between the fractal

geometry [11] of the solid surface (D = 2) and that
of the polymer chain (D = 5/3). Although their
definition seems clear from a theoretical point of
view, their experimental determination might be
difficult ; many quantities such as the surface excess,
the concentration profile or the layer thickness show
no crossover at these concentrations. They could
however be observed by a direct determination of
the adsorbance or the number of monomers per
adsorbed chain on the surface.

2.2 ADSORPTION ON A FRACTAL SURFACE. - We

now generalize these results to a large fractal surface
of fractal dimension D (5/3  D  3 ) and of macro-
scopic size b, following the ideas of De Gennes [12].
The surface excess has been calculated in refer-

ence [12]
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The concentration 0 (z ) at a distance z from the
surface is given by equation (5) and the accessible
volume f2 is measured with a length scale z,

f2 = b D Z3 - D. This leads to a surface excess

Following the same lines as above, we determine
the adsorbance

The volume n’, containing the adsorbed chains is
measured here with a length scale equal to the chain
radius

On a fractal surface, the crossover concentration
cp 2 is thus given by

The number of monomers per train p scales as
p - 03BEDb and the other crossover concentration is

The existence of two different crossover concen-
trations is related to the existence of several charac-
teristic length scales. Although the polymer solution
has only one characteristic length scale its correlation
length 6b, the presence of the fractal surface intro-
duces another characteristic length A - N 11D
Notice that when D is equal to 5/3 i.e. to the polymer
fractal dimension, A is equal to the radius of gyration
(at 0 *) and the two concentrations are equal to the
overlap concentration -0 *.

3. Adsorption of semi-dilute polymer solutions on
small colloidal grains.

3.1 CONCENTRATION PROFILE AROUND A SMALL
SPHERICAL PARTICLE. - The spherical particle has
a radius b smaller than the semi-dilute solution

correlation length 03BEb. The profile around it is given
by equation (4) in a spherical geometry

This same equation has been studied in details by
De Gennes [13] for the behaviour of a critical binary
mixture close to a sphere. We only give here a
qualitative discussion and refer to this work for a

more precise treatment. Close to the sphere, at a
distance z = r - b from the surface smaller than the
radius b, the curvature term is negligible in (4’) and
the concentration profile is the same as for the

adsorption on a plane given by equation (5). At
larger distances, the right hand side is negligible in
(4’) and the order parameter satisfies a Laplace
equation so that qi - r A rough matching with ther 

g

planar profile at r = 2 b yields

This is valid as soon as «/1:&#x3E; «/1b or r « -,Ib 6b
Linearization around the value «/1 = «/1 b shows that at
larger distances the concentration relaxes exponen-
tially towards its bulk value with a decay length
proportional to 03BEb.
These results find a simple interpretation in terms

of the loop size distribution around the particle. The
number of loops of size between 1 and 1 + dl may be
estimated by assuming that these loops contribute
for a finite fraction of the monomers at a distance 1
from the surface following the lines of reference [14]

The total number of small loops (with a size

smaller than b) is proportional to b 2 , the totala

number of large loops (of size larger than b) is of
order 1. The solution forms thus a fluffy layer
around the particle. The self-similar structure how-
ever can only include loops smaller than the grain
size b. Eventually one adsorbed chain may form a
large loop but the two ends of this loop are

constrained within a distance b ; the probability of
formation of large loops is very small in a good
solvent but the distribution is broad and these large
loops build up the concentration profile given by
equation (15). At distances larger than b03BEb most
monomers belong to non-adsorbed chains.
The same picture can be used to study adsorption

on a small fractal grain of size b and fractal

dimension D. Close to the grain surface, at distances
. 

smaller than b, a fluffy self similar structure is

formed similar to that formed on an infinite surface.

Further away from the particle, (r &#x3E; b ) the precise
geometry of the surface is no longer important, only
its macroscopic size counts (it fixes the distance to
which the ends of the large loops are constrained)
and the variation of the concentration with the

distance from the center of the grain is given by
equation (15).



1107

3.2 ADSORBED CHAINS ON A SMALL GRAIN. -

Rather than the adsorbance r, we calculate the total
D

number of adsorbed chains y = rb . ° We use theN
same method as on large grains. The number of
adsorbed chains is the sum of two contributions, a
contribution y 1 related to the surface excess that we
estimate from the concentration profile and a contri-
bution y2 that we estimate from the number of
adsorbed chains in an equivalent melt of blobs. We
distinguish two types of grains, very small grains for
which b -- Cb and small grains for which

03BEb : b : R (cf&#x3E;b).

3.2.1 Very small grains b  03BEb. - For very small
grains y 1s equal to y 1. The concentration profile has
been studied in the preceding section ; both small
loops and large loops contribute to y 1, the contri-
bution of large loops being at most one chain

There are thus two concentration regimes. When
Ob is larger than the concentration 01 defined by
equation (14), there is only one adsorbed chain.
When b is smaller than q# i, y =1 if b  A - N 1 /D

bD
and y b if b &#x3E; A .and ~ 

N 
if &#x3E;03BB °

If b is small enough, a single chain (or a number of
order one) is in contact with the colloidal grain, only
a small piece of this chain containing N * ba
monomers is adsorbed, the two large tails dangling
in the solution. As b is increased, the number of
adsorbed monomers N * becomes larger than N and
several chains are needed to saturate the surface of
the grain. These chains are trapped in the adsorbed
layer except for a few large loops which build the
concentration profile given by equation (15).

3.2.2 Small grains  b  R (40b)- - The concen-
tration profile is the same as that close to an infinite

bD
surface and y 1= 2013 .
To estimate y2, we consider the solution as a melt

of blobs of g monomers of size 03BEb (g3/5 - 03BEb ), each
N

chain containing n = 9 blobs ; we distinguish threeg
regimes :

(i) when b is small, different blobs in contact
03BEb

with the surface belong to different chains

In the volume of one chain there are however
nl’2 different chains, a small grain smaller than the
chain radius cannot be in contact with more than

these n 1/2 chains ; equation (17) ceases thus to be

valid when T b - n 1/(2 D) ( go 
D)

b 9 /
bD

If Ob"’r--Ol, Y2’-- y, and 7 - b the number of
monomers per adsorbed chain on the surface is

proportional to N.proportional to N. 
( b D 

theIf Ob::’ 01, Y2" Yl and y ( 2013 ; 3 theB ?b /
number of monomers per adsorbed chain on the
surface Nag is equal to the number of monomers in a

train p = - (Eq. (9)) ;I a ) 
D

train P = 
B a / 

(Eq. (9)) ;

( B/ B 
1/(2D)

(ii) when 6b N 
1/(2 

b,.--R(Ob) all the
B 9 /

chains occupying the same volume are linked to the
surface and Y2 is independent of the grain radius

If Ob b8 D/5 Y2 - y, and bD is pro-If q,b  N1115 ’ 727i and y = N ; Ns is pro-
portional to N.

If 0 b b8D/5 ’/2 &#x3E;- ^/ 1 and 
N 1/2 

theIf q,b &#x3E; N1115 ’ 72-71 and ’Y = 9 the
N 12/5 9

number of monomers per adsorbed chain on the

surf ace is Ns - 
bD

surface is N 1/24,5/8
(iii) when b is larger than the radius R(Ob), we

may use the results obtained for an infinite surface.

4. Discussion.

Our results for the adsorbance are summarized in

figure 2 where the various behaviours are displayed
in a plane bulk concentration cf&#x3E;b-grain radius b.
Three main regions should be distinguished.
At very small radius b only one chain adsorbs [15].

This chains builds up a diffuse layer whose thickness
is comparable to the grain radius b. A single polymer
chain adsorbing on a plane forms a flat pancake with
a thickness of the order of the monomer length a.
On an infinite surface, energy is gained by putting
more and more monomers in contact with the
surface and no loops are formed. On very small
colloidal grains the surface is saturated when
N * (’" bD) monomers are adsorbed, the free energy
gain is in any case - N * T. The entropy is increased
by forming small loops up to a size b. In a good
solvent large loops are unlikely, their distribution is
however very broad and they contribute to the
concentration profile.
For small concentrations and large radii, the

adsorbance is equal to the surface excess ; the total
number of adsorbed chains is proportional to the

/ bD B
available surface b D each adsorbed chain hasB N
Ns - N monomers in contact with the surface.
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Fig. 2. - Various regimes for the adsorbance of a semi-dilute polymer solution in contact with a fractal colloidal grain in
a plane grain size b-concentration 0 b. The crossover full lines divide the plane in 5 regimes : in region I ; only one chain

D

is adsorbed ; in region II ; the number of adsorbed chain y is proportional to the available surface -y - b ; in region III,N

b D N 1/2 
D 

1-D 5+D

IV, V, y depends on the bulk concentration : y = - region III ; y = ( 2013 ) region DN 2 (b b 8IV, V, y depends on the bulk concentration: y = 
l 

region 
9 

region IV; y = b ’P b

region V.

For larger concentrations the semi-dilute solution
may be viewed as a melt of blobs and three different

regimes are found according to the relative value of
the grain radius and the chain radius. The crossovers
between these regimes are presented here as sharp
but one should keep in mind that this is just a scaling
theory and that they are probably much smoother in
practice. As already noted by De Gennes [16], a
B.E.T. measurement of the adsorbance as a function
of the polymer radius does not give a determination
of the surface fractal dimension but rather of the

polymer fractal dimension in a dilute solution. In a
concentrated solution, the solid fractal dimension
could be obtained in certain regimes by varying the
bulk concentration or the polymer mass.
We have studied adsorption on small colloidal

grains but we expect these results to be valid for
adsorption on any kind of surface with a restricted
geometry. An example of such surfaces is an infinite
surface repulsive for the polymer with a small

adsorbing spot of size b. This is thus a first step
towards the understanding of polymer adsorption on
heterogeneous surfaces ; a needed extension of this
problem is then the adsorption on a repulsive surface
with two adsorbing spots (or equivalently the adsorp-
tion on two spherical grains at a given distance). The
extreme limit of the interaction between a semi-
dilute solution and a small but finite concentration of

spheres has been studied theoretically by Alexander
[17] and experimentally by Cabane and his co-

workers. In certain concentration ranges for the

spheres and the polymer, a gel is formed where the
spheres (small micelles) adsorbing the polymer act
as crosslinks between different chains. The micelle
radius is always smaller than the correlation length
6b and we predict a number of adsorbed chains per
micelle of order 1. Our scaling theory is not thus
refined enough to discuss gel formation in these

systems.
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